3. Cones of n-ary m-ics and their duals

In this section, we shall discuss the cones $P_{n,m}$, $\Sigma_{n,m}$, and $Q_{n,m}$ (recall that m is even.) We begin with a unified proof that these cones are closed and convex; these results are due to Hilbert [H7] and R. M. Robinson [R7]. We shall need two intermediate definitions: for $r \geq 1$, let

$$\Sigma_{n,m}^r = \{ \sum_{k=1}^{r} h_k^2 : h_k \in F_{n,s} \},$$

(3.1)

$$Q_{n,m}^r = \{ \sum_{k=1}^{r} (\alpha_k \cdot x)^m : \alpha_k \in \mathbb{R}^n \}. $$

(3.2)

Lemma 3.3

For all $r \geq 1$, $\Sigma_{n,m}^r$ and $Q_{n,m}^r$ are closed sets in $F_{n,m}$.

Proof

Suppose $p_j \in Q_{n,m}^r$ and $p_j \to p$. Then,

$$p_j(x) = \sum_{k=1}^{r} (\alpha_{j1} x_1 + \cdots + \alpha_{jn} x_n)^m = \sum_{i \in I} c(i) a(p_j;i)x^i$$

(3.4)

and $a(p_j;i) \to a(p;i)$. For $1 \leq b \leq n$, let e_b denote the b-th unit vector and reindex so that $i_b = me_b$. Then $x^i_b = x^m_b$ and, since $c(i_b) = 1,$

$$\sum_{k=1}^{r} (\alpha_{jkb})^m = a(p_j;i_b) \to a(p;i_b) = p(e_b).$$

and $a(p;j_i) \to a(p;i).$
Thus there is a uniform upper bound \(M \) for \(|\alpha_{jkb}|, 1 \leq k \leq r, 1 \leq b \leq n, j \geq 1 \), and there is a subsequence \((j_v)\) so that for each \((k,b)\), \(\{\alpha_{j_vkb}\} \) converges to some \(\alpha_{kb}\). Hence,

\[
(3.5) \quad p(x) = \sum_{k=1}^{r} (\alpha_{k1}x_1 + \cdots + \alpha_{kn}x_n)^m \in \mathbb{Q}_{n,m}^r.
\]

Similarly, suppose \(p_j(x) = \sum_{k=1}^{r} (h_{k,j}(x))^2 \in \Sigma_{n,m}^r\) and \(p_j(x) \to p(x)\); also suppose \(\{\alpha_\ell\}\) is a basic set of nodes for \(F_{n,s}\) and \(M = \max\{p(\alpha_\ell)\}\). Then for \(j\) sufficiently large, \(0 \leq p_j(\alpha_\ell) \leq 2M\), so \(|h_{k,j}(\alpha_\ell)| \leq (2M)^{1/2}\). In the language of (2.9), \(|a(h_{j,k};i)| \leq (2M)^{1/2}\Sigma_j \lambda_k(i) | \leq T\) uniformly in \(i\). Since the coefficients in \(h_{k,j}\) are uniformly bounded, we may select a convergent subsequence, \(h_{k,j_v}(x) \to h_k(x)\), so that \(p(x) = \sum_{k=1}^{r} (h_{k}(x))^2 \in \Sigma_{n,m}^r\). \(\square\)

Proposition 3.6

\(P_{n,m}, Q_{n,m}\) and \(\Sigma_{n,m}\) are closed convex cones.

Proof

If \(p_j \in P_{n,m}\) and \(p_j \to p\), then for all \(x\), \(0 \leq p_j(x) \to p(x)\), and so \(p \in P_{n,m}\); thus \(P_{n,m}\) is closed. Carathéodory's Theorem implies that, for \(r \geq N = N(n,m)\), \(\Sigma_{n,m}^r = \Sigma_{n,m}^N\) and \(Q_{n,m}^r = Q_{n,m}^N\), and so \(\Sigma_{n,m} = \Sigma_{n,m}^N\) and \(Q_{n,m} = Q_{n,m}^N\) are both closed by the last theorem. (As noted earlier, Hilbert had proved that \(\Sigma_{3,6} = \Sigma_{3,6}^{28}\), essentially by Carathéodory's argument.) \(\square\)
We now compute the duals of these cones, and study their interiors.

