STUFF ABOUT QUASICATEGORIES

CHARLES REZK

Contents

1. Introduction to ∞-categories 3

Part 1. Basic notions 7
2. Simplicial sets 7
3. The nerve of a category 10
4. Spines 13
5. Horns and inner horns 16
6. Quasicategories 19
7. Functors and natural transformations 22
8. Examples of quasicategories 22
9. Homotopy category of a quasicategory 26
10. Isomorphisms in a quasicategory 29
11. Function complexes and the functor quasicategory 32

Part 2. Lifting properties 33
12. Weakly saturated classes and inner-anodyne maps 33
13. Lifting calculus and inner fibrations 36
14. The small object argument 39
15. Non-degenerate elements and the skeletal filtration 41
16. Pushout-product and pullback-power 46
17. Function complexes of quasicategories are quasicategories 48
18. Natural isomorphisms 50
19. Categorical equivalence 51
20. Trivial fibrations and inner anodyne maps 53
21. Some examples of categorical equivalences 57
22. The homotopy category of quasicategories 60

Part 3. Joins, slices, and Joyal’s extension and lifting theorems 62
23. Joins 63
24. Slices 65
25. Slices of quasicategories 68
26. Initial and terminal objects 70
27. Joins and slices in lifting problems 72
28. Limits and colimits in quasicategories 75
29. The Joyal extension and lifting theorems 79
30. Applications of the Joyal extension theorem 82
31. Proof of the objectwise criterion for natural isomorphisms 84

Part 4. The fundamental theorem 88

Date: March 15, 2019.
32. Mapping spaces of a quasicategory 88
33. The fundamental theorem of quasicategory theory 93
34. The path factorization 96
35. Weak equivalence, anodyne maps, and Kan fibrations 98
36. Kan fibrations between Kan complexes 102
37. The fiberwise criterion for trivial fibrations 106
38. Fundamental theorem for Kan complexes 108
39. Properties of isofibrations 111
40. Trivial fibrations between quasicategories 113
41. Localization of quasicategories 116
42. Proof of the fundamental theorem 118

Part 5 Model categories 122
43. Categorical fibrations 122
44. The Joyal model structure on simplicial sets 124
45. The Kan-Quillen model structure on simplicial sets 125
46. Model categories and homotopy colimits 126
47. Every quasigroupoid is equivalent to its opposite 129
48. Initial and terminal objects, revisited 134
49. The alternate join and slice 136
50. Equivalence of the two join and slice constructions 140

Part 6 The quasicategory of ∞-categories 145
51. The quasicategory of categories 145

Part 7 Old stuff 146
52. Coherent nerve 147
53. Correspondences 147
54. Cartesian and cocartesian morphisms 148
55. Limits and colimits as functors 152
56. More stuff 156
57. Straightening and unstraightening 157
58. Cartesian fibrations 158

Part 8 Appendices 159
59. Appendix: Generalized horns 159
60. Appendix: Box product lemmas 161
61. Appendix: Weak equivalences and homotopy groups 163

References 164
1. Introduction to ∞-categories

1.1. Groupoids. Modern mathematics is based on sets. The most basic way of constructing new sets is as sets solutions to equations. For instance, given a commutative ring R, we can consider the set $X(R)$ of tuples $(x, y, z) \in R^3$ which satisfy the equation $x^5 + y^5 = z^5$. We can express such sets as limits; for instance, $X(R)$ is the pullback of the diagram of sets

$$R \times R \xrightarrow{(x,y) \mapsto x^5+y^5} R \leftarrow z^5 \leftarrow R.$$

Another way to construct new sets is by taking “quotients”; e.g., as sets of equivalence classes of an equivalence relation. This is in some sense much more subtle than sets of solutions to equations: mathematicians did not routinely construct sets this way until they were comfortable with the set theoretic formalism introduced by the end of the 19th century.

Some sets of equivalence classes are nothing more than that; but some have “higher” structure standing behind them, which is often encoded in the form of a groupoid. Here are some examples.

- Given a topological space X, we can define an equivalence relation on the set of points, so $x \sim x'$ if and only if there is a continuous path connecting them. The set of equivalence classes is the set $\pi_0 X$ of path components. Standing behind this equivalence relation is the fundamental groupoid $\Pi_1 X$, whose objects are points of X, and whose morphisms are path-homotopy classes of paths between two points.
- Given any category C, there is an equivalence relation on the collection of objects, so that $X \sim Y$ if there exists an isomorphism between them. Equivalence classes are the isomorphism classes of objects. Standing behind this equivalence relation is the core of C (also called the maximal subgroupoid), which is a groupoid having the same objects as C, but having as morphisms only the isomorphisms in C.
- As a special case of the above, let $C = \text{Vect}_F$ be the category of finite dimensional vector spaces and linear maps over some field F. Then isomorphism classes of objects correspond to non-negative integers, via the notion of dimension. The core $\text{Vect}_F^{\text{core}}$ is a groupoid whose objects are finite dimensional vectors spaces, and whose morphisms are invertible linear maps.

Note that many interesting problems are about describing isomorphism classes; e.g., classifying finite groups of a given order, or principal G-bundles on a space. In practice, one learns that when you try to classify some type of objects up to isomorphism, you will need to have a good handle on the isomorphisms between such objects, including the groups of automorphisms of such objects. So you will likely need to know about the groupoid, even if it is not the primary object of interest.

For instance, a problem such as: “describe the groupoid $\text{Bun}_G(M)$ of principal G-bundles on a space M” is a more sophisticated analogue of: “find the set $X(R)$ of solutions to $x^5 + y^5 = z^5$ in the ring R”. (In fact, the theory of “moduli stacks” exactly develops this analogy between the two problems.) To do this, you can imagine having a “groupoid-based mathematics”, generalizing the usual set-based one. Here are some observations about this.

- We regard two sets as “essentially the same” if they are isomorphic, i.e., if there is a bijection $f: X \to X'$ between them. Any such bijection has a unique inverse bijection $f^{-1}: X' \to X$.
- On the other hand, we regard two categories as “essentially the same” if they are merely equivalent, i.e., if there is a functor $f: C \to C'$ which admits an inverse up to natural
isomorphism. It is not the case that such an inverse up to natural isomorphism is itself unique. These same remarks apply in particular to equivalences of groupoids.

Although any equivalence of categories admits some kind of inverse, the failure to be unique leads to complications. For example, one goal of every course in abstract linear algebra is to demonstrate and exploit an equivalence of categories $f : \text{Mat}_F \to \text{Vect}_F$.

Here Mat_F is the matrix category, whose objects are non-negative integers, and whose morphisms $n \to m$ are $m \times n$-matrices with entries in F. The functor f is defined by an explicit construction; e.g., it sends the object n to the vector space F^n. However, there is no completely “natural” way to construct an inverse functor $f^{-1} : \text{Vect}_F \to \text{Mat}_F$: producing such an inverse functor requires making an arbitrary choice, for each abstract vector space V, of a basis for V.

- We can consider “solutions to equations” in groupoids (e.g., limits). However, the naive construction of limits of groupoids may not preserve equivalences of groupoids; thus, we need to consider “weak” or “homotopy” limits.

