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The new work in this presentation is joint with Greg Blekherman.
My apologies to those who have seen earlier versions. We have not
made progress since my presentations in San Diego and Daejeon.
I have supplemented the talk with results about sums of cubes, as
suggested by Eberhard Becker’s talk on Monday.

In the first part of the talk, we are concerned with P3,2k , the cone
of psd real 2k-ic ternary forms: i.e., homogeneous polynomials
p(x , y , z) of degree 2k with the property that p(a, b, c) ≥ 0 for
(a, b, c)∈ R3. We’ll also be interested in the subcone Σ3,2k

consisting of sums of squares of ternary forms of degree k .

For such forms, we are particularly interested in the zero set of p,
written Z(p), and the projective number of zeros, |Z(p)|, counted
this way because forms vanish on lines through the origin. We will
describe Z(p) by picking a representative from each such line.
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An example is instructive. Let

qk(x , y , z) =
k∏

i=1

(x − iz)2 +
k∏

j=1

(y − jz)2.

It is evident that qk ∈ Σ3,2k and that

Z(qk) = {(i , j , 1) : 1 ≤ i , j ≤ k},

so that |Z(qk)| = k2.

If e.g. p(x , y , z) = (x − z)2q(x , y , z) for some psd q, then the
entire line {x = z} is contained in Z(p), so |Z(p)| =∞. We will
only be interested in those cases where |Z(p)| is finite, so we
assume no indefinite square factors.
If p(a, b, 0) = 0, then p has a “zero at infinity”. In the absence of
these, it makes sense to dehomogenize to p(x , y , 1). If ε > 0 is
sufficiently small, then the real solutions to p(x , y) = ε will consist
of |Z(p)| disjoint ovals in the plane, one around each of the zeros.
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Here is one example of 16 ovals for the octic q4:

In[6]:= ContourPlot@Product@Hx - i L ^ 2, 8i, 1, 4<D +

Product@Hy - j L ^ 2, 8j, 1, 4<D � .1, 8x, .5, 4.5<,
8y, .5, 4.5<, ContourStyle ® Black, PlotPoints ® 100D

Out[6]=

1 2 3 4

1

2

3

4
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M. D. Choi, T. Y. Lam and I studied this topic systematically in
1980. Here are some of our results:

There is an integer α(2k) with the property that if p ∈ P3,2k

and |Z(p)| > α(2k), then there exists an indefinite form h so
that p = h2q. (If p is irreducible over C and p(π) = 0, then p
is singular at π, and p has at most (k − 1)(2k − 1) singular
points.) (Failure in 4 variables: x2y2 + z2w2!)

α(2k1 + 2k2) ≥ α(2k1) + α(2k2). (A product of forms with a
change of variables to insure that zeros are distinct.)

α(2) = 1, α(4) = 4, α(6) = 10. (Examples to follow.)

k2 ≤ α(2k) ≤ 3
2k(k − 1) + 1 for k ≥ 3. (Lower bound:

previous example; upper bound: Petrovskii’s work on ovals
from the 1970s.)

If p ∈ Σ3,2k , then |Z(p)| ≤ k2. (Bezout, but f 2 for psd f .)

α(2rk) ≥ r2α(2k). (Argument to follow.)
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Examples. If p is a real ternary form of degree 2k = 2, 4, then psd
implies sos, so the upper bounds are 12, 22. These are achieved by:

Z(x2 + y2 + z2 − xy − xz − yz) = {(1, 1, 1)};
Z(x4 + y4 + z4 − x2y2 − x2z2 − y2z2) = {(±1,±1, 1)}.

The construction of psd ternary sextics which are not sos goes
back to Hilbert, but the first specific example is due to Robinson.

Let F = x(x2 − z2) and G = y(y2 − z2). Then F and G have 9
common real zeros, at {(a, b, 1) : a, b ∈ {−1, 0, 1}}; that is, on a
3× 3 grid. We pick the 8 zeros minus the center and note that
K (x , y , z) = (x2 − z2)(y2 − z2)(z2 − x2 − y2) is singular at the
first 8.
It turns out that R := F 2 + G 2 + K is psd and has the original 8
zeros plus 2 at infinity. Miraculously, R is symmetric in x , y , z ,
even though z was treated differently from x and y .
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Here are some dehomogenized (z = 1) pictures. This shows the set
F 2 + G 2 = .1.

