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Overview

Plan.

Context: “power operations” in cohomology theories.

Recent advances: Morava E -theories. Formal groups and isogenies.

Applications and vistas.
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K-theory

Motivating example.

K -theory (Grothendieck; Atiyah-Hirzebruch; 1950s)

K (X ) = K 0(X ) :=

{
isomorphism classes of

vector bundles /X

}
/ ∼

V ∼ V1 + V2 if 0→ V1 → V → V2 → 0.

Functors on vector bundles give operations on K (X ), e.g.,:

V ,W 7→ V ⊗W , V 7→ ΛnV , V 7→ SymnV .

K (X ) is a Λ-ring (Grothendieck)

Functions λn : K (X )→ K (X ) satisfying axioms

λn(x + y) = · · · , λn(xy) = · · · , λmλn(x) = · · ·
. . . = explicit polynomials in λi (x), λj(y).
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Equivariant K -theory

Compact Lie G y X .

Equivariant K -theory

KG (X ) = K (X�G ) := {G equivariant vb /X}/ ∼ .

(Atiyah, 1966) tensor power is an operation

V 7→ V⊗n : KG (X )→ KG×Σn(X ) ≈ KG (X )⊗ RΣn.

KG (point) = K (point�G ) = RG = representation ring of G .
Σn = symmetric group.

Λ-rings ⇐⇒ representation theory of symmetric groups
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Properties of Λ-rings, 1

Λ-ring structure is complicated to describe, but is easy for “nice” rings.

(Wilkerson, 1982)

R torsion free comm. ring:{
Λ-ring

structures on R

}
↔
{
{ψp : R → R}p prime lifts of Frobenius,

ψpψq = ψqψp.

}

Adams operations ψn, n ≥ 1; ψmψn = ψmn, ring homomorphisms
Adams congruence ψp(x) ≡ xp mod p, p prime

any Λ-ring has ψp,θp : R → R satisfying

ψp is a ring homomorphism, ψp(x) = xp + p θp(x)

(say θp is a witness to the pth Adams congruence)
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Properties of Λ-rings, 2

Line bundle L→ X =⇒ ψn(L) = L⊗n in K (X )

Multiplicative group scheme

Gm = Spec
(
Z[T ,T−1]

)
≈ Spec

(
K (pt�U(1))

)
Adams operation =⇒ isogeny of Gm:(

K (pt�U(1))
ψn

−→ K (pt�U(1))
)
⇐⇒ Gm

[n]−→ Gm

Isogeny: finite flat homomorphism of group schemes
Remarks.

Ĝm = Spf K (BU(1)), multiplicative formal group

These properties useful in classical applications (e.g., Adams work on
vector fields on spheres, image of J, . . . )
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Other examples of power operations

h∗(−) = generalized cohomology theory, commutative ring valued

Would like to have

h∗(X )
Pn

−→ h∗Σn
(X ) = h∗(X × BΣn) refines of nth power x 7→ xn

Do these exist? Yes if h∗(−) represented by a structured commutative
ring spectrum (= commutative S-algebra = E∞-ring spectrum = . . . )
Examples.

(Steenrod, 1953) reduced power operations in H∗(−,Fp)
(Sqi for p = 2, P i for p odd)

(Voevodsky, 2001) motivic reduced power operations

(Quillen, 1971) power operations in bordism theories
based on M 7→ M×n x Σn

used to prove π∗MU classifies formal group laws
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Elliptic cohomology

What is elliptic cohomology?

Theory K -theory elliptic cohomology

Group scheme Gm elliptic curve

Cycles vector bundles ???

??? = 2-dim conformal field theories? (Segal, . . . )
Examples:

(Goerss-Hopkins-Miller) tmf = “topological modular forms”
associated to universal elliptic curve over MEll

structured comm ring spectrum =⇒ power operations!

(Lurie) Equivariant elliptic cohomology theories

Open question: Which equivariant elliptic cohomology theories
admit power operations?
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A nice example: Elliptic cohomology at the Tate curve

Tate curve T [[q]] = “C×/qZ”, defined over Spec Z[[q]].