For example, suppose M is a space which is a union of two open sets U and V. The weak pullback of $\text{Bun}_G(U) \to \text{Bun}_G(U \cap V) \leftarrow \text{Bun}_G(V)$

is a groupoid, whose objects are triples (P, Q, α), where $P \to U$ and $Q \to U$ are G-bundles, and $\alpha : P|_{U \cap V} \sim Q|_{U \cap V}$ is an isomorphism of G-bundles over $U \cap V$; the morphisms $(P, Q, \alpha) \to (P', Q', \alpha')$ are pairs $(f : P \to P', g : Q \to Q')$ are pairs of bundle maps which are compatible over $U \cap V$ with the isomorphisms α, α'. Compare this with the strict pullback, which consists of (P, Q) such that $P|_{U \cap V} = Q|_{U \cap V}$ as bundles; in particular, $P|_{U \cap V}$ and $Q|_{U \cap V}$ must be the identical sets.

A basic result about bundles is that $\text{Bun}_G(M)$ is equivalent to this weak pullback. The strict limit may fail to be equivalent to this; in fact, it is impossible to describe the strict pullback without knowing precisely what definition of G-bundle we are using, whereas the identification of weak pullback is insensitive to the precise definition of G-bundle. (The point being, there can exist many non-identical “precise definitions of G-bundle”, because what we really care about in the end is understanding $\text{Bun}_G(M)$ up to equivalence, rather than up to isomorphism.)

These kinds of issues persist when dealing with higher groupoids and categories.

1.2. Higher groupoids. There is a category Gpd of groupoids, whose objects are groupoids and whose morphisms are functors. However, there is even more structure here; there are natural transformations between functors $f, f' : G \to G'$ of groupoids. That is, $\text{Fun}(G, G')$ forms not merely a set, but a category. We can consider the collection consisting of (0) groupoids, (1) equivalences between groupoids, and (2) natural isomorphisms between equivalences; this is an example of a 2-groupoid. There is no reason to stop at 2-groupoids: there are n-groupoids, the totality of which are an example of an $(n+1)$-groupoid. (In this hierarchy, 0-groupoids are sets, and 1-groupoids are groupoids.) We might as well take the limit, and consider ∞-groupoids.

It turns out to be difficult (though not impossible) to construct an “algebraic” definition of n-groupoid. The approach which in seems to work best in practice is to use homotopy theory. We start with the observation that every groupoid G has a classifying space BG. This is defined

2More precisely, a “quasistrict 2-groupoid”.
explicitly as a quotient space

\[G \mapsto BG := \left(\coprod_{x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} x_n} \Delta^n \right) / \sim, \]

where we glue in a topological \(n \)-simplex \(\Delta^n \) for each \(n \)-fold sequence of composable arrows in \(G \), modulo certain identifications. It turns out (i) the fundamental groupoid of \(BG \) is equivalent to \(G \), and (ii) the higher homotopy groups \(\pi_k \) of \(BG \) are trivial, for \(k \geq 2 \). A space like this is called a 1-type. Furthermore, (iii) there is a bijection between equivalence classes of groupoids up to equivalence and CW-complexes which are 1-types, up to homotopy equivalence. (More is true, but I’ll stop there for now.)

The conclusion is that groupoids and equivalences between them are modelled by 1-types and homotopy equivalences between them. This suggests that we should define \(n \)-groupoids as \(n \)-types (CW complexes with trivial homotopy groups in dimensions > \(n \)), with equivalences being homotopy equivalences. Removing the restriction on homotopy groups leads to modelling \(\infty \)-groupoids by CW-complexes up to homotopy equivalence.

There is a different approach, which we will follow. It uses the fact that the classifying space construction factors through a “combinatorial” construction, called the “nerve”. That is, we have

\[(G \in \text{Gpd}) \mapsto (NG \in \text{sSet}) \mapsto (\|NG\| = BG \in \text{Top}), \]

where \(NG \) is the nerve of the groupoid, and is an example of a simplicial set; \(\|X\| \) denotes the geometric realization of a simplicial set \(X \). In fact, the nerve is a particular kind of simplicial set called a Kan complex. It is a classical fact of homotopy theory that Kan complexes model all homotopy types. Thus, we will choose our definitions so that \(\infty \)-groupoids are precisely the Kan complexes.

1.3. \(\infty \)-categories. An \(\infty \)-category is a generalization of \(\infty \)-groupoid in which morphisms are no longer required to be invertible in any sense.

There are a number of approaches to defining \(\infty \)-categories. Here are two which build on top of the identification of \(\infty \)-groupoids with Kan complexes.

- A category \(C \) consists of a set \(\text{ob} C \) of objects, and for each pair of objects a set \(\text{hom}_C(x, y) \) of maps from \(x \) to \(y \). If we replace the set \(\text{hom}_C(x, y) \) with a Kan complex (or more generally a simplicial set) \(\text{map}_C(x, y) \), we obtain a category enriched over Kan complexes (or simplicial sets). This leads to one model for \(\infty \)-categories: categories enriched over simplicial sets.
- The nerve construction makes sense for categories: given a category \(C \), we have a simplicial set \(NC \). In general, \(NC \) is not a Kan complex; however, it does land in a special class of simplicial sets, which are called quasicategories. This leads to another model for \(\infty \)-categories: quasicategories.

In this paper we focus on the second case: the quasicategory model for \(\infty \)-categories.

1.4. Historical remarks. Quasicategories were invented by Boardman and Vogt [BV73, §IV.2], under the name restricted Kan complex. They did not use them to develop a theory of \(\infty \)-categories. This development began with the work of Joyal, first published in [Joy02]. Much of the material in this course was developed first by Joyal, in published papers and unpublished manuscripts [Joy08a], [Joy08b], [JT08]. Lurie [Lur09] gives a thorough treatment of quasicategories (which he simply calls “\(\infty \)-categories”), recasting and extending Joyal’s work significantly.

There are significant differences between the ways that Joyal and Lurie develop the theory. In particular, they give different definitions of the notion of a “categorical equivalence” between simplicial sets, though they do in fact turn out to be equivalent [Lur09, §2.2.5]. The approach I
follow here is essentially that of Joyal. However, I have tried to follow Lurie’s terminology and notation in most places.

1.5. **Goal of this book.** The goal of this book is to give a reasonably approachable introduction to the subject of higher category theory. In particular, I am writing with the following ideas in mind.

- The prerequisites are merely some basic notions of category theory, as seen in a first year algebraic topology or algebraic geometry course. No advanced training in homotopy theory is assumed: in particular, no knowledge of simplicial sets or model categories is assumed.
- The book is written in “lecture notes” style rather than “textbook” style. That is, I will try to avoid introducing a lot of theory in section 3 which is only to be used in section 42, even if that is the “natural” place for it. The goal is to introduce new ideas near where they are first used, so that motivations are clear.
- The structure of the exposition is organized around the following type of question: Here is a [definition we can make/theorem we can prove] for ordinary categories; how do we generalize it to quasicategories? In some cases the answer is easy. In others, it can require a significant detour.
- The exposition is largely from the bottom up, rather than from the top down. Thus, I attempt to give complete details about everything I prove, so that nothing is relegated to references. (The current document does not achieve this yet, but that is the plan; in some cases, such details will be put into appendices.)
- The idea is that, after you have read this book, you will be well-prepared to dip into the main references on quasicategories (e.g., Lurie’s books) without too much difficulty. Note that this book is not meant to (and does not) supplant any such reference.

1.6. **Prerequisites.** I assume only familiarity with basic concepts of category theory, such as those discussed in the first few chapters of [Rie16]. It is helpful, but not essential, to know a little algebraic topology (such as fundamental groups and groupoids, and the definition of singular homology, as described in Chs. 1–3 of Hatcher’s textbook).

