p. 110-4
Lots of mistakes. If
\[T_i \rightarrow T_j \]
Then \(T_j \) cannot start until \(T_i \) is finished. It does not have to be on the same processor.

21. If the critical path takes \(m \) units of time, then the minimum time required is at least \(m \).
If you have two processors and the total time is \(N \), then the minimum time is at least \(\frac{N}{2} \) (and similarly for 3 proc.)
If this is not an integer, round up to get the minimum.

Another example is forthcoming on this.

3. Small point: if two processors are free (at \(t=0 \) or at some later time), then you use the preference ordering and give the higher preference to the first processor. It won't affect the total time, but it is in the algorithm.

p. 110-36
For some reason, on many of your papers, A time line of 61 units was shorter than one of 59.

p. 110-46. Generally ok, but you often forgot one or two items. This was not a fun problem to grade.

p. 110-70. I went over this in class last week, and will repeat. You translate the information from the table to the graph. You then try to color the graph. Start with the smallest feasible number of colors - 3 worked in both of these.

Another example is forthcoming on this.

p. 110-76. The peculiar question 4 is based on 7 being prime. It's possible to have 9 (odd, not prime) children in 3 groups of 3.

#3. Sorry for any confusion. I thought it was clear that after ordering the tasks in (b) you were to schedule them on 3 processors. It wasn't.