Equivariant elliptic cohomology at Tate curve

EllTate(X�G ) :=
approx

K

(
Lghost(X�G )�U(1)

)
“ghost loops” = contstant loops; RHS is K of “twisted sectors” (see e.g.,
Ruan 2000, Lupercio-Uribe 2002)

(Ganter, 2007, 2013) Power operations for EllTate

EllTate(X�G ) is an elliptic Λ-ring: two families of operations

λn : EllTate → EllTate, µm : EllTate → EllTate ⊗Z[[q]] Z[[q1/m]]

{λn} are Λ-ring structure, {µm} are Λ-ring homomorphisms
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Morava E -theory: introduction

Morava E -theories are “designer cohomology theories” —
manufactured using homotopy theory, not coming from “nature”

some arise as completions of “natural” theories, e.g.

K∧p , Ell∧s.-s. point

have rich theory of power operations (Ando, Hopkins, Strickland, R.)

Goal: describe what we know about this theory (a lot)
Recall: Power operations for K -theory are “controlled” by isogenies of Gm

Slogan

Power operations for Morava E -theories are “controlled” by
“deformations” of Frobenius isogenies of 1-dimensional formal groups
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Morava E -theory: summary

Let G0/Fp = one dimensional commutative formal group of height
n ∈ {1, 2, . . . }.

(Morava, 1978; Goerss-Hopkins-Miller 1993–2004)

There exists a cohomology theory EG0 (Morava E -theory) which

is represented by a structured commutative ring spectrum

is complex orientable; formal group Spf(E 0CP∞) = universal
deformation of G0 (in sense of Lubin-Tate)

E 0
G0

(pt) = Zp[[a1, . . . , an−1]]

E ∗G0
(pt) = E 0

G0
(pt)[u, u−1], u ∈ E 2

G0
(pt)

Charles Rezk (UIUC) Power operations Seoul, August 18, 2014 11 / 29



Morava E -theory: summary

Let G0/Fp = one dimensional commutative formal group of height
n ∈ {1, 2, . . . }.

(Morava, 1978; Goerss-Hopkins-Miller 1993–2004)

There exists a cohomology theory EG0 (Morava E -theory) which

is represented by a structured commutative ring spectrum

is complex orientable; formal group Spf(E 0CP∞) = universal
deformation of G0 (in sense of Lubin-Tate)

E 0
G0

(pt) = Zp[[a1, . . . , an−1]]

E ∗G0
(pt) = E 0

G0
(pt)[u, u−1], u ∈ E 2

G0
(pt)

Charles Rezk (UIUC) Power operations Seoul, August 18, 2014 11 / 29



Morava E -theory: summary

Let G0/Fp = one dimensional commutative formal group of height
n ∈ {1, 2, . . . }.

(Morava, 1978; Goerss-Hopkins-Miller 1993–2004)

There exists a cohomology theory EG0 (Morava E -theory) which

is represented by a structured commutative ring spectrum

is complex orientable; formal group Spf(E 0CP∞) = universal
deformation of G0 (in sense of Lubin-Tate)

E 0
G0

(pt) = Zp[[a1, . . . , an−1]]

E ∗G0
(pt) = E 0

G0
(pt)[u, u−1], u ∈ E 2

G0
(pt)

Charles Rezk (UIUC) Power operations Seoul, August 18, 2014 11 / 29



Morava E -theory: summary

Let G0/Fp = one dimensional commutative formal group of height
n ∈ {1, 2, . . . }.

(Morava, 1978; Goerss-Hopkins-Miller 1993–2004)

There exists a cohomology theory EG0 (Morava E -theory) which

is represented by a structured commutative ring spectrum

is complex orientable; formal group Spf(E 0CP∞) = universal
deformation of G0 (in sense of Lubin-Tate)

E 0
G0

(pt) = Zp[[a1, . . . , an−1]]

E ∗G0
(pt) = E 0

G0
(pt)[u, u−1], u ∈ E 2

G0
(pt)

Charles Rezk (UIUC) Power operations Seoul, August 18, 2014 11 / 29



Morava E -theory: summary

Let G0/Fp = one dimensional commutative formal group of height
n ∈ {1, 2, . . . }.