In[7]:= ContourPlot@x ^ 2 Hx ^ 2 - 1L ^ 2 + y ^ 2 Hy ^ 2 - 1L ^ 2 � .1,
8x, -1.5, 1.5<, 8y, -1.5, 1.5<,
ContourStyle ® Black, PlotPoints ® 100D

Out[7]=
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This shows the set R = F 2 + G 2 + K = .1. You can’t see the zeros
at infinity.

In[8]:= ContourPlot@x ^ 2 Hx ^ 2 - 1L ^ 2 + y ^ 2 Hy ^ 2 - 1L ^ 2 +

Hx ^ 2 - 1L Hy ^ 2 - 1L H1 - x ^ 2 - y ^ 2L � .1, 8x, -1.5, 1.5<,
8y, -1.5, 1.5<, ContourStyle ® Black, PlotPoints ® 100D

Out[8]=
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After algebraic simplification,

R(x , y , z) = x6 + y6 + z6

−(x4y2 + x2y4 + x4z2 + x2z4 + y4z2 + y2z4)

+3x2y2z2.

We have

Z(R) = {(±1,±1, 1), (±1, 0, 1), (0,±1, 1), (1,±1, 0)}.

The last two zeros are at infinity; note that |Z(R)| = 10 as
promised. Both the singularity upper bound and the oval upper
bound for sextics give 10, so α(6) = 10.
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Let Tr (t) := cos(r arccos(t)) be the r -th Chebyshev polynomial
(deg(Tr ) = r); e.g. T3(t) = 4t3 − 3t. Chebyshev polynomials
have the property that Tr : [−1, 1] 7→ [−1, 1] in such a way that
for u ∈ (−1, 1), |{T−1r (u)}| = r .

If p ∈ P3,2k and |Z(p)| = m, then after an invertible linear change
of variables, we may assume that

Z(p) = {(ai , bi , 1) : 1 ≤ i ≤ m}

with |ai |, |bi | < 1.

We construct a new polynomial of degree 2kr :

pr (x , y , z) := z2krp(Tr (x/z),Tr (y/z), 1) =⇒
Z(pr ) = {(T−1r (ai ),T

−1
r (bi ), 1) : 1 ≤ i ≤ m},

so we see that |Z(pr )| = r2m. This guarantees quadratic growth.
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Now some “new” results; this is joint work with Greg.

α(8) ≥ 17. (In fact, “morally”, we have α(8) ≥ 18; the oval
upper bound is 19.) Added: Claus Scheiderer gave a beautiful
octic in his talk showing α(8) ≥ 18 unconditionally.

α(10) ≥ 30. (These examples are due to my 1992 PhD
student William Harris in his thesis; the oval upper bound is
31.)

We conjecture that α(2k) ≥ k2 + 1 for k ≥ 3, as a concrete
manifestation of the fact that P3,2k \ Σ3,2k 6= ∅ in this case.

The octic examples come from emulating Robinson’s construction,
but starting with a 4× 4 grid. First ignore two zeros. It turns out
that the set of quartics which vanish on these 14 points is a pencil
with generators, say, F and G . We then look at octic forms which
are singular at these 14 points. When we are lucky, they form a
subspace of ternary octics with basis {F 2,FG ,G 2,K} for some K .
We then play with taking φ(F ,G ) + λK where φ is a pd quadratic
form, and, when things work out just right, we find the examples.
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manifestation of the fact that P3,2k \ Σ3,2k 6= ∅ in this case.

The octic examples come from emulating Robinson’s construction,
but starting with a 4× 4 grid. First ignore two zeros. It turns out
that the set of quartics which vanish on these 14 points is a pencil
with generators, say, F and G . We then look at octic forms which
are singular at these 14 points. When we are lucky, they form a
subspace of ternary octics with basis {F 2,FG ,G 2,K} for some K .
We then play with taking φ(F ,G ) + λK where φ is a pd quadratic
form, and, when things work out just right, we find the examples.
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The example with 17 zeros comes from a variation. We start with
a 3× 4 grid and a symmetric pair above and below.) The resulting
F1(x , y , z) is unfortunately, quite ugly: F1 ∈ Q(

√
345)[x , y , z ], and

the three new zeros are at infinity; at (0, 1, 0) and (a, b, 0), where
3
√

345a2 = 23b2. We have varied the starting points and found
many similar examples, but none with rational coefficients.