Theorem 3.7

\[P_{n,m}^* = Q_{n,m} \] and \[Q_{n,m}^* = P_{n,m} \].

Proof

As \(P_{n,m} \) and \(Q_{n,m} \) are both closed convex cones, these assertions are equivalent. Since the elements of \(Q_{n,m} \) are the finite sums \(\Sigma(\alpha_k x)^m \), \(p \) belongs to \(Q_{n,m}^* \) if and only if \([p, \Sigma(\alpha_k x)^m] = \Sigma p(\alpha_k) \geq 0 \) for all sets \(A = \{\alpha_1, \ldots, \alpha_r\} \subseteq \mathbb{R}^n \). This occurs of course if and only if \(p(\alpha) \geq 0 \) for all \(\alpha \); that is, if and only if \(p \) is psd. \(\square \)

Theorem 3.8

Suppose \(A = \{\alpha_1, \ldots, \alpha_r\} \) and \(p(x) = \Sigma(\alpha_k x)^m \).

(i) If \(h \in P_{n,m} \), then \([p,h] = 0 \) if and only if \(A \subseteq \mathcal{Z}(h) \); i.e., \(h \in I(A) \).

(ii) If \(B = \{\beta_1, \ldots, \beta_t\} \) and \(p(x) = \Sigma(\beta_x^t x)^m \), then \(I(A) \cap P_{n,m} = I(B) \cap P_{n,m} \).

(iii) \(H_p(u) = 0 \) if and only if \(L(\alpha_k; u) = 0 \) for all \(k \); i.e., \(A \subseteq \mathcal{Z}(L; u) \).

(iv) \(\mathcal{N}(p) = I(A) \cap F_{n,s} \).

(v) \(\mathcal{N}(p) \) is an \((N(n,s) - \text{rank}(H_p))\)-dimensional subspace of \(F_{n,s} \).

Proof

In (i), since \([p,h] = \Sigma h(\alpha_k) \) and \(h \) is psd, \([p,h] \geq 0 \), with equality if and only if \(h(\alpha_k) = 0 \) for all \(k \). For (ii), observe that

\[\{h \in P_{n,m} : [p,h] = 0\} = I(A) \cap P_{n,m} = I(B) \cap P_{n,m}. \]
The proofs of (iii), (iv), and (v) are immediate upon recalling (1.21), setting \(h(x) = L^2(u) = g^2(u) \) in (i) and identifying \(\mathcal{N}(p) \) with \(\mathcal{E}(\mathcal{H}_p) \). \(\square \)

Corollary 3.10

Suppose \(h \in P_{n,m} \), \(\mathcal{E}(h) = \{\alpha_1, \ldots, \alpha_r\} \) is \(m \)-independent and

\[
(3.11) \quad p(x) = \sum_{k=1}^{r} (\lambda_k \alpha_k \cdot x)^m,
\]

where \(\lambda_k \neq 0 \). Then (3.11) is a strongly unique representation for \(p \). In particular, \(w(p) = r \).

Proof

By Theorem 3.8(i), \([p,h] = 0 \). Suppose

\[
(3.12) \quad p(x) = \sum_{j=1}^{b} (\beta_j \cdot x)^m
\]

is any good representation of \(p \); then \(h(\beta_j) = 0 \) by Theorem 3.8(i). Since (3.12) is good, no two \(\beta_j \)'s are proportional, and thus we may assume that \(\beta_j = \nu_j \alpha_j \) after reindexing, \(1 \leq j \leq b < r \). But if

\[
(3.13) \quad p(x) = \sum_{k=1}^{r} (\lambda_k \alpha_k \cdot x)^m = \sum_{k=1}^{b} (\nu_k \alpha_k \cdot x)^m,
\]

then \(\nu_k^m = \lambda_k^m \) (and so \(b = r \)) by the \(m \)-independence of \(\{\alpha_k\} \). Since \(\nu_k = \pm \lambda_k \), (3.12) is a rearrangement of (3.11), completing the proof. \(\square \)
Theorem 3.14

(i) $p \in \text{int } P_{n,m}$ if and only if p is strictly definite.