(Morava, 1978; Goerss-Hopkins-Miller 1993–2004)

There exists a cohomology theory EG0 (Morava E -theory) which

is represented by a structured commutative ring spectrum

is complex orientable; formal group Spf(E 0CP∞) = universal
deformation of G0 (in sense of Lubin-Tate)

E 0
G0

(pt) = Zp[[a1, . . . , an−1]]

E ∗G0
(pt) = E 0

G0
(pt)[u, u−1], u ∈ E 2

G0
(pt)

Charles Rezk (UIUC) Power operations Seoul, August 18, 2014 11 / 29



Formal groups and complex oriented theories

Formal group is object locally described by a formal group law.

Formal group law (commutative, 1-dimensional)

S(x , y) ∈ R[[x , y ]] satisfying axioms for abelian group:

S(x , 0) = x = S(0, x),

S(x , y) = S(y , x),

S(S(x , y), z) = S(x ,S(y , z)).

For future reference, we note the p-series of G0:

[p](x) = S(x , S(x , . . .S(x , x)))︸ ︷︷ ︸
x appears p times

Complex oriented cohomology theory

Ring-valued cohomology theory E such that E ∗(CP∞) = E ∗[[x ]], and x
restricts to fundamental class of CP1 = S2.

Examples: H∗(−,Z), K -theory, Ell, Morava E -theories,. . .
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Deformations of formal groups

G0/Fp formal group of height n (i.e., [p]G0(x) = c xpn
+ O(xpn+1), c 6= 0)

R = complete local ring, Fp ⊂ R/m

Groupoid Def0
G0

(R) of deformations of G0/Fp to R

Deformation (G , α):

G is a formal group over R,

iso α : G0
∼−→ GR/m of formal groups over Fp

Isomorphism (G , α)→ (G ′, α′) of deformations:

iso f : G → G ′ compatible with id of G0

Classified up to canonical iso by Lubin and Tate:

(Lubin-Tate, 1966)

∃ universal deformation (Guniv, αuniv) over A ≈ Zp[[a1, . . . , an−1]]

Guniv is the formal group of Morava E -theory EG0
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Isogenies

Isogeny of formal groups over R

Homomorphism f : G → G ′ given locally over R by f (x) = cxn+ higher
degree terms, c ∈ R×. (n = deg f )

G0/Fp has a distinguished family of Frobenius isogenies

Frobr : G0 → G0, r ≥ 0,

given locally by Frobr (x) = xpr
.

Category DefG0(R) of deformations of Frobenius

Objects:

deformations (G , α) to R (= objects of Def0
G0

(R))

Morphisms (G , α)→ (G ′, α′):

isogenies f : G → G ′ compatible with Frobr : G0 → G0, some r ≥ 0
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The “pile” Def = DefG0

We have assignments

complete local ring R Z=⇒ category Def(R)

local homomorphism R → R ′ Z=⇒ functor Def(R)→ Def(R ′)

If Def(R) were a groupoid, we would call it a (pre-)stack
Def is the “pile” of deformations of powers of Frob

Sheaves on Def
A sheaf of modules on Def is a collection of functors

AR : Def(R)→
(
R-modules

)
with compatibility wrt base change along local homomorphisms R → R ′

Likewise, a sheaf of commutative rings on Def is . . .

Notation: Mod(Def), Com(Def).

Mod(Def) = Mod(Γ) for a certain ring Γ
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Morava E -theory takes values in sheaves on Def

(Ando-Hopkins-Strickland 2004; see R. 2009)

Power operations make Morava E -cohomology EG0 a functor

E ∗(−) : Spaces→ Com∗(Def)

Key step (Strickland 1997, 1998):
E 0BΣpr /I classifies subgroups of rank pr of deformations

Broader context: We have E ∗(X ) = π∗(EX+) where A = EX+ is

(i) a structured commutative E -algebra spectrum,

(ii) K (n)-local (⇔ π∗A complete wrt (a1, . . . , an−1) in a suitable sense)

The real theorem is

(ibid)

π∗ lifts to a functor

π∗ : hCom(E )K(n) → Com∗(Def)

on homotopy category of K (n)-local commutative E -algebra spectra
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Examples