Some categorical prerequisites: you should be at least aware of the following notions (or know where to turn to in order to learn them):

- categories, functors, and natural transformations;
- full subcategories;
- groupoids;
- products and coproducts;
- pushouts and pullbacks;
- general colimits and limits.
- adjoint functors.

1.7. **References and other sources.** As noted, the material depends mainly on the work of Joyal and Lurie.

- Joyal’s first paper [Joy02] on the subject explicitly introduces quasicategories as a model for \(\infty\)-categories. It is worth looking at.
- There are several versions of unpublished lecture notes by Joyal [Joy08a], [Joy08b], which develop the theory of quasicategories from scratch. Also note the paper by Joyal and Tierney [JT08], which gives a summary of some of this unpublished work.
- Lurie’s “Higher topos theory” [Lur09] gives a complete development of \(\infty\)-categories, including a number of topics not even touched in this book. The main general material on \(\infty\)-categories is in Chapters 1–4, together with quite a bit of material from the appendices. It is also worth looking at Chapter 5, which develops the very important notions of accessible and presentable \(\infty\)-categories. The final two chapters apply these ideas to the theory of \(\infty\)-topoi.
Lurie’s “Higher algebra” [Lur12] treats a number of “advanced topics”, including stable ∞-categories (the ∞-categorical foundations for derived categories in homological algebra and stable homotopy), various notions of monoidal structures on ∞-categories (via the theory of ∞-operads), and other topics.

After I came up with the first version of these notes, Cisinski published the book “Higher Categories and Homotopical Algebra”. It covers much of the material in these notes (and much more), on roughly similar lines: in his book model categories play a more prominent role from the start than they do here.

Bergner’s “The homotopy theory of (∞,1)-categories” is a survey of various approaches to higher categories and their interrelationships.

Groth’s note “A short course on ∞-categories” provides a brief survey to some of the basic ideas about quasicategories and their applications. It is not a complete treatment, but it does get very quickly to some of the more advanced topics.

Riehl and Verity . . .

1.8. Things to add. This is a place for me to remind myself of things I might add.

• A discussion of n-truncation and n-groupoids, including the equivalence of ordinary groupoids to 1-groupoids (so connecting with the introduction).
• Pointwise criterion for limits/colimits: Show that $S^\triangleright \to \text{Fun}(D,C)$ is a colimit cone if each projection to $S^\triangleright \to \text{Fun}([d],C) \approx C$ is one.

1.9. Acknowledgements. Thanks to all those who have submitted corrections, including most notably: Lang (Robbie) Yin, Darij Grinberg, and Vigleik Angeltveit. I’d also like to thank the participants of courses I have given based on a version of these notes: (Math 595 at the University of Illinois in Fall 2016, and again in Spring 2019).

Part 1. Basic notions

2. Simplicial sets

In the subsequent sections, we will define quasicategories as a generalization of the notion of a category. To accomplish this, we will recharacterize categories as a particular kind of simplicial set; relaxing this characterization will lead us to the definition of quasicategories.

Simplicial sets were introduced as a combinatorial framework for the homotopy theory of spaces. There are a number of treatments of simplicial sets from this point of view. We recommend Greg Friedman’s survey [Fri12] as a starting place for learning about this viewpoint, and we will discuss this point of view later on in §?? . Here we will focus on what we need in order to develop quasicategories.

2.1. The simplicial indexing category Δ. We write Δ for the category whose

• objects are the non-empty totally ordered sets $[n] := \{0 < 1 < \cdots < n\}$ for $n \geq 0$, and
• morphisms $f : [n] \to [m]$ are weakly monotone functions, i.e., such that $x \leq y$ implies $f(x) \leq f(y)$.

Note that we exclude the empty set from Δ. Morphisms in Δ are often called simplicial operators.

Because $[n]$ is an ordered set, you can also think of it as a category: the objects are the elements of $[n]$, and there is a morphism (necessarily unique) $i \to j$ if and only if $i \leq j$. Thus, morphisms in the category Δ are precisely the functors between the categories $[n]$. We can, and will, also think of $[n]$ as the category “freely generated” by the picture

\[
\begin{array}{ccccccccc}
0 & \to & 1 & \to & \cdots & \to & n-1 & \to & n \\
& & & & & & & & \\
\end{array}
\]

Arbitrary non-identity morphisms in $[n]$ can be expressed uniquely as iterated composites of the arrows which are displayed in the picture.
We will often use the following notation for morphisms in Δ:

$$f = \langle f_0 \cdots f_n \rangle : [n] \to [m] \text{ with } f_0 \leq \cdots \leq f_n \text{ represents the function } k \mapsto f_k.$$

2.2. Remark. There are distinguished simplicial operators called face and degeneracy operators:

$$d^i := \langle 0, \ldots, 0, \hat{i}, \ldots, n \rangle : [n-1] \to [n], \quad 0 \leq i \leq n,$$

$$s^i := \langle 0, \ldots i, i, \ldots n \rangle : [n+1] \to [n], \quad 0 \leq i \leq n.$$

All maps in Δ can be obtained as a composition of face and degeneracy operators, and in fact Δ can be described as a category generated by the above symbols, subject to a set of relations called the “simplicial identities”, which can be found in various places, e.g., [Fri12, Def. 3.2].

2.3. Simplicial sets. A simplicial set is a functor $X : \Delta^{\text{op}} \to \text{Set}$, i.e., a contravariant functor (or “presheaf”) from Δ to sets.

It is typical to write X_n for $X([n])$, and call it the set of n-simplices in X. I generally prefer to call it the set of n-dimensional elements of X instead (because the word “simplices” also applies to the so called “standard n-simplices” defined below (2.7), and I would like to avoid confusion between them). I will also speak of the set of all elements (or all simplices) of X, i.e., of the disjoint union $\coprod_{n \geq 0} X_n$, the sets X_n.

The 0-dimensional elements of a simplicial set are also called vertices, while the 1-dimensional elements are also called edges.

Given an element $a \in X_n$ and a simplicial operator $f : [m] \to [n]$, I will write $af \in X_m$ as shorthand for $X(f)(a)$. That is, I'll think of simplicial operators as acting on elements from the right; this is a convenient choice given that X is a contravariant functor. In this language, a simplicial set consists of

- a sequence of sets X_0, X_1, X_2, \ldots,
- functions $a \mapsto af : X_n \to X_m$ for each simplicial operator $f : [m] \to [n]$, such that
- $a \text{id} = a$, and $(af)g = a(fg)$ for any element a and simplicial operators f and g whenever this makes sense.

If I need to have the simplicial operator act from the left, I’ll write $f^*(a) = af$.

Sometimes I’ll use a subscript notation when speaking of the action of particular simplicial operators. So, given a simplicial operator of the form $f = \langle f_0 \cdots f_m \rangle : [m] \to [n]$, we can indicate the action of f on elements using subscripts:

$$af_0 \cdots f_m := af = a\langle f_0 \cdots f_m \rangle.$$

In particular, applying simplicial operators of the form $\langle i \rangle : [0] \to [n]$ gives vertices $a_0, \ldots, a_n \in X_0$, which we call the “vertices of a”, while applying simplicial operators of the form $\langle ij \rangle : [1] \to [n]$ for $0 \leq i \leq j \leq n$ gives edges $a_{ij} \in X_1$, which we call the “edges of a”.