(ii) $p \in \text{int } Q_{n,m}$ if and only if $p \in Q_{n,m}$, and in every representation $p = \Sigma(\alpha_k \cdot)^m$, we have $I(\{\alpha_k\}) \cap P_{n,m} = \{0\}$.

(iii) If $\{\alpha_k\}$ is a basic set of nodes for $F_{n,m}$, then $\Sigma(\alpha_k \cdot)^m \in \text{int } Q_{n,m}$.

(iv) If $p \in \text{int } Q_{n,m}$, then $\omega(p) \geq N(n,s)$.

Proof

(i) By Lemma 2.2, $p \in \text{int } P_{n,m}$ if and only if for every non-empty $A = \{\alpha_1, \ldots, \alpha_r\} \subseteq \mathbb{R}^n \setminus \{0\}$, $[p, \Sigma(\alpha_k \cdot)^m] = \Sigma p(\alpha_k) > 0$; that is, if and only if $p(\alpha) > 0$ for all $\alpha \neq 0$.

(ii) Similarly, $p = \Sigma(\alpha_k \cdot)^m \in \text{int } Q_{n,m}$ if and only if $0 \neq q \in P_{n,m}$ implies that $[\Sigma(\alpha_k \cdot)^m, q] = \Sigma q(\alpha_k) > 0$; that is, $\alpha_\ell \notin \mathcal{Z}(q)$ for some ℓ.

(iii) If $q = 0$ on a basic set of nodes for $F_{n,m}$, then $q = 0$ by (2.14). Thus, $\{0\} = I(\{\alpha_k\}) \cap F_{n,m} = I(\{\alpha_k\}) \cap P_{n,m}$, and $\Sigma(\alpha_k \cdot)^m \in \text{int } Q_{n,m}$ by (ii).

(iv) Since $\Sigma_{n,m} \subseteq P_{n,m}$, $Q_{n,m} \subseteq \Sigma_{n,m}^*$, thus if $p \in \text{int } Q_{n,m}$, then $p \in \text{int } \Sigma_{n,m}^*$; for the rest of the proof, see Theorem 3.16(iv). \qed

Corollary 3.15

$Q_{n,m}$, $P_{n,m}$ and $\Sigma_{n,m}$ have non-empty interiors (in $\mathbb{R}^{N(n,m)}$).

Proof

Since $Q_{n,m} \subseteq \Sigma_{n,m} \subseteq P_{n,m}$, it suffices to show that $Q_{n,m}$ has a nonempty interior; combine Proposition 2.7 and Theorem 3.14(iii). \qed

Theorem 3.16

(i) $\Sigma_{n,m}^* = \{p \in F_{n,m} : H_p \text{ is psd}\}$.

(ii) Suppose \(p \in F_{n,m} \). Then \(p \in \text{int} \Sigma_{n,m}^* \) if and only if \(H_p \) is positive definite (i.e., \(\mathcal{N}(p) = \{0\} \)).

(iii) If \(p \in \text{int} \Sigma_{n,m}^* \), then \(w(p) \geq N(n,s) \).

(iv) If \(\{\alpha_k\} \) is a basic set of nodes for \(F_{n,s} \) (not \(F_{n,m} \)), then \(p = \Sigma(\alpha_k \cdot)^m \in \text{int} \Sigma_{n,m}^* \).