Mod(Def) = modules for a certain ring Γ

Height 1

G0 = multiplicative formal group; EG0 = K∧p

Γ = Zp[ψp] gen. by Adams operation ψp

Height 2 (R., arXiv:0812.1320)

G0/F2 = completion of s.-s. elliptic curve y 2 + y = x3 over F2

Γ = Z2[[a]]〈Q0,Q1,Q2〉

/
Q0a = a2 Q0 − 2a Q1 + 6 Q2

Q1a = 3 Q0 + a Q2

Q2a = −a Q0 + 3 Q1

Q1Q0 = 2 Q2Q1 − 2 Q0Q2

Q2Q0 = Q0Q1 + a Q0Q2 − 2 Q1Q2


(Y. Zhu, 2014) gives similar description at height 2, p = 3
There is a uniform description of Γ/p at height 2, all primes p
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Properties of Γ

n = height of G0/Fp

(Ando 1995)

Center(Γ) = Zp[T̃1, . . . , T̃n], (Hecke algebra)

(R. arXiv:1204.4831)

Γ is quadratic, i.e.,

Γ ≈ Tensor alg.(C1) / (ideal gen. by C2)

where C1 and C2 ⊆ C1 ⊗E0 C1 are E0 = Zp[[a1, . . . , an−1]] bimodules

(ibid)

Γ is Koszul: have Γ-bimodule resolution

0← Γ← Γ⊗E0 C0 ⊗E0 Γ← · · · ← Γ⊗E0 Cn ⊗E0 Γ← 0,

each Ck is E0-bimod, free and f.g. as right E0-mod; C0 = E0

=⇒ gl . dim(Γ) = 2n
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Remark about “Koszul” property

(R. ibid)

Γ is Koszul

This was conjectured by Ando-Hopkins-Strickland

It is purely a theorem about formal algebraic geometry

Only general proof is a purely “topological” proof, using ingredients:

(1) Γ = “primitives” of the Hopf algebra
⊕

m≥0 E0(BΣm) (Strickland)
(2) bar complex of Γ in degree k is “primitives” in⊕

m1,...,mk
E0B(Σm1 o · · · o Σmk

)
(3) vanishing results for Bredon homology of partition complexes with

coeff. in appropriate Mackey functors (Arone-Dwyer-Lesh 2013)

Proof inspired by role of partition complexes as “derivatives of
identity functor” in Goodwillie’s functor calculus

(R. 2012) purely alg. geom. proof in height 2 case, using results on
moduli of subgroups of elliptic curves
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Congruence criterion

Homotopy groups of K (n)-local E -algebras have some more structure:

π∗ : hCom(E )K(n) →
(
T -algebras

)
“T -algebras” = a complicated algebraic catgeory (like Λ-rings)

(R. 2009)

R p-torsion free commutative E∗-algebra:{
T -algebra

structures on R

}
↔
{

A ∈ Com∗(Def) with A(Guniv) = R
satisfying “Frobenius congruence”

}
Frobenius congruence: Qx ≡ xp mod pR for a certain Q ∈ Γ

There is a (non-additive) witness to the Frobenius congruence:

θ : R → R satisfying Qx = xp + p θ(x)

where R is a T -algebra
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Application 1: nilpotence

Easy consequence of existence of “witness” θ such that
Q(x) = xp + p θ(x), Q(x + y) = Q(x) + Q(y):

If A ∈ Com(E )K(n), then

x ∈ π∗A, pr x = 0 =⇒ x (p+1)r
= 0.

Idea: deduce relation θ(px) = pp−1x − Q(x) = (pp−1 − 1)xp − p θ(x).
If px = 0, then 0 = x θ(px) = −xp+1.
Mathew-Noel-Naumann observe this, and use it (with Nilpotence Theorem
of Devinatz-Hopkins-Smith) to give an easy proof of a conjecture of May:

(Mathhew-Noel-Naumann 2014)

If R = structured commutative ring spectrum, then the kernel of the
Hurewicz map

π∗R → H∗(R,Z)

consists of nilpotent elements
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Application 2: units and orientations