2.4. The category of simplicial sets. A simplicial set is a functor; therefore a map of simplicial sets is a natural transformation of functors. Explicitly, a map $\phi : X \to Y$ between simplicial sets is a collection of functions $\phi : X_n \to Y_n$, $n \geq 0$, which commute with simplicial operators:

$$(\phi a)f = \phi(af) \quad \text{for all simplicial operators } f \text{ and elements } a \text{ in } X, \text{ when this makes sense}.$$

I’ll write $s\text{Set}$ for the category of simplicial sets and maps between them3.

3Lurie [Lur09] uses $s\text{Set}_\Delta$ to denote the category of simplicial sets. Perhaps I should try to be consistent with this?
2.5. **Discrete simplicial sets.** A simplicial set \(X \) is **discrete** if every simplicial operator \(f \) induces a bijection \(f^* : X_n \to X_m \).

Every set \(S \) gives us a discrete simplicial set \(S^{\text{disc}} \), defined so that \((S^{\text{disc}})_n = S \), and so that each simplicial operator acts according to the identity map of \(S \). This construction defines a functor \(S \mapsto S^{\text{disc}} : \text{Set} \to \text{sSet} \).

2.6. **Exercise.** Show that (i) every discrete simplicial set \(X \) is isomorphic to \(S^{\text{disc}} \) for some set \(S \), and that in fact you can take \(S = X_0 \), and (ii) for every pair of sets \(S \) and \(T \), the evident function \(\text{Hom}_{\text{Set}}(S, T) \to \text{Hom}_{\text{sSet}}(S^{\text{disc}}, T^{\text{disc}}) \) is a bijection.

Let \(\text{sSet}^{\text{disc}} \) denote the full subcategory of \(\text{sSet} \) spanned by discrete simplicial sets. That is, objects of \(\text{sSet}^{\text{disc}} \) are discrete simplicial sets, and morphisms of \(\text{sSet}^{\text{disc}} \) are all simplicial maps between them. Then the above exercise amounts to saying that the full subcategory of discrete simplicial sets is equivalent to the category of sets.

For this reason, it is often convenient to (at least informally) “identify” sets with their corresponding discrete simplicial sets (i.e., for a set \(S \) we also write \(S \) for the discrete simplicial set \(S^{\text{disc}} \) defined above).

2.7. **Standard \(n \)-simplex.** The **standard \(n \)-simplex** \(\Delta^n \) is the simplicial set defined by
\[
\Delta^n := \text{Hom}_\Delta(-, [n]).
\]
That is, the standard \(n \)-simplex is exactly the functor represented by the object \([n]\). Explicitly, this means that
\[
(\Delta^n)_m = \text{Hom}_\Delta([m], [n]) = \{\text{simplicial operators } a : [m] \to [n]\},
\]
while the action of simplicial operators on elements of \(\Delta^n \) is given by composition: \(f : [m'] \to [m] \) sends \(a \in (\Delta^n)_m \) to \((af) : [m'] \to [n] \in (\Delta^n)_{m'}\).

The **generator** of \(\Delta^n \) is the element
\[
\iota_n := (01\ldots n) = \text{id}_{[n]} \in (\Delta^n)_n,
\]
corresponding to the identity map of \([n]\).

The **Yoneda lemma** (applied to the category \(\Delta \)) asserts that the function
\[
\text{Hom}_{\text{sSet}}(\Delta^n, X) \to X_n,
\]
\[
g \mapsto g(\iota_n),
\]
is a bijection for every simplicial set \(X \). (**Exercise:** if this fact is not familiar to you, prove it.)

The Yoneda lemma can be stated this way: for each \(n \)-dimensional element \(a \in X_n \) there exists a unique map \(f_a : \Delta^n \to X \) of simplicial sets which sends the generator to it, i.e., such that \(f_a(\iota_n) = a \). We call the map \(f_a \) the **representing map** of the element \(a \).

We will often use the bijection provided by the Yoneda lemma implicitly. In particular, instead of using notation such as \(f_a \), we will typically abuse notation and write \(a : \Delta^n \to X \) for the representing map of the simplex \(a \in X_n \). We reiterate that the map \(a : \Delta^n \to X \) is characterized as the unique map sending the generator \(\iota_n \) of \(\Delta^n \) to \(a \). Thus with our notation we have \(a = a(\iota_n) \), where the two appearances of “\(a \)” denote respectively the element of \(X_n \) and the representing morphism \(\Delta^n \to X \).

2.8. **Exercise.** Show that the representing map \(f : \Delta^n \to X \) of \(a \in X_n \) sends \((f_0 \cdots f_k) \in (\Delta^n)_k \) to \(a(f_0 \cdots f_k) \in X_k \).

Note that if \(X = \Delta^m \) is also a standard simplex, then the Yoneda lemma gives a bijection
\[
\text{Hom}_{\text{sSet}}(\Delta^n, \Delta^m) \cong (\Delta^n)_m = \text{Hom}_\Delta([n], [m]).
\]
The inverse of this bijection sends a simplicial operator \(f : [n] \to [m] \) to the map \(\Delta f : \Delta^n \to \Delta^m \) of simplicial sets defined on elements \(g \in (\Delta^n)_k = \text{Hom}_\Delta([k], [n]) \) by \(g \mapsto fg \). (**Exercise:** prove this.)

I will commonly abuse notation, and write \(f : \Delta^n \to \Delta^m \) instead of \(\Delta f \) for the map induced by the simplicial operator \(f \), as it is also the representing map of the corresponding simplex \(f \in (\Delta^n)_n \).
2.9. The standard 0-simplex and the empty simplicial set. The standard 0-simplex Δ^0 is the terminal object in $sSet$. Sometimes I write $*$ instead of Δ^0 for this object. Note that it is the only standard n-simplex which is discrete.

The empty simplicial set \emptyset is the functor $\Delta^{op} \to sSet$ sending each $[n]$ to the empty set. It is the initial object in $sSet$.

2.10. Exercise. Show that a simplicial set X is isomorphic to the empty simplicial set if and only if X_0 is isomorphic to the empty set.

2.11. Standard simplices on totally ordered sets. The definition of the standard simplices Δ^n can be extended to simplicial sets “generated” by arbitrary totally ordered sets.

For instance, for any non-empty finite totally ordered set $S = \{s_0 < s_1 < \cdots < s_n\}$, there is a unique order preserving bijection $S \approx [n]$ for a unique $n \geq 0$. We write Δ^S for the simplicial set with $(\Delta^S)_k = \{\text{order preserving } [k] \to S\}$. There is a unique isomorphism $\Delta^S \approx \Delta^n$ of simplicial sets (Exercise: prove this). We can also apply this idea to the empty ordered set $S = \emptyset$, in which case $(\Delta^S)_k = \emptyset$ for all k, i.e., $\Delta^S = \emptyset$ is the empty simplicial set.

This notation is especially convenient for subsets $S \subseteq [n]$ with induced ordering, as the simplicial set Δ^S is in a natural way a subcomplex of Δ^n (i.e., a collection of subsets of the $(\Delta^n)_k$ closed under action of simplicial operators; we will return to the notion of subcomplex below §4.9).

Furthermore, any simplicial operator $f: [m] \to [n]$ factors through its image $S = f([m]) \subseteq [n]$, giving a factorization

$$[m] \xrightarrow{f_{\text{surj}}} S \xrightarrow{f_{\text{inj}}} [n]$$

of maps between ordered sets, and thus a factorization $\Delta^m \xrightarrow{\Delta^S_{\text{surj}}} \Delta^S \xrightarrow{\Delta^S_{\text{inj}}} \Delta^n$ of the induced map Δ^f of simplicial sets.