Proof

(i) By definition, \(p \in \Sigma_{n,m}^* \) if and only if \([p, \Sigma f_k^2] \geq 0 \); that is, if and only if \([p, f^2] \geq 0 \) for every \(f \in F_{n,s} \). Since \(F_{n,s} = \{L(u); u \in \mathbb{R}^N(n,s)\} \), \(p \in \Sigma_{n,m}^* \) if and only if \([p, L(u)^2] = H_p(u) \geq 0 \) for all \(u \in \mathbb{R}^N(n,s) \).

(ii) This is immediate from Lemma 2.2 and \(H_p(t) = [p, L(t)^2] \).

(iii) By (1.29) and (ii), \(w(p) \geq \text{rank}(H_p) = N(n,s) \).

(iv) If \([p, g^2] = 0 \), then \(\Sigma(g(\alpha_k))^2 = 0 \), so \(g \in F_{n,s} = 0 \) on a basic set of nodes for \(F_{n,s} \) and so \(g = 0 \) by (2.14); thus \(\mathcal{N}(p) = \{0\} \) and \(p \in \text{int} \Sigma_{n,m}^* \) by part (ii).

\(\Box \)

Any \(p \), as described in (iv), will be a sum of \(N(n,s) \) \(m \)-th powers, and have width \(N(n,s) \). Alternate descriptions of the interiors of \(Q_{n,m} \) and \(\Sigma_{n,m}^* \) are given in Corollary 4.8.

We may combine Theorem 3.16 with Hilbert's Theorem.

Corollary 3.17

If \((n,m) \in \mathcal{X} \), then \(p \in Q_{n,m} \) if and only if \(H_p \) is a psd quadratic form. If \((n,m) \notin \mathcal{X} \), then there exists \(q \notin Q_{n,m} \) for which \(H_q \) is psd.

This corollary is trivial if \(m = 2 \): the quadratic form \(p = H_p \) is a sum of squares if and only if it is psd. The implications for \(n = 2 \) and \((n,m) = (3,4) \)
are discussed in the next two sections. If \(q \not\in Q_{n,m} \) and \(H_q \) is psd, then \(H_q \) is a sum of squares of linear forms in \(\{t(\ell)\} \) which cannot be written as a sum of squares from the family of linear forms \(\{L(\alpha; t)\} \). In section six, we shall interpret a dehomogenized version of strict inclusion in terms of the Haviland moment problem.

By Lemma 2.2, Theorem 3.16(i) and duality, we have the following:

Corollary 3.18

(i) \(p \in \Sigma_{n,m} \) if and only if \(H_q \) psd implies that \([p,q] \geq 0 \).

(ii) \(p \in \text{int} \Sigma_{n,m} \) if and only if \(H_q \) psd and \(q \neq 0 \) implies that \([p,q] > 0 \).

A direct description of \(\Sigma_{n,m} \) can be derived from the expansion of the relevant squares. The following criterion is given in [C5] and [R4] and more fully described in [C8]:

\[
p \in \Sigma_{n,m} \text{ if and only if there is a psd quadratic form } h(t) = \\
\left(3.19\right) \sum_{\ell, \ell'} \gamma(\ell, \ell') t(\ell) t(\ell') \text{ so that } c(i)a(p;i) = \sum_{\ell+\ell'=i} \gamma(\ell, \ell') \text{ for all } i \in I(n,s).
\]

A comparison of Theorems 3.14(ii) and 3.16(ii) raises a natural question: if \(A = \{\alpha_k\} \) is a basic set of nodes for \(F_{n,s} \), is \(I(A) \cap P_{n,m} = \{0\} \)? The answer is "sometimes." We show now that the answer is "yes" if we take \(A = I(n,s) \) as the basic set of nodes (c.f. Proposition 2.11, Theorem 3.22), but give a counterexample in \(P_{3,6} \) based on an example due to R. M. Robinson.
Lemma 3.20

Let \(J_n \) denote the \(n \times n \) matrix of 1's. Then \(M = I_n + s^{-1}J_n \) is invertible, and, for \(i \in I(n,s) \),

\[
(3.21) \quad M_i^T = i^T + (1, \ldots, 1)^T.
\]

Proof

Since \(J_n^2 = nJ_n \), \(M^{-1} = I_n - (n+s)^{-1}J_n \) exists; (3.21) follows from the fact that each component of \(s^{-1}J_n i^T \) is \(s^{-1}\sum k = 1 \).