F1(x , y , z) := −y2(5x2 + 9y2 − 81z2)(5x2 + y2 − 9z2)(y2 − 4z2)

+
2

27
(675 + 23

√
345)x2y2(y2 − 4z2)2

+9(5x4 − y4 − 50x2z2 + 4y2z2 + 45z4)2
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In 1893, Hilbert proved that if p ∈ P3,2k and 2k ≥ 4, then there
exists q ∈ P3,2k−4 so that pq ∈ Σ3,4k−4 is a sum of three squares
of forms of degree 2k − 2.

This example F1 has the property that the only quadratic q (up to
multiple) so that qF1 is a sum of squares is q = q1 :

q1(x , y , z) = 90x2 +
√

345 y2 + 14
√

345 z2.

It turns out that q1F1 is a sum of four squares, not three, so this
example shows that, for at least one octic in Hilbert’s Theorem,
you really need a multiplier of degree 8− 4, not 8− 6.

Now we turn to the “morally 18 zero” example. It has 16 zeros,
but two of them are “deep”, with the polynomial vanishing to
fourth order in a certain direction. In a geometric sense, this
happens when two zeros coalesce at a point, and 16 + 2 = 18.
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The 14 zeros we start with are

{(a, b, 1) : a, b ∈ {±1,±3}, (a, b) 6= (3, 3), (−3,−3)};

the two new zeros turn out to be at (±s,±s, 1), where s =
√

45
13 .

F2(x , y , z) =

25x8 + 72x6y2 + 144x5y3 + 194x4y4 + 144x3y5 + 72x2y6

+25y8 − 572x6z2 − 144x5yz2 − 1436x4y2z2 − 1728x3y3z2

−1436x2y4z2 − 144xy5z2 − 572y6z2 + 4192x4z4

+1584x3yz4 + 6584x2y2z4 + 1584xy3z4

+4192y4z4 − 9720x2z6 − 1440xyz6 − 9720y2z6 + 8100z8

The next page shows F2(x , y , 1) = 400; 400 is small!
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You can count 16 zeros and you can see the squeezed shape of the
zeros at (±1,∓1), which is consistent with their 4th order.
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I had forgotten about my student William Harris’s example in
degree 10 until I was reminded of it in 2014 by my collaborators
Charu Goel and Salma Kuhlmann at the University of Konstanz.

As Charu said the other night, we have constructed symmetric and
even symmetric forms of degree d in n variables for every (n, d) for
which it is possible. Unfortunately for these purposes, the basic
examples are mainly reducible, and are usually multiplied by
squares of indefinite factors, so they are not very useful in the
quest for a large finite number of zeros.

Harris actually constructed a one-parameter family of psd ternary
decics with 30 zeros. I have made a choice of parameter to make it
as simple as possible.

Bruce Reznick University of Illinois at Urbana-Champaign Ternary forms with lots of zeros(Slightly corrected version)



I had forgotten about my student William Harris’s example in
degree 10 until I was reminded of it in 2014 by my collaborators
Charu Goel and Salma Kuhlmann at the University of Konstanz.

As Charu said the other night, we have constructed symmetric and
even symmetric forms of degree d in n variables for every (n, d) for
which it is possible. Unfortunately for these purposes, the basic
examples are mainly reducible, and are usually multiplied by
squares of indefinite factors, so they are not very useful in the
quest for a large finite number of zeros.

Harris actually constructed a one-parameter family of psd ternary
decics with 30 zeros. I have made a choice of parameter to make it
as simple as possible.

Bruce Reznick University of Illinois at Urbana-Champaign Ternary forms with lots of zeros(Slightly corrected version)



I had forgotten about my student William Harris’s example in
degree 10 until I was reminded of it in 2014 by my collaborators
Charu Goel and Salma Kuhlmann at the University of Konstanz.

As Charu said the other night, we have constructed symmetric and
even symmetric forms of degree d in n variables for every (n, d) for
which it is possible. Unfortunately for these purposes, the basic
examples are mainly reducible, and are usually multiplied by
squares of indefinite factors, so they are not very useful in the
quest for a large finite number of zeros.