2.12. Exercise. Show that $\Delta^{f_{\text{inj}}}$ and $\Delta^{f_{\text{surj}}}$ respectively induce maps between simplicial sets which are (respectively) injective and surjective on sets of k-dimensional elements for all k. (The case of $\Delta^{f_{\text{inj}}}$ is formal, but the case of $\Delta^{f_{\text{surj}}}$ is not completely formal.)

2.13. Pictures of standard simplices. When we draw a “picture” of Δ^n, we draw a geometric n-simplex: the convex hull of $n+1$ points in general position, with vertices labelled by $0, \ldots, n$. The faces of the geometric simplex correspond exactly to injective simplicial operators into $[n]$: these elements are called non-degenerate. For each non-degenerate simplex f in Δ^n, there is an infinite collection of degenerate elements with the same “image” as f (when viewed as a simplicial operator with target $[n]$).

Here are some “pictures” of standard simplices, which show their non-degenerate elements. Note that we draw the 1-dimensional elements of Δ^n as arrows; this lets us easily see the total ordering on the vertices of Δ^n.

$$\Delta^0: \quad \Delta^1: \quad \Delta^2: \quad \Delta^3:\n
\begin{array}{cccc}
(0) \quad (0) & \rightarrow & (1) & \quad (0) \quad (1) \\
\downarrow & \quad \downarrow & \quad \downarrow & \quad \downarrow \\
(2) & \rightarrow & (3) & \rightarrow & (3)
\end{array}$$

We’ll extend the terminology of “degenerate” and “non-degenerate” elements to arbitrary simplicial sets in §15.5.

3. The nerve of a category

The nerve of a category is a simplicial set which retains all the information of the original category. In fact, the nerve construction provides a full embedding of Cat, the category of categories, into $sSet$, which means that we are able to think of categories as just a special kind of simplicial set.
3.1. **Construction of the nerve.** Given a category C, the nerve of C is the simplicial set NC defined so that

$$(NC)_n := \text{Hom}_{\text{Cat}}([n], C),$$

the set of functors from $[n]$ to C, and so that simplicial operators $f: [m] \to [n]$ act by precomposition: $a \mapsto af$ for an element $a: [n] \to C$ in $(NC)_n$.

3.2. **Example.** There is an evident isomorphism $N[n] \cong \Delta^n$.

Given a functor $F: C \to D$ between categories, we obtain a map $NF: NC \to ND$ of simplicial sets, sending $(a: [n] \to C) \in (NC)_n$ to $(Fa: [n] \to D) \in (ND)_n$. Thus the nerve construction defines a functor $N: \text{Cat} \to \text{sSet}$.

3.3. **Structure of the nerve.** We observe the following, whose verification we leave to the reader.

- $(NC)_0$ is canonically identified with the set of objects of C.
- $(NC)_1$ is canonically identified with the set of morphisms of C.
- The operators $(0)^*: (NC)_0 \to (NC)_1$ assign to a morphism its source and target respectively.
- The operator $(00)^*: (NC)_0 \to (NC)_1$ assigns to an object its identity map.
- $(NC)_2$ is in bijective correspondence with the set of pairs (f, g) of morphisms such that gf is defined, i.e., such that the target of f is the source of g. This bijection is given by sending $a \in (NC)_2$ to $(a_{01}, a_{12}) \in (NC)_1 \times (NC)_1$.
- The operator $(02)^*: (NC)_2 \to (NC)_1$ assigns, to an element corresponding to a pair (f, g) of morphisms, the composite morphism gf.

We have the following general description of n-dimensional elements in the nerve.

3.4. **Proposition.** Let C be a category.

1. There is a bijective correspondence

$$(NC)_n \cong \{ (g_1, \ldots, g_n) \in (\text{mor } C)^n \mid \text{target}(g_{i-1}) = \text{source}(g_i) \},$$

which sends $(a: [n] \to C) \in (NC)_n$ to the sequence $(a\langle 0,1 \rangle, \ldots, a\langle n-1, n \rangle)$

2. With respect to the correspondence of (1), the map $f^*: (NC)_n \to (NC)_m$ induced by a simplicial operator $f: [m] \to [n]$ coincides with the function

$$(g_1, \ldots, g_n) \mapsto (h_1, \ldots, h_m), \quad h_k = \begin{cases}
\text{id} & \text{if } f(k-1) = f(k) \\
g_jg_{j-1}\cdots g_{i+1} & \text{if } f(k-1) = i < j = f(k).
\end{cases}$$

Proof. For (1), one verifies that an inverse is given by the function which sends a sequence (g_1, \ldots, g_n) to $(a: [n] \to C) \in (NC)_n$ defined on objects by $a(k) = \text{target}(g_{k-1}) = \text{source}(g_k)$, and on morphisms by $a((ij)) = g_jg_{j-1}\cdots g_{i+1}$ for $i < j$. For (2), note that for $a \in (NC)_n$ corresponding to the tuple (g_1, \ldots, g_n) we can compute

$$(af)(k-1, k) = a\langle f(k-1), f(k) \rangle = \begin{cases}
\text{id} & \text{if } f(k-1) = f(k) \\
g_jg_{j-1}\cdots g_{i+1} & \text{if } f(k-1) = i < j = f(k).
\end{cases}$$

□

In particular, you can recover the category from its nerve, up to isomorphism, since the nerve contains all information about objects, morphisms, and composition of morphisms.

3.5. **Remark.** It is clear from the above remarks that most of the information in the nerve of C is redundant: we only needed $(NC)_k$ for $k = 0, 1, 2$ and certain simplicial operators between them to recover C.

3.6. **Exercise.** Show that for any discrete simplicial set X there exists a category C and an isomorphism $NC \cong X$.

STUFF ABOUT QUASICATEGORIES 11
3.7. Characterization of nerves. This leads to the question: given a simplicial set X, how can we detect that it is isomorphic to the nerve of some category?

3.8. Proposition. A simplicial set X is isomorphic to the nerve of some category if and only if for all $n \geq 2$ the function

$$\phi_n : X_n \rightarrow \{(g_1, \ldots, g_n) \in (X_1)^n \mid g_{i-1}(1) = g_i(0), 1 \leq i \leq n\}$$

which sends $a \in X_n$ to $(a_{0,1}, \ldots, a_{n-1,n})$ is a bijection.

Proof. First, suppose $X = NC$ for some category C. Then the function ϕ_n is precisely the bijection of (3.4)(1). Thus, if X is isomorphic to the nerve of some category then its ϕ_n are bijections.

Now suppose X is a simplicial set such that the ϕ_n are bijections. We define a category C, with

$$(\text{objects of } C) = X_0, \quad (\text{morphisms of } C) = X_1,$$

following the discussion in (3.3). Thus, the source and target of $g \in X_1$ are g_0 and g_1 in X_0 respectively, the identity map of $x \in X_0$ is $x_{00} \in X_1$, while the composite of (g, h) such that $g_1 = h_0$ is a_{02}, where $a \in X_2$ is the unique 2-dimensional element with $a_{01} = g$ and $a_{12} = h$. We leave the remaining details (e.g., unit and associativity properties) to the reader, though we note that proving associativity requires consideration of elements of X_3. (Or look ahead to (5.10), where we carry out the argument explicitly in a slightly different context.)