Theorem 3.22

\(I(I(n,s)) \cap P_{n,m} = \{0\} \).

Proof

Suppose \(n = 2 \) and \(p \in P_{2,m} \). If \(p(j,s-j) = 0 \) for \(0 \leq j \leq s \), then

\[
(3.23) \quad \prod_{j=0}^{s} ((s-j)x - jy)^2 \mid p(x,y).
\]

Since \(\deg p = m < 2(s+1) = m + 2 \), (3.23) implies that \(p = 0 \).

Suppose now that the theorem holds for \(n - 1 \) and suppose \(p \in P_{n,m} \), where \(m < 2n \). Let

\[
(3.24) \quad h(x_1, \ldots, x_{n-1}) = p(x_1, \ldots, x_{n-1}, 0) \in P_{n-1,m}.
\]

Since \(h(i) = 0 \) for \(i \in I(n-1,s) \), the induction hypothesis implies that \(h \) is the zero form; that is, \(x_n \mid p \). Since \(p \) is psd, \(x_n^2 \mid p \). Applying this argument to
the other variables, we see that \(\prod_{j} x_j^2 \mid p \); since \(\deg p = m < 2n \), it follows
that \(p = 0 \).

Finally, suppose the theorem holds for \((n, m-2n)\). We shall show that it
holds for \((n, m)\). Suppose \(p \in P_{n,m} \) and \(I(n,s) \in \mathcal{I}(p) \). The previous argument
may be applied to show that

\[(3.25) \quad p(x_1, \ldots, x_n) = x_1^2 \cdots x_n^2 \bar{p}(x_1, \ldots, x_n),\]

where \(\bar{p} \in P_{n, m-2n} \) and \(\bar{p}(i) = 0 \) if \(i \in I(n,s) \) and \(i_k \geq 1 \) for all \(k \).
We now choose \(\mathcal{M} \) as in Lemma 3.20 and let \(q = \bar{p} \circ \mathcal{M} \). Then
\(q \in P_{n, m-2n} \) and \(q(i) = 0 \) for \(i \in I(n, s-n) \). By the induction hypothesis, \(q = 0 \), hence \(\bar{p} = 0 \), and by (3.25), \(p = 0 \).

\[\square\]

Corollary 3.26

For every \((n, m)\) there exists \(p \in \text{int } Q_{n,m} \) with \(w(p) = N(n,s) \).

Proof

Let \(\{ \alpha_k \} = I(n,s) \) and \(p = \Sigma(\alpha_k \cdot) \mathcal{M} \). Since \(p \) is given as a sum of \(N(n,s) \)
m-th powers, \(w(p) \leq N(n,s) \). On the other hand, \(p \in \text{int } Q_{n,m} \) and so \(w(p) \geq \)
\(N(n,s) \) by Theorems 3.14(iii), 3.14(iv) and 3.22.

\[\square\]

Example 3.27

We now show that there is a non-zero form in \(P_{3,6} \) whose zero set is a
basic set of nodes for \(F_{3,3} \). The following example in \(P_{3,6} \setminus \Sigma_{3,6} \) was
constructed by R. M. Robinson [R7] in 1969, using Hilbert's method; see also
[C5]:
\[R(x, y, z) = \]
\[x^6 + y^6 + z^6 - (x^4 y^2 + x^2 y^4 + x^4 z^2 + x^2 z^4 + y^4 z^2 + y^2 z^4) + 3x^2 y^2 z^2 \]
\[= \Xi x^6 - \Xi x^4 y^2 + 3x^2 y^2 z^2, \]

