Let \(d > 2 \) be an integer. We've done this for \(d = 2, 3, 10 \), but any integer will do.

1. I want to show that any integer \(n > 0 \) can be written as
 \[
 n = \sum_{i=0}^{k} a_i d^i, \quad a_i \in \{0, 1, \ldots, d-1\} \text{ for some } k.
 \]

There are two approaches. The first starts with \(a_0 \).
Define \(a_0 \) to be the integer in \(\{0, 1, \ldots, d-1\} \) for which
 \[
 n \equiv a_0 \mod d.
 \]
Then \(n = a_0 + d n_1 \), for some integer \(n_1 \).
and \(n_1 = \frac{n-a_0}{d} \). Then define \(a_1 \) to be the integer for which \(n_1 \equiv a_1 \mod d \) (0 \(\leq a_1 < \)). Repeat until
 \[
 n_k = \frac{n}{d^k} < d. \text{ In the last step } n_k = a_k \text{ and } n_k = 0.
 \]
The other approach starts with \(a_k \). Let \(k+1 \) be the smallest integer so that \(d^{k+1} > n \). Then \(n > d^k \).

Let \(a_k = \left\lfloor \frac{n}{d^k} \right\rfloor \), so \(0 \leq a_k \leq d-1 \). Then
 \[
 n = a_k d^k + n^{(1)}, \quad \text{since } \frac{d^{k+1}}{d^k} = \frac{d}{d-1} > 1, \quad \text{we have } 0 \leq n^{(1)} < 1, \text{ and we can repeat.}
 \]

Example: \(d = 8 \) \(n = 347 \)

(a) \(347 \equiv 3 \mod 8 \), \(347 = 3 + 8 \cdot 43 \), \(43 = 3 + 8 \cdot 5 \), \(5 = 5 + 80 \).
 \[
 347 = 3 + 8(3 + 8(5 + 8(0))) = 3 + 3 \cdot 8 + 5 \cdot 8^2 \leq
 \]

(b) \(347 \leq 512 = 8^3 \), \(\frac{347}{8} = \frac{347}{64} = \frac{5 + \frac{27}{64}}{1} \), so
 \[
 347 = 5 \cdot 8^2 + 27 \quad \frac{27}{8} = 3 + \frac{3}{8}, \text{ so } 27 = 3 + 8 \cdot 3
 \]
 \[
 347 = 5 \cdot 8^2 + 3 \cdot 8 + 8.
 \]

The same thing!
(ii) Suppose x is a real number. Take x if necessary to get $x > 0$. Write $x = \chi_1 + 3\chi_2$, where $\chi_1 \in \mathbb{N}$ and $0 < 3\chi_2 < 1$.

Write $\chi_1 = \sum_{\sigma=0}^{k} a_{-\sigma} \chi_{-\sigma}$, $a_{-\sigma} \in \mathbb{Z}, -2 \leq \sigma \leq 0$ as on (i).

I want to show how to write

$$x = \frac{a_{-1}}{d} + \frac{a_{-2}}{d^2} + \frac{a_{-3}}{d^3} + \ldots + \frac{a_{-k}}{d^k}$$

There's only one idea here. Let $u_0 = 3\chi_2 \in [0, 1)$

$d\,u_0 \in [0, d)$, so $d\,u_0 \in \mathbb{Z}$, $d - 1 < d$

$d\,u_0 = a_{-1} + u_1(1)$, $u_1 \in (0, 1)$

This means that $\chi_1 = u_0 = \frac{d\,u_0}{d} = \frac{a_{-1}}{d} + u_1$

$3\chi_2 = \frac{a_{-1}}{d} + \frac{1}{d}\,u_1$ (where $u_1 \in (0, 1)$).

You just keep repeating

$$x = \frac{a_{-1}}{d} + d\left(\frac{a_{-2}}{d^2} + \frac{u_2}{d}\right) = \frac{a_{-1}}{d} + \frac{a_{-2}}{d^2} + \frac{u_2}{d}, \text{ etc.}$$

Example: $x = \frac{14}{21}$, $d = 8$. $0 \leq \frac{14}{21} < 1$

$8\chi = \frac{8\chi}{21} = 4 + \frac{4}{21} \Rightarrow x = \frac{4}{8} + \frac{1}{8}\left(\frac{4}{21}\right)$

$u_1 = \frac{4}{21}$, $8\,u_1 = \frac{32}{21} = 1 + \frac{14}{21}$, so...

$$\frac{1}{21} = \frac{4}{8} + \frac{1}{8}\left(\frac{1}{8} + \frac{1}{8} + \frac{1}{21}\right) = \frac{4}{8} + \frac{1}{8^2} + \frac{1}{8^2 \cdot 21}$$

This repeats: $\frac{14}{21} = \frac{4}{8} + \frac{1}{8^2} + \frac{4}{8^3} + \frac{1}{8^4} + \ldots$

Check: $\text{RHS} = \left(\frac{4}{8} + \frac{1}{8^2} + \ldots\right) \left(1 + \frac{1}{8^2} + \frac{1}{8^4} + \ldots\right) = \frac{33}{64} - \frac{1}{82} = \frac{33}{64} - \frac{1}{82} = \frac{14}{21}$.