Next, we claim that for $a \in X_n$, and for $0 \leq i \leq j \leq k \leq n$, we have that

$$a_{i,k} = a_{j,k}a_{i,j},$$

where $a_{i,k}, a_{i,j}, a_{j,k} \in X_1$ are images of a under face operators $[1] \rightarrow [n]$, and right-hand side represents composition of two morphisms in C. To see this, note first that for $b \in X_2$, we have $b_{0,2} = b_{1,2}b_{0,1}$ by construction of C. The general case follows from this by setting $b = a_{i,j,k}$.

Now we can define maps $\psi_n : X_n \rightarrow (NC)_n$ by sending $a \in X_n$ to $\psi(a) : [n] \rightarrow C$ defined by $\psi(a)(i \leq j) = a_{i,j}$, which is a functor by the above remarks. These maps ψ_n are seen to be bijections using the bijections ϕ_n and (3.4), since $\psi_n(a)(i - 1 \leq i) = a_{i-1,i}$. If $f : [m] \rightarrow [n]$ is a simplicial operator, then we compute

$$\psi_m(af)(i \leq j) = (af)_{i,j} = af_{i,j} = (\psi_n(a))(f(i) \leq f(j)) = (\psi_n(a)f)(i \leq j),$$

whence ψ is a map of simplicial sets. We have thus constructed an isomorphism $\phi : X \rightarrow NC$ of simplicial sets, as desired.

3.9. A characterization of maps between nerves. Maps between nerves are the same as functors between categories.

3.10. Proposition. The nerve functor $N : \text{Cat} \rightarrow \text{sSet}$ is fully faithful. That is, every simplicial set map $g : NC \rightarrow ND$ between nerves is of the form $g = N(f)$ for a unique functor $f : C \rightarrow D$.

Proof sketch. We need to show that $\text{Hom}_{\text{Cat}}(C, D) \rightarrow \text{Hom}_{\text{sSet}}(NC, ND)$ is a bijection for all categories C and D. Injectivity is clear, as a functor f is determined by its effect on objects and morphisms, which is exactly the effect of $N(f)$ on 0- and 1-dimensional elements of the nerves.

For surjectivity, observe that for any map $g : NC \rightarrow ND$ of simplicial sets, we can define a candidate functor $f : C \rightarrow D$, defined on objects and morphisms by the action of g on 0-dimensional and 1-dimensional elements. That F has the correct action on identity maps follows from the fact that g commutes with the simplicial operator $(00) : [1] \rightarrow [0]$. That F preserves composition uses (3.4) and the fact that g commutes with the simplicial operator $(02) : [1] \rightarrow [2]$.

Note that given $g : NC \rightarrow ND$ and $f : C \rightarrow D$ as constructed above, the maps $g, N(f) : NC \rightarrow ND$ coincide on 0-dimensional and 1-dimensional elements by construction. It follows that $g = N(f)$ by (3.11) below. Thus, we have shown that $N : \text{Hom}_{\text{Cat}}(C, D) \rightarrow \text{Hom}_{\text{sSet}}(NC, ND)$ is surjective as desired.
3.11. Exercise. Show that if C is a category and X is any simplicial set (not necessarily a nerve), then two maps $g, g': X \to NC$ are equal if and only if $g_0 = g'_0$ and $g_1 = g'_1$, i.e., g and g' are equal if and only if they coincide on 0-dimensional and 1-dimensional elements. (Hint: use (3.4.).)

4. Spines

In this section we will restate our characterization of simplicial sets which are isomorphic to nerves, in terms of a certain “extension” condition. To state this condition we need the notion of a “spine” of a standard n-simplex.

4.1. The spine of an n-simplex. The spine of the n-simplex Δ^n is the simplicial set I^n defined by

$$(I^n)_k = \{ (a_0 \cdots a_k) \in (\Delta^n)_k \mid a_k \leq a_0 + 1 \}.$$

That is, a k-dimensional element of I^n is a simplicial operator $a: [k] \to [n]$ whose image is of the form either $\{ j \}$ or $\{ j, j + 1 \}$. The action of simplicial operators on elements of I^n is induced by their action on Δ^n. (To see that this action is well defined, observe that for $a: [k] \to [n]$ in $(I^n)_k$ and $f: [p] \to [k]$, the image of the simplicial operator af is contained in the image of a.)

There is an evident injective map $I^n \to \Delta^n$ of simplicial sets. (In fact, I^n is another example of a subcomplex of Δ^n, see below §4.9.) Here is a picture of I^3 in Δ^3:

![Image of I^3 in Delta^3]

Note that $I^0 = \Delta^0$ and $I^1 = \Delta^1$.

The key property of the spine is the following.

4.2. Proposition. Given a simplicial set X, for every $n \geq 0$ there is a bijection

$$\text{Hom}(I^n, X) \overset{\sim}{\to} \{ (a_1, \ldots, a_n) \in (X_1)^n \mid a_i(1) = a_{i+1}(0) \},$$

defined by sending $f: I^n \to X$ to $(f(0), f(12), \cdots, f(n-1, n))$. (In the case $n = 0$, the target of the bijection is taken to be the set X_0 of vertices of X, and the bijection in this case sends $f \mapsto f(0)$.)

We will give the proof at the end of this section, after we describe I^n as a colimit of a diagram of standard simplices; specifically, as a collection of 1-simplices “glued” together at their ends.

4.3. Nerves are characterized by unique spine extensions. We can now state our new characterization of nerves: they are simplicial sets such that every map $I^n \to X$ from a spine extends uniquely along $I^n \subseteq \Delta^n$ to a map from the standard n-simplex. That is, nerves are precisely the simplicial sets with “unique spine extensions”.

4.4. Proposition. A simplicial set X is isomorphic to the nerve of some category if and only if the restriction map $\text{Hom}(\Delta^n, X) \to \text{Hom}(I^n, X)$ along $I^n \subseteq \Delta^n$ is a bijection for all $n \geq 2$.

Proof. Immediate from (4.2) and (3.8).

4.5. Colimits of sets and simplicial sets. Given any functor $F: C \to \text{Set}$ from a small category to sets, there is a “simple formula” for its colimit. First consider the coproduct (i.e., disjoint union) $\coprod_{c \in \text{ob} C} F(c)$ of the values of the functor; I’ll write (c, x) for a typical element of this coproduct, with $c \in \text{ob} C$ and $x \in F(c)$. Consider the relation \sim on this defined by

$$(c, x) \sim (c', x') \text{ if } \exists \alpha: c \to c' \text{ in } C \text{ such that } F(\alpha)(x) = x'.$$
Define

\[X := \left(\coprod_{c \in \text{ob} C} F(c) \right) / \approx, \]

the set obtained as the quotient by the equivalence relation “\(\sim \)” which is generated by the relation “\(\approx \)”.

For each object \(c \) of \(C \) we have a function \(i_c : F(c) \to X \) defined by \(i_c(x) := [(c, x)] \), sending \(x \) to the equivalence class of \((c, x)\). Then the data \((X, \{i_c\})\) is a colimit of the functor \(F \): i.e., for any set \(S \) and collection of functions

\[f_c : F(c) \to S \]

such that \(f_c \circ F(\alpha) = f_c' \) for all \(\alpha : c \to c' \), there exists a unique function \(f : X \to S \) such that \(f \circ i_c = f_c \).

4.6. **Example.** Verify that \((X, \{i_c\})\) is in fact a colimit of \(F \).