(3.29) \[\mathcal{I}(R) = \{(1, \pm 1, 0), (0, 1, \pm 1), (1, 0, \pm 1), (1, \pm 1, \pm 1)\} := \{\beta_k: 1 \leq k \leq 10\}. \]

The fact that \(R \) is psd follows from Schur's inequality [H3,p.64]. We show below that \(\mathcal{I}(\mathcal{I}(R)) \cap F_{3,3} = \{0\}; \) or equivalently that \(\mathcal{I}(R) \) is a basic set of nodes for \(F_{3,3} \), as \(N(3,3) = 10 \). Thus, if \(R = \Xi h_j^2 \) were sos, then \(\mathcal{I}(R) \subseteq \mathcal{I}(h_j) \) would imply \(h_j = 0 \), a contradiction.

We show that \(\mathcal{I}(\mathcal{I}(R)) \cap F_{3,3} = \{0\}. \) Suppose \(h(x, y, z) = \Sigma a_{ijk} x^i y^j z^k \) is cubic and \(h(\beta) = 0 \) for \(\beta \in \mathcal{I}(R) \). Then \(h(1,1,0) = h(1,-1,0) = 0 \), so \(a_{120} = -a_{300} \) and \(a_{210} = -a_{030} \). By symmetry, it follows that for some \(\{c_j\}, \)

\[h(x, y, z) = c_0 xyz + c_1 (x^3 - xy^2 - xz^2) + c_2 (y^3 - yz^2 - yx^2) \]
\[+ c_3 (z^3 - zx^2 - zy^2). \]

Finally, \(h(1, \pm 1, \pm 1) = 0 \) gives four linear equations which imply \(c_j = 0 \).

We use \(R \) to construct a form which is interior to \(\Sigma^*_{3,6} \) but not interior to \(Q_{3,6} \). Let \(\beta_k = (a_k, b_k, c_k) \) and define

\[\tilde{R}(x, y, z) = \sum_{k=1}^{10} (a_k x + b_k y + c_k z)^6 = 8\Xi x^6 + 90\Xi x^4 y^2 + 360x^2 y^2 z^2. \]

Since \([\tilde{R}, R] = \Sigma \mathcal{R}(\beta_k) = 0, \tilde{R} \not\in \text{int } Q_{3,6} \) by Theorem 3.14(ii). But \([\tilde{R}, h^2] = \Sigma h^2(\beta_k) > 0 \) for any \(0 \neq h \in F_{3,3} \) (since \(\{\beta_k\} \) is a basic set of nodes for \(F_{3,3} \)), hence \(\tilde{R} \in \text{int } \Sigma^*_{3,6} \) by Theorem 3.16(ii), and \(\text{rank}(H_{\tilde{R}}) = 10 \). It is easy
to check that $\mathcal{E}(R)$ is, in fact, 6–independent, so (3.31) is a strongly unique representation of \hat{R} by Corollary 3.10.

The four families of cones we have discussed share the property that they are invariant under linear changes of variable. We say that a closed convex cone $C \subseteq F_{n,m}$ is a blender if $p \in C$ implies $p \circ M \in C$ for every $n \times n$ matrix M. (This is equivalent to asserting only that $p \circ M \in C$ for $M \in \text{GL}_n(R)$, since every $n \times n$ matrix M is a limit of invertible matrices M_j and C is closed.)

Lemma 3.32

If C is a blender, then so is C^*.

Proof

We already know that C^* is a closed convex cone. Suppose $p \in C^*$, $q \in C$ and M is an $n \times n$ matrix. Then $[p \circ M, q] = [p, q \circ M^T]$ by Theorem 2.15, and $q \circ M^T \in C$ (since C "blends"). It follows that $[p \circ M, q] \geq 0$. Since $q \in C$ is arbitrary, $p \circ M \in C^*$. Thus, C^* is a blender. \(\square\)

Theorem 3.33

$P_{n,m}$, $Q_{n,m}$, $\Sigma_{n,m}$ and $\Sigma^*_{n,m}$ are all blenders.