On algebraic numbers

A number \(\alpha \) is algebraic if there exists a non-zero polynomial \(p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \) \((a_i \in \mathbb{Z})\) such that \(p(\alpha) = 0 \); i.e., \(\sum_{k=0}^{n} a_k \alpha^k = 0 \).

Example (1) \(a_1 \alpha + a_0 = 0 \Rightarrow \alpha = -\frac{a_0}{a_1} \); \(\alpha = \frac{m}{n} \Rightarrow p(x) = nx - m \).

Given \(a_2 x^2 + a_1 x + a_0 \Rightarrow \alpha = -\frac{a_1 \pm \sqrt{a_1^2 - 4a_2 a_0}}{2a_2} \), so after we write \(a_2^2 - 4a_0 a_2 = d^2 \cdot m \) where \(d, m \in \mathbb{Z} \) and \(m = 1 \) product of primes, \(\alpha = c_1 \pm c_2 \sqrt{m} \) for integers \(c_1, c_2, c_3 \).

Conversely, such \(\alpha \) satisfies \((c_3 \alpha - c_1)^2 = m \cdot \alpha^2 \), and this gives a quadratic:

A minimal polynomial of \(\alpha \) is a polynomial \(p \) such that \(p(\alpha) = 0 \) and the degree of \(p \) is as small as possible.

Thus if \(p(x) = 9 x^2 - 4 \), then \(p(\frac{2}{3}) = 0 \), but \(\frac{2}{3} \) isn't the minimal polynomial, because \(q(\frac{2}{3}) = 0 \) for \(q(x) = 3x - 2 \).

Note: If \(p \) is a minimal polynomial for \(\alpha \), then \(p'(\alpha) \neq 0 \).

(Why? If \(p'(\alpha) = 0 \), then \(\deg p' = \deg p - 1 \), so \(p \) isn't minimal.)

Theorem: Suppose \(\alpha \in \mathbb{C} \) is an algebraic number and the degree of a minimal polynomial of \(\alpha \) is \(n \). Then there exists \(\varepsilon > 0 \) and \(C \) so that if \(\frac{a}{b} \) is any rational number, then

\[
\left| \frac{a}{b} - \alpha \right| < \varepsilon \Rightarrow \left| \frac{a}{b} - \alpha \right| > \frac{C}{b^n}.
\]

In other words, if \(\frac{a}{b} \) is close to \(\alpha \), then it can't be too close.

(This was \(\frac{a}{b} = \frac{1}{6} \), and then I remembered the minimal polynomial...)
Fine Point: It can be shown in an algebra class, hence 425
in 4.7. That is \(\frac{a}{b} < c \) and \(P\left(\frac{a}{b}\right) = 0 \), then \(P(x) = (bx-a)q(x) \)
where \(q(x) \) is also a polynomial with integer coefficients.
Thus, if \(P \) is a minimal polynomial for \(c \), then \(P\left(\frac{a}{b}\right) = 0 \).
Because \(P\left(\frac{a}{b}\right) = 0 \), then \(P(x) = (bx-a)q(x) \) and \(q(x) = 0 \) as
well, but \(q \) has a smaller degree.

\[P\left(\frac{a}{b}\right) = \sum_{k=0}^{n} a_k \cdot \left(\frac{a}{b}\right)^k = \frac{a_0 b^n + a_1 b^{n-1} b + \cdots + a_n b^0}{b^n} \]

So the numerator is \(\neq 0 \), hence \(\left| P\left(\frac{a}{b}\right) \right| > \frac{1}{b^n} \).

Now let's use the mean value theorem. Suppose \(\left|\frac{a}{b} - d\right| < \varepsilon \)

\[P\left(\frac{a}{b}\right) - P(d) = P'(\xi) \quad \text{where } \frac{a}{b} \text{ and } d, \quad \xi \in \left(\frac{a}{b}, d\right) \]

\[|\frac{a}{b} - d| \leq |\frac{a}{b} - \xi| + |\xi - d| < \varepsilon. \]

\[|P\left(\frac{a}{b}\right) - P(d)| = \left| P'(\xi) \right| |\frac{a}{b} - d| \quad \text{(From above)} \]

But \(P(d) = 0 \) and \(|P\left(\frac{a}{b}\right)| \geq \frac{1}{b^n} \), so

\[|\frac{a}{b} - d| = \frac{|P\left(\frac{a}{b}\right) - P(d)|}{|P'(\xi)|} \geq \frac{1}{b^n} \cdot \frac{1}{|P'(d)|} \geq \frac{1}{b^n} \]

we conclude

because \(P'(d) \to 0 \)

Take \(C = \frac{1}{b^n} \) to complete the proof.