A = structured commutative ring =⇒ units spectrum gl1A

(gl1A)0(X ) = (A0(X ))×

Question. Does there exist structured commutative ring map MG → A,
where MG = spectrum representing bordism
(G ∈ {U, SU,O, SO,Spin, . . . })?
Answer (May-Quinn-Ray-Tornehave 1977). Yes iff the composite

g → o
J−→ gl1S → gl1A

is null-homotopic as map of spectra, where g = infinite delooping of G

(Ando-Hopkins-R.; see Hopkins 2002)

There is a map of structured commutative ring spectra

MString→ tmf

which realizes the “Witten genus”; String = six-connected cover of Spin

Charles Rezk (UIUC) Power operations Seoul, August 18, 2014 22 / 29



Application 2: units and orientations

A = structured commutative ring =⇒ units spectrum gl1A

(gl1A)0(X ) = (A0(X ))×

Question. Does there exist structured commutative ring map MG → A,
where MG = spectrum representing bordism
(G ∈ {U, SU,O, SO,Spin, . . . })?
Answer (May-Quinn-Ray-Tornehave 1977). Yes iff the composite

g → o
J−→ gl1S → gl1A

is null-homotopic as map of spectra, where g = infinite delooping of G

(Ando-Hopkins-R.; see Hopkins 2002)

There is a map of structured commutative ring spectra

MString→ tmf

which realizes the “Witten genus”; String = six-connected cover of Spin

Charles Rezk (UIUC) Power operations Seoul, August 18, 2014 22 / 29



Application 2: units and orientations

A = structured commutative ring =⇒ units spectrum gl1A

(gl1A)0(X ) = (A0(X ))×

Question. Does there exist structured commutative ring map MG → A,
where MG = spectrum representing bordism
(G ∈ {U, SU,O, SO,Spin, . . . })?
Answer (May-Quinn-Ray-Tornehave 1977). Yes iff the composite

g → o
J−→ gl1S → gl1A

is null-homotopic as map of spectra, where g = infinite delooping of G

(Ando-Hopkins-R.; see Hopkins 2002)

There is a map of structured commutative ring spectra

MString→ tmf

which realizes the “Witten genus”; String = six-connected cover of Spin

Charles Rezk (UIUC) Power operations Seoul, August 18, 2014 22 / 29



Application 2: units and orientations

A = structured commutative ring =⇒ units spectrum gl1A

(gl1A)0(X ) = (A0(X ))×

Question. Does there exist structured commutative ring map MG → A,
where MG = spectrum representing bordism
(G ∈ {U, SU,O, SO,Spin, . . . })?
Answer (May-Quinn-Ray-Tornehave 1977). Yes iff the composite

g → o
J−→ gl1S → gl1A

is null-homotopic as map of spectra, where g = infinite delooping of G

(Ando-Hopkins-R.; see Hopkins 2002)

There is a map of structured commutative ring spectra

MString→ tmf

which realizes the “Witten genus”; String = six-connected cover of Spin

Charles Rezk (UIUC) Power operations Seoul, August 18, 2014 22 / 29



Logarithmic operations

Logarithmic operation: spectrum map ` : gl1A→ A

(tom Dieck 1989)

A = K∧p : exists ` : gl1K∧p → K∧p , giving ` : K∧p (X )× → K∧p (X ) by

`(x) = log(x)− 1
p log(ψp(x)) log = Taylor exp. at 1

= 1
p log

(
xp/ψp(x)

)
ψp(x) ≡ xp mod p

=
∑

m≥1(−1)m pm−1

m (θp(x)/x)m ψp(x) = xp + p θp(x)

(R. 2006)

E = EG0 , height G0 = n; exists ` : gl1E → E giving E 0(X )× → E 0(X ) by

`(x) =
n∑

k=0

(−1)k p(k
2)−k logT̃k(x)

where T̃k ∈ Zp[T̃1, . . . , T̃n] = Center(Γ)
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Application to String-orientation of tmf

(Ando-Hopkins-R.)