Proof

If $p(x) \geq 0$ for all x, then $p(Mx) \geq 0$ for all x, so $P_{n,m}$ is a blender; by the lemma, $Q_{n,m}$ is also a blender. Similarly, $p(x) = \Sigma_{2k}^k(x)$ implies $p(Mx) = \Sigma_{2k}^k(Mx) \in \Sigma_{n,m}$, so $\Sigma_{n,m}$ is a blender, and hence so is $\Sigma^*_{n,m}$. \(\square\)
Finally, we remark that $Q_{n,m}$ and $\Sigma_{n,m}$ can be regarded as two instances of a family of cones. Suppose r divides m, and let

\[(3.34) \quad W(n;m,r) = \{\Sigma h_k^r : h_k \in F_{n,m/r}\}.
\]

(In this notation, $Q_{n,m} = W(n;m,m)$ and $\Sigma_{n,m} = W(n;m,2)$.) We shall say that $W(n;m,r)$ is a Waring blender. Waring blenders were defined, but not named, by Ellison in [E2].

Theorem 3.35

(i) If r is odd, then $W(n;m,r) = F_{n,m}$.

(ii) If r is even, then $W(n;m,r)$ is a blender and $W(n;m,r)^*$ is the set of those p for which the following r-ic form in $N(n,m/r)$ variables is psd:

\[(3.36) \quad \sum_{\ell_1, \ldots, \ell_r \in I(n,m/r)} a(p; \ell_1+\cdots+\ell_r) T(\ell_1) \cdots T(\ell_r).
\]

Sketch of Proof

(i) Let $\{\alpha_k\}$ be a basic set of nodes for $F_{n,m}$. Every $p \in F_{n,m}$ can be written as $p = \Sigma \lambda_k^m (\alpha_k \cdot)$ for suitable $\{\lambda_k\}$. Since r is odd and a factor of m, each $\lambda_k^r (\alpha_k \cdot)^m$ is the r-th power of a form in $F_{n,m/r}$.

(ii) Clearly, $W(n;m,r)$ is a convex cone which blends. The proof that it is closed is very similar to that for $\Sigma_{n,m}$ and is omitted. The expression (3.36) is simply $[p,h^r]$ for $h(x) = \Sigma t(\ell)x^\ell \in F_{n,m/r}$.

Part (i) was proved by Ellison [E2,p.667]. When $r = 2$, (ii) restates Theorem 3.16(i); when $r = m$, it is a disguised version of Theorem 3.7. (As
before, \(I(n,1) \) consists of the \(n \) unit vectors, and \(i \) can be written as \(\Sigma j \) in exactly \(c(i) \) different ways. Under the identification \(t(e_j) = t_j \), (3.36) becomes \(p(t) \), and we find that \(p \in Q_{n,m}^* \) if and only if \(p \in P_{n,m} \).

We shall return to blenders in section ten.

Historical Notes

Hilbert [H7] was apparently the first person to make a systematic study of psd and sos forms. R. M. Robinson [R7] identified the psd and sos \(n \)-ary \(m \)-ics as closed cones and showed that \(\Sigma x_1^m \) is in the interior of the subcone of \(\Sigma_{n,m} \) consisting of the sums of squares of monomials and binomials. The notations \(P_{n,m} \) and \(\Sigma_{n,m} \) were introduced by Choi and Lam [C3],[C4]; see also Holbrook's [H10]. Hilbert [H8] used the fact (if not the notation) that \(Q_{5,m} \) is a closed convex cone in solving Waring's problem, and showed that \(h_{5,m} \in \text{int} \ Q_{5,m} \) (c.f. (1.45)); see also [E3] and section eight. The cone \(Q_{2,m} \), under another name, appears in [R3] as the set of binary \(m \)-ics \(p \) such that \(p(x,y) = \|xu + yv\|^m \) for \(u, v \in L_m(X,\mu) \). The cone \(Q_{3,4} \) appears there with a similar interpretation; see the discussion at the end of section eight.