We write \(\text{colim}_C F \) for a chosen colimit of \(F \).

Note that the relation “\(\sim \)” is often not itself an equivalence relation, so it can be difficult to figure out what “\(\approx \)” actually is: the simple formula may not be so simple in practice.

4.7. **Exercise.** If \(C \) is a groupoid, then “\(\sim \)” is always an equivalence relation.

There are cases when things are more tractable.

4.8. **Proposition.** Let \(A \) be a collection of subsets of a set \(S \), which is a partially ordered set under “\(\subseteq \)” and thus can be regarded as a category. Suppose \(A \) has the following property: for all \(s \in S \), and \(T, U \in A \) such that \(s \in T \cap U \), there exists \(V \in A \) such that \(s \in V \subseteq T \cap U \). Then the tautological map

\[\text{colim}_{T \in A} T \to \bigcup_{T \in A} T \]

(sending \([(T, t)] \to t \)) is a bijection.

Proof sketch. Show that \((T, t) \approx (T', t')\) if and only if \(t = t' \). \(\square \)

Note: an easy way to satisfy the hypothesis of (4.8) is to show that \(A \) is closed under finite intersection.

4.9. **Subcomplexes.** Given a simplicial set \(X \), a subcomplex is just a subfunctor of \(X \); i.e., a collection of subsets \(A_n \subseteq X_n \) which are closed under the action of simplicial operators, and thus form a simplicial set so that the inclusion \(A \to X \) is a morphism of simplicial sets. We typically write \(A \subseteq X \) when \(A \) is a subcomplex of \(X \).

4.10. **Example.** Examples we have already seen include the spines \(I^n \subseteq \Delta^n \) and the \(\Delta^S \subseteq \Delta^n \) associated to subsets \(S \subseteq [n] \).

4.11. **Exercise.** For any map \(f : X \to Y \) of simplicial sets, the image \(f(X) \subseteq Y \) of \(f \) is a subcomplex of \(Y \).

For every set \(S \) of elements of a simplicial set, there is a smallest subcomplex which contains the set, namely the intersection of all subcomplexes containing \(S \).

4.12. **Example.** For a vertex \(x \in X_0 \), we write \(\{x\} \subseteq X \) for the smallest subcomplex which contains \(x \). This subcomplex has exactly one \(n \)-dimensional element for each \(n \geq 0 \), namely \(x(0\cdots0) \), and thus is isomorphic to \(\Delta^0 \).

More generally, for a collection of vertices \(a, b, c, \ldots \in X_0 \), we write \(\{a, b, c, \ldots\} \subseteq X \) for the smallest subcomplex which contains \(a, b, c, \ldots \). This subcomplex is a discrete simplicial set. This choice of notation is supported by our informal identification of discrete sets with sets (2.5).

The result (4.8) carries over to simplicial sets, where the role of subsets is replaced by subcomplexes.
4.13. **Proposition.** Let \mathcal{A} be a collection of subcomplexes of a simplicial set X, which is a partially ordered set under “\subseteq” and thus can be regarded as a category. Suppose \mathcal{A} has the following property: for all $n \geq 0$, all $x \in X_n$, and all $K, L \in \mathcal{A}$ such that $x \in K_n \cap L_n$, there exists $M \in \mathcal{A}$ such that $x \in M_n$ and $M \subseteq K \cap L$. Then the tautological map
\[
\text{colim}_{K \in \mathcal{A}} K \to \bigcup_{K \in \mathcal{A}} K
\]
is a bijection.

Proof. Because simplicial sets are actually functors $\Delta^{op} \to \text{Set}$, colimits in simplicial sets are “computed degreewise”. That is, if $F : C \to s\text{Set}$ is a functor with colimit $Y = \text{colim}_{c \in C} F(c) \in s\text{Set}$, then for each $n \geq 0$ there is a canonical bijection
\[
Y_n \approx \text{colim}_{c \in C} F(c)_n.
\]
The proposition follows using this observation and (4.8). \qed

4.14. **Remark (Pushouts of subcomplexes).** A special case of (4.13) applied to simplicial sets which we will use constantly is the following. If K and L are subcomplexes of a simplicial set X, then so are both $K \cap L$ and $K \cup L$, and furthermore the evident commutative square
\[
\begin{array}{c}
K \cap L \rightarrow L \\
\downarrow \quad \downarrow \\
K \rightarrow K \cup L
\end{array}
\]
is a pushout square in simplicial sets. (Proof: $\mathcal{A} = \{K, L, K \cap L\}$.)

4.15. **Subcomplexes of Δ^n.** For each $S \subseteq [n]$ we have a subcomplex $\Delta^S \subseteq \Delta^n$. The following says that every subcomplex of Δ^n is a union of Δ^Ss.

4.16. **Lemma.** Let $K \subseteq \Delta^n$ be a subcomplex. If $(f : [m] \to [n]) \in K_m$ with $f([m]) = S$, then $f \in (\Delta^S)_m$ and $\Delta^S \subseteq K$.

This the proof uses the following elementary fact.

4.17. **Lemma.** Any order preserving surjection $f : S \to T$ between finite totally ordered sets admits an order preserving section, i.e., $s : T \to S$ such that $fs = \text{id}_T$.

Proof. Let $s(t) = \min \{ s \in S \mid f(s) = t \}$. \qed

Proof of (4.16). Given an order preserving map $g : [k] \to S$ a dotted arrow s exists making
\[
\begin{array}{c}
[k] \\
\downarrow g \\
[n]
\end{array}
\]
\[
\begin{array}{c}
[m] \\
\downarrow f_{\text{surj}} \\
S \\
\downarrow f_{\text{inj}} \\
[n]
\end{array}
\]
commute by (4.17). Therefore any element $\overline{g} \in (\Delta^S)_k$ is an element $\overline{g} = fs \in K_k$, and it is clear that $f \in (\Delta^S)_m$. \qed

4.18. **Remark.** Thus, a subcomplex $K \subseteq \Delta^n$ determines and is determined by a collection \mathcal{K} of subsets of $[n]$ with the property that $T \subseteq S$ and $S \in \mathcal{K}$ implies $T \in \mathcal{K}$: namely,
\[
\mathcal{K} = \{ S \subseteq [n] \mid \Delta^S \subseteq K \} \quad \text{and} \quad K = \bigcup_{S \in \mathcal{K}} \Delta^S.
\]
In other words, a subcomplex of Δ^n is the “same thing” as an abstract simplicial complex whose vertex set is a subset of $[n]$.
We can sharpen the above: every subcomplex of Δ^n is a colimit of subcomplexes Δ^S.

4.19. Proposition. Let $K \subseteq \Delta^n$ be a subcomplex. Let A be the poset of all non-empty subsets $S \subseteq [n]$ such that the inclusion map $f: S \to [n]$ represents a $(|S| - 1)$-dimensional element of K. Then the tautological map

$$\text{colim}_{S \in A} \Delta^S \to K$$

is an isomorphism.

Proof. We must show that for each $m \geq 0$, the map $\text{colim}_{S \in A}(\Delta^S)_m \to K_m$ is a bijection. Each $(\Delta^S)_m = \{ f: [m] \to [n] \mid f([m]) \subseteq S \}$ is a distinct subset of $K_m \subseteq (\Delta^S)_m$; i.e., $S \neq S'$ implies $(\Delta^S)_m \neq (\Delta^{S'})_m$. In view of (4.13), it suffices to show that for each $f \in K_m$ there is a minimal S in A such that $f \in (\Delta^S)_m$. This is immediate from (4.16), which says that $f \in (\Delta^S)_m$ and $\Delta^S \subseteq K$ where $S = f([m])$, and it is obvious that this S is minimal with this property.