Harris actually constructed a one-parameter family of psd ternary
decics with 30 zeros. I have made a choice of parameter to make it
as simple as possible.

Bruce Reznick University of Illinois at Urbana-Champaign Ternary forms with lots of zeros(Slightly corrected version)



Here it is:

W (x , y , z) = 16
∑

x10 − 36
∑

x8y2 + 20
∑

x6y4

+57
∑

x6y2z2 − 38
∑

x4y4z2.

(The sums above should be taken so as to make W symmetric.)

Harris showed that W is psd and Z(W ) consists of (1, 1,
√

2),
(1, 1, 12), and (1, 1, 0) with all choices of sign and permutation.
This gives 12 + 12 + 6 = 30 zeros, of which 28 zeros are not at
infinity. (It seems likely that the future examples in higher degree
will be symmetric.) The next page shows W (x , y , 1) = .08.
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The zeros are at (±1,±1
2) , (±1

2 ,±1), (±
√

1
2 ,±

√
1
2), (±1,±

√
2),

(±
√

2,±1), (±1, 0), (0,±1), (±2,±2). The last 4 are barely
visible, but choosing a larger ε makes the ovals coalesce.
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On the conjecture, Choi, Lam and I remarked in 1980 that because
of the Chebyshev-fueled quadratic growth, we have

α(6s) ≥ 10s2,

α(6s + 2) ≥ 10s2 + 1,

α(6s + 4) ≥ 10s2 + 4.

This is already enough to prove that α(2k) ≥ k2 + 1 for all but 18
cases: 6s + 2 for 1 ≤ s ≤ 6 and 6s + 4 for 1 ≤ s ≤ 12. The new
information about α(8) and α(10) reduces the number of open
cases to eight: 2k ∈ {14, 22, 26, 28, 34, 38, 46, 58}.

We think the conjecture is true, because it’s hard to believe that
there’s something interesting about ternary forms which only
occurs in these degrees.
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We mention two applications. The first is taken from my 1992
Memoir. Let Q3,2k be the closed cone of sums of 2k-th powers of
real linear forms; this is the dual cone to P3,2k .

Suppose p ∈ P3,2k , Z(p) = {(ai , bi , ci )} and the |Z(p)| forms
{(aix + biy + ciz)2k} are linearly independent. Then any
expression of the form

|Z(p)|∑
i=1

λi (aix + biy + ciz)2k , (λi > 0)

has no other expression as a sum of 2k-th powers of real linear
forms.
The a priori lower bound on “maximal width” is (k+1)(k+2)

2 , which
e.g. for 2k = 10 is 21. It is easy to find sums of 10th powers of
ternary linear forms which need 21 summands. The Harris example
demonstrates the existence of forms needing 30 summands.
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The second application is stolen from an overheard conversation
between Greg and Cordian (and possibly involving others here.)
Any misinterpretation is my responsibility. A quadrature formula of
strength d on (Sn−1, dµ) is an equation:∫

· · ·
∫

u∈Sn−1

p(u) dµ =
N∑

k−1
λkp(uk)

which is valid for all forms p of degree ≤ d in n variables, where
dµ is a positive measure on Sn−1, λk ∈ R, uk ∈ Sn−1.

Observe that if 0 6= p is psd, then the left-hand side is positive,
hence it cannot be the case that p(uk) = 0 for 1 ≤ k ≤ N. The
Harris example shows that for d = 10, n = 3, the minimum number
of nodes in a strength 10 quadrature formula must be ≥ 31.
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Sums of two squares are an important theme in mathematics.
What can one say about a sum of two cubes? (Warning: this is
over C, not R!) There is a simple result which I have not seen in
the literature. If you know it, please give me the proper source.

Theorem

Suppose F ∈ C[x1, . . . , xn]. Then F is a sum of two cubes in
C[x1, . . . , xn] if and only if it is itself a cube, or has a factorization
F = G1G2G3, into non-proportional, but linearly dependent factors.

Let ω denote a primitive cube root of unity. This theorem is
actually valid for any field K with Q(ω) ⊆ K ⊆ C.
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Proof.

First observe that

F = G 3 + H3 = (G + H)(G + ωH)(G + ω2H),

(G + H) + ω(G + ωH) + ω2(g + ω2H) = 0.