There is an elegant explicit construction by Ellison [E2] of a definite form in \(P_{n,m} \setminus Q_{n,m} \) for \(m \geq 4 \). (If \(m = 2 \), then \(P_{n,2} = Q_{n,2} = \Sigma_{n,2} \) is the cone of psd quadratic forms.) An easier example follows from the observation that, if \(L \mid \Sigma h_j^m \), where \(L \) is linear, \(m \) is even and the \(h_j \)'s are forms, then \(L \mid h_j \) for each \(j \); so \(L^m \mid \Sigma h_j^m \). Thus \(\hat{p}(x) = x_1^2x_2^{m-2} \), which belongs to \(P_{n,m} \) if \(n \geq 2 \) and \(m \geq 2 \), does not belong to \(Q_{n,m} \) for \(m \geq 4 \). Let \(p_\lambda = (1 - \lambda)\hat{p} + \lambda h_{n,m} \) for \(0 \leq \lambda \leq 1 \). Then \(p_\lambda \) is definite for \(0 < \lambda \), and \(I = \{ \lambda : p_\lambda \in Q_{n,m} \} \) is closed (Proposition 3.6) and convex. Thus \(I = [\tau,1] \) for some \(\tau > 0 \), and \(p_{\tau/2} \) is a definite form in \(P_{n,m} \setminus Q_{n,m} \).
The fact that psd quadratic forms are sos goes back to Lagrange. A psd binary form \(p \) factors into a product of linear forms to even degree and definite quadratic factors, each of which is a sum of two squares. It follows that \(p \) is a sum of two squares. This was known to Hilbert in 1888, but the first published proof apparently was Landau's [L2]. (These historical remarks are found in Delzell [D6,p.67].)

Hilbert established the strict inclusion of \(\Sigma_{n,m} \) in \(P_{n,m} \) for \((n,m) \notin \mathcal{X} \) by indicating the existence of two examples for \((n,m) = (3,6) \) and \((4,4) \) via techniques from classical algebraic geometry. (Modern English-language versions of Hilbert's arguments can be found in Gel'fand and Vilenkin [61], as well as in [E2] and [R7].) The first explicit forms in \(P_{n,m} \setminus \Sigma_{n,m} \) were given by Motzkin [M2] in 1967 and R. M. Robinson [R7] in 1969. Other examples have been given by Choi and Lam ([C3], [C4]), Choi, Lam and Reznick (e.g. [C5], [C6]), Reznick (e.g. [R4]) and Schmüdgen [S4].

The duality of \(P_{n,m} \) and \(Q_{n,m} \) is embedded in the solution of the Hamburger moment problem \((n = 2) \) and the Haviland moment problem \((n \geq 3) \) under the identification of \(q \in Q_{n,m} \) with \(F_{\mathbb{R}^n,\mu} \); see section 6.

For \(n = 2 \) and 3 and a complex n–ary m–ic \(p \), the determinant of the matrix associated to \(H_p \), \(C(p) \), was called the "catalecticant" by Sylvester [S13]:
\[C(p) = 0 \] if and only if \(\text{rank}(H_p) < N(n,s) \). In [R5] we give this a differential interpretation: \(C(p) = 0 \) if and only if there is \(g \in F_{n,s} \) so that \(g(D)p = 0 \), in the sense of (1.31). Sylvester was an expert prosodist, and a "catalectic" line of verse is one which is lacking part of the last foot. A form which is a sum of fewer \(m \)–th powers than canonically required thereby exhibits catalecticism [S13,p.268]. The vanishing of the catalecticant is a necessary condition for a binary form of degree \(m \) to be expressible as a sum of as few as
s m-th powers. Sylvester was slightly defensive about his terminology [S14,p.293n]: "Meicatalecticizant would more completely express the meaning of that which, for the sake of brevity, I denominate the catalecticant." In fairness, we note that the paper in which Sylvester denominated the catalecticant also introduced the term "unimodular" in its modern meaning [S14,p.284n1].