Exists MString→ tmf realizing Witten genus

Must construct null-homotopy of α : string→ gl1tmf
Proof idea:

Above techniques give “locally defined” logarithms
`n : gl1tmf∧p → tmfK(n), n = 1, 2, all primes p

Work one prime at a time; have “fracture squares”

gl1tmf∧p
`2 //

`1

��

tmfK(2)

ι1
��

tmfK(1)
γ

// (tmfK(1))K(2)

Map(string, tmfK(2)) ≈ ∗, so reduce to string→ HoFib(γ)

Explicit formulas for `1, `2 identify γ = ι2 ◦ (id− U), where
U : tmfK(1) → tmfK(1) is topological lift of “Atkin operator” on
p-adic modular forms
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Application 3: derived indecomposables

Commutative ring k ; augmented comm. k-algebra π : R → k

Indecomposables

Qk(R) := I/I 2, I = Ker
(
π : R → k

)
(“cotangent space at π”)

Tk(R) := Homk(Qk(R), k)

(“tangent space at π”)

Commutative ring spectrum k ; augmented comm. k-algebra π : R → k

(Basterra 1999, Basterra-Mandell 2005) Derived version

TQk(R) := “I/I 2” = hocolim Ωn
nuΣn

nuI ,

nu = non-unital k-algebras

TTk(R) := Homk(TQk(R), k)

Also called reduced topological André-Quillen homology/cohomology
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Rational homotopy and variants

HA = Eilenberg-MacLane spectrum, representing H∗(−,A)

(Sullivan 1977)

X = simply connected f. type space; HQX+ = rational cochains spectrum

π∗TTHQ(HQX+) ≈ π∗X ⊗Q

(Mandell 2006)

X = simply connected f. type space; HFX+

p = mod p cochains spectrum

π∗TTHFp
(HFX+

p )∧p ≈ 0

(X∧p can be recovered from HFX+

p , but not this way)

Q: Are there structured commutative rings R that behave like HQ?
Yes: K (n)-local R, such as Morava E -theories
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Indecomposables and Bousfield-Kuhn functor

(Behrens-R., in progress)

E = Morava E -theory at height n; X = S2d−1 odd dimensional sphere

π∗TTE (EX+) ≈ E ∗ΦnX

Bousfield-Kuhn functor Φn : Spaces∗ → SpectraK(n)

Φn carries part of the “vn-local homotopy groups of X ”

Spectral sequence computing derived tangent space

E = Morava E -theory, π∗R smooth over π∗E ,

E 2
s,t = ExtsΓ(ω−1/2 ⊗ Qπ∗E (π∗R), ω(t−1)/2 ⊗ nul) =⇒ π∗TTE (R)

ωt/2 ≈ Ẽ 0(S t), nul = E0 with trivial Γ-action; E 2
s,t = 0 if s > n

Combine

E 2
s,t = ExtsΓ(ωd−1, ω(t−1)/2 ⊗ nul) =⇒ E ∗ΦnS2d−1

Recovers known calc at n = 1; collapses to E ∗Φ2S2d−1 = Ext2 at n = 2
Charles Rezk (UIUC) Power operations Seoul, August 18, 2014 27 / 29



Indecomposables and Bousfield-Kuhn functor

(Behrens-R., in progress)

E = Morava E -theory at height n; X = S2d−1 odd dimensional sphere

π∗TTE (EX+) ≈ E ∗ΦnX

Bousfield-Kuhn functor Φn : Spaces∗ → SpectraK(n)

Φn carries part of the “vn-local homotopy groups of X ”

Spectral sequence computing derived tangent space

E = Morava E -theory, π∗R smooth over π∗E ,

E 2
s,t = ExtsΓ(ω−1/2 ⊗ Qπ∗E (π∗R), ω(t−1)/2 ⊗ nul) =⇒ π∗TTE (R)
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Vista: power operations in equivariant elliptic cohomology

Q: Does equivariant elliptic cohomology admit power operations?

Analogue of Def:
Isog = “pile” of all elliptic curves and isogenies between them
=⇒ Mod(Isog), Com(Isog)

Mod(Isog) has analog of Koszul property
Mod(Isogp) has homological dimension 2 rel to Qcoh(MEll)

Known power operations for EllTate and Ell∧s.-s. are consistent with
this picture

Conjecturally, equivariant elliptic cohomologies which are etale over MEll

should be “classified” by the etale site of Isog
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