If two of the factors G + ωjH are proportional, then so are G and
H, and hence F is a cube.

Conversely, if F has such a factorization, there exist 0 6= α, β ∈ C
so that F = G1G2(αG1 + βG2). It is easily checked that

F =
(ω2aG1 − ωbG2)3 − (ωaG1 − ω2bG2)3

3ab(ω − ω2)
.
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An immediate corollary is a special case of an old theorem.

Corollary (Sylvester, 1851)

If a binary cubic p is not a cube, then it is a sum of two cubes of
linear forms unless it has a repeated factor.

Proof.

Write p(x , y) =
∏3

j=1(αjx + βjy)3. The three factors {αjx + βjy}
are always linearly dependent, so p is a sum of two cubes iff they
are not pairwise proportional.

Sylvester’s proof also gives an algorithm for the coefficients of the
cubes in the representation of p as a sum of two cubes. That’s for
another talk.
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In case p is a binary sextic form, there are 7 coefficients in p and 6
coefficients in two quadratic forms.

Theorem

The binary sextic f (x , y) is a sum of two cubes of quadratic forms
if and only if either
(i) p = `3g, where ` is a linear form and g is a cubic which is a
sum of two cubes, or
(ii) After an invertible linear change of variables, p is even; i.e.,
p(ax + by , cx + dy) = g(x2, y2), where g is a cubic which is a sum
of two cubes.

Proof.

Write p = F 3 + G 3. If F and G have a common linear factor `, we
are in case (i). If F and G are quadratic forms which are relatively
prime, there is an invertible linear change of variables under which
they are simultaneously diagonalized. This is case (ii) and implies
that p is even, after that change of variables.

Bruce Reznick University of Illinois at Urbana-Champaign Ternary forms with lots of zeros(Slightly corrected version)



In case p is a binary sextic form, there are 7 coefficients in p and 6
coefficients in two quadratic forms.

Theorem

The binary sextic f (x , y) is a sum of two cubes of quadratic forms
if and only if either
(i) p = `3g, where ` is a linear form and g is a cubic which is a
sum of two cubes, or
(ii) After an invertible linear change of variables, p is even; i.e.,
p(ax + by , cx + dy) = g(x2, y2), where g is a cubic which is a sum
of two cubes.

Proof.

Write p = F 3 + G 3. If F and G have a common linear factor `, we
are in case (i). If F and G are quadratic forms which are relatively
prime, there is an invertible linear change of variables under which
they are simultaneously diagonalized. This is case (ii) and implies
that p is even, after that change of variables.

Bruce Reznick University of Illinois at Urbana-Champaign Ternary forms with lots of zeros(Slightly corrected version)



This comes from an ongoing project with Boris Shapiro.

Theorem

There is an algorithm for writing a binary sextic in C[x , y ] as a
sum of three cubes of quadratic forms.

This is a sketch of the proof. Write a binary sextic as

p(x , y) =
6∑

k=0

(
6

k

)
akx

6−kyk .

Given p 6= 0, we may make an invertible change of variable to
assume that p(0, 1)p(1, 0) 6= 0; that is, a0a6 6= 0. By an
observation of ad hoc, the coefficients of x6, x5y , x4y2 in p and
a0q

3 are the same, where

q(x , y) = x2 + 2a1
a0

x y +
5a0a2−4a21

a20
y2.

Hence there is a cubic c such that.

p(x , y)− a0q(x , y)3 = y3c(x , y).
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Usually, (p − a0q
3)/y3 = c is a sum of 2 cubes of linear forms,

from which it follows that p is a sum of 3 cubes. This algorithm
can only fail if c has a square factor. The discriminant of c is a
polynomial in the ai ’s of degree 18, divided by a140 .
This paragraph added since the talk: Thus the open cases have the
shape

p(x , y) = (ax2 + bxy + cy2)3 + y3c(x , y)

where c is a cubic which has a square linear factor.

We believe that in these cases there is always (or nearly always) a
value of the parameter t such that the algorithm works for
pt(x , y) = p(x , tx + y). Work is ongoing in this case, though the
argument I outlined on 10/16/15 had errors. In any case we can
(could?, did?) have lunch now (then?).
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I thank the organizers for the
invitation to speak and the audience
for its patience and attention.
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