1. My example is \(S = (0, 1) \cup (2, 3) \)

 \[
 \begin{pmatrix}
 1 & 2 & 3 \\
 \frac{\pi}{4} & b & \theta \\
 \end{pmatrix}
 \]

 (1) \(S \) is open because it is a union of two open intervals, which are open.

 (2) \(S \) is not an interval, because \(\frac{1}{2}, \frac{5}{2} \in S, \frac{1}{2} < \frac{3}{2} \leq \frac{5}{2} \), and \(\frac{3}{2} \notin S \).

 (3) Suppose \(x, y \in S \) and \(x < y \).

 There exist \(\varepsilon > 0 \) such that \((x - \varepsilon, x + \varepsilon) \subseteq S \).

 Let \(\varepsilon_0 = \min (\varepsilon, y - x) \).

 Then \(\varepsilon_0 < \varepsilon \) so \(x + \varepsilon_0 \in S \) and \(x + \varepsilon_0 < y \), so \(y \in (x + \varepsilon_0, \infty) \).

 Hence \(y > x + \frac{\varepsilon}{2} \).

 And so \(x < x + \frac{\varepsilon_0}{2} < y \in S \).

 Thus, \(S \) is not an interval. This problem was inspired by an error I saw in a book. It's a fun exercise!

2. \(S \) is an open ball.

 \(7 = 1.0 + b(5) \).

 So, for \(x \in S \), \(x \leq 7 \).

 If \(x \leq S \), then there exists \(\delta > 0 \)

 Such that \((7 - \varepsilon, 7 + \varepsilon) \subseteq S \).

 Thus, \(\delta \) contradicts \(S \) being an open ball.

 For any \(\delta > 0 \), say \(\delta = \frac{1}{n} \).

 \(7 - \varepsilon = 7 - \frac{1}{n} \) is not an open ball.

Thus, there exists \(x_n, 7 - \frac{1}{n} < x_n < 7 \)

with \(x_n \in S \).

This tells us

(i) \(x_n \to 7 \).

(ii) \(x_n \to 7 \).

(There are clearly many different \(x_n \).

(3) Sort of like this. Let \(A_1 = (1, 2) \cup (3, 4) \), \(A_2 = (0, 3) \cup (7, \infty) \).

\(A_1 \cap A_2 = (1, 2) \cup (3, 4) \).

\(A_2 = [0, 3] \cup [7, \infty) \).

Same thing as (1).

4. \(f(x) = 1 - \frac{x}{10} \).

 a. \(a_0 = 0, a_{n+1} = f(a_n), n \geq 0 \).

 So \(a_1 = 1 - \frac{0}{10} = 1, a_2 = 1 - \frac{1}{10} = 0.9 \)

 \(a_3 = 1 - \frac{0.9}{10} = 0.91 \).

 \(b. f(x_0) = x_0 \Rightarrow x_0 = 1 - \frac{x_0}{10} \Rightarrow x_0 \cdot 10 = 1 \Rightarrow x_0 = \frac{10}{11} \).

 \(a_{n+2} - a_{n+1} = \frac{1 - a_{n+1}}{10} - \frac{1 - a_n}{10} = \frac{a_n - a_{n+1}}{10} \).

 An upper bound of \(a_1 \) is \(a_n \) if \(a_{n+1} - a_n > 0 \).
Since \(x_n \) is an accumulation point of \(S \), there exists \(y \in S \) such that \(|y - x_n| < \varepsilon \).

1. \(|y - x| = |(y - x_n) - (x - x_n)| \)
2. \(\leq |y - x_n| + |x - x_n| < \delta + \frac{\varepsilon}{2} \)
3. \(\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \)

And we need to show \(x \neq y \), but \(|y - x| < \delta \leq |x - x| \)

So that's why we did it that way.

2. Let \(f(m) = (\sum_{i=1}^{2n} \frac{1}{3^n}) \)

\[f(m) = \sum_{i=1}^{2n} \frac{1}{3^n} = m \frac{2}{3^n} \]
\[\sum_{i=1}^{2n} \frac{1}{3^n} = m \frac{2}{3^n} \]

If \(10^6 \leq 9 \),

(picture).

There are \(10^6 + 1 \) points points in \(10^6 \) little squares, so there exists at least one little square with two points.

Thus, assume \(x \neq x \). Then by the hypothesis, \(x \) is an accumulation point.

(i) If any \(x_n = x \), then by the hypothesis, \(x \) is an accumulation point.

(ii) Thus, assume \(x \neq x \).

Since \(x_n \to x \), there exists \(N \) such that \(|x_n - x| < \frac{\varepsilon}{2} \) for all \(n \geq N \).

Pick one such \(x_n \).

Now let \(\delta = \min\{\frac{\varepsilon}{2}, |x_n - x|\} \)

Since \(x_n \neq x \), \(|x_n - x| > 0 \) and \(0 < \delta \leq \frac{\varepsilon}{2} \).

Choose \(\varepsilon > 0 \).