4.20. Proof of (4.2). Now we can prove our claim about maps out of a spine, using an explicit description of a spine as a colimit.

Proof of (4.2). Let A be the poset of all non-empty $S \subseteq [n]$ which correspond to elements of I^n; i.e., subsets of $[n]$ of the form \{j\} or \{j, j + 1\}. Explicitly the poset A has the form

$$\{0\} \to \{0, 1\} \leftarrow \{1\} \to \{1, 2\} \leftarrow \{2\} \cdots \leftarrow \{n - 1\} \to \{n - 1, n\} \leftarrow \{n\}.$$

By (4.19), $\text{colim}_{S \in A} \Delta^S \to I^n$ is an isomorphism. Thus $\text{Hom}(I^n, X) \approx \text{Hom}(\text{colim}_{S \in A} \Delta^S, X) \approx \lim_{S \in A} \text{Hom}(\Delta^S, X)$, and an elementary argument gives the result.

5. Horns and inner horns

We now are going to give another (less obvious!) characterization of nerves, in terms of “extending inner horns”, rather than “extending spines”. It will be this characterization that we “weaken” to obtain the definition of a quasicategory.

5.1. Definition of horns. We define a collection of subobjects of the standard simplices, called “horns”. For each $n \geq 1$, these are subsimplicial sets $\Lambda^n_j \subset \Delta^n$ for each $0 \leq j \leq n$. The horn Λ^n_j is the subcomplex of Δ^n defined by

$$(\Lambda^n_j)_k = \{ f: [k] \to [n] \mid ([n] - \{j\}) \nsubseteq f([k]) \}.$$

Using the fact (4.19) that subcomplexes of Δ^n are always unions of Δ^Ss, we see that Λ^n_j is the union of “faces” $\Delta^{[n] - i}$ of Δ^n other than the jth face:

$$\Lambda^n_j = \bigcup_{i \neq j} \Delta^{[n] - i} \subset \Delta^n.$$

When $0 < j < n$ we say that $\Lambda^n_j \subset \Delta^n$ is an inner horn. We also say it is a left horn if $j < n$ and a right horn if $0 < j$.

5.2. Example. The horns inside Δ^1 are just the vertices viewed as subobjects: $\Lambda^1_0 = \Delta^{[0]} = \{0\} \subset \Delta^1$ and $\Lambda^1_1 = \Delta^{[1]} = \{1\} \subset \Delta^1$. Neither is an inner horn, the first is a left horn, and the second is a right horn.

5.3. Example. These are the three horns inside the 2-simplex.

$$\begin{array}{ccc}
(01) & \langle 1 \rangle & (01) \\
\langle 0 \rangle & \to & \langle 0 \rangle & \to & \langle 0 \rangle \\
(02) & \langle 2 \rangle & (12) & \langle 2 \rangle & (12) \\
& \Lambda^2_0 & \Lambda^2_1 & \Lambda^2_2 & \\
\end{array}$$
Only Λ^2_2 is an inner horn, while Λ^2_0 and Λ^2_1 are left horns, and Λ^2_1 and Λ^2_2 are right horns. Note that Λ^2_1 is the same as the spine I^2.

5.4. Exercise. Visualize the four horns inside the 3-simplex. The simplicial set Λ^3_j actually kind of looks like a horn: you blow into the vertex $\langle j \rangle$, and sound comes out of the opposite missing face $\Delta^{[3]} \setminus j$.

5.5. Exercise. Show that Λ^n_j is the largest subcomplex of Δ^n which does not contain the element $\langle 0 \cdots \hat{j} \cdots n \rangle \in (\Delta^n)_{n-1}$, the “face opposite the vertex j”.

5.6. The inner horn extension criterion for nerves. We can now characterize nerves as those simplicial sets which admit “unique inner horn extensions”; this is different than, but analogous to, the characterization in terms of unique spine extensions (4.4).

5.7. Proposition. A simplicial set X is isomorphic to the nerve of a category, if and only if $\text{Hom}(\Delta^n, X) \to \text{Hom}(\Lambda^n_j, X)$ is a bijection for all $n \geq 2, 0 < j < n$.

The proof will take up the rest of the section.

5.8. Nerves have unique inner horn extensions. First we show that nerves have unique inner horn extensions.

5.9. Proposition. If C is a category, then for every inner horn $\Lambda^n_j \subset \Delta^n$ the evident restriction map

$$\text{Hom}(\Delta^n, NC) \to \text{Hom}(\Lambda^n_j, NC)$$

is a bijection.

Proof. Since inner horns contain spines, we can consider restriction along $I^n \subseteq \Lambda^n_j \subseteq \Delta^n$. The composite

$$\text{Hom}(\Delta^n, NC) \to \text{Hom}(\Lambda^n_j, NC) \xrightarrow{r} \text{Hom}(I^n, NC)$$

of restriction maps is a bijection (4.4), so r is a surjection. Thus, it suffices to show that r is injective. This is immediate when $n = 2$, since $\Lambda^2_1 = I^2$, so we can assume $n \geq 3$.

We will show that for any inner horn Λ^n_j with $n \geq 3$ there exists a finite chain

$$I^n = F_0 \subset F_1 \subset \cdots \subset F_d = \Lambda^n_j$$

of subcomplexes, together with a list of subsets $S_1, \ldots, S_d \subset [n]$, such that (i) $F_i = F_{i-1} \cup \Delta^{S_i}$ and (ii) $I^{S_i} \subseteq F_{i-1} \cap \Delta^{S_i}$; here I^{S_i} denotes the spine of Δ^{S_i}. Given this, we see by (4.14) that F_i is isomorphic to a pushout:

$$F_i \approx \text{colim}(F_{i-1} \leftarrow F_{i-1} \cap \Delta^{S_i} \to \Delta^{S_i}).$$

We then obtain a commutative diagram of sets

$$\begin{align*}
\text{Hom}(F_i, NC) & \xrightarrow{b} \text{Hom}(F_{i-1}, NC) \\
\downarrow & & \downarrow \\
\text{Hom}(\Delta^{S_i}, NC) & \xrightarrow{a} \text{Hom}(F_{i-1} \cap \Delta^{S_i}, NC) \to \text{Hom}(I^{S_i}, NC)
\end{align*}$$

where all maps are induced by restriction, in which the square is a pullback (because F_i is a pushout), and such that the horizontal composition on the bottom is a bijection. It immediately follows that a, and hence b, are injective. We can thus conclude that $\text{Hom}(\Lambda^n_j, NC) \to \text{Hom}(I^n, NC)$ is injective as desired, since it is a composite of injective functions such as b.
Now we prove the claim about the filtration of Λ^n_j by suitable subcomplexes F_i.
When $n = 3$, we can “attach” simplices in order explicitly:

$$\Lambda^3_1 = (\{1\} \cup \Delta^{(0,1,2)}) \cup \Delta^{(1,2,3)} \cup \Delta^{(0,1,3)}, \quad \Lambda^3_2 = (\{1\} \cup \Delta^{(0,1,2)}) \cup \Delta^{(1,2,3)} \cup \Delta^{(0,2,3)}.$$

Note that, for instance, in building Λ_3^1, we must add $\Delta^{(0,1,3)}$ after adding $\Delta^{(1,2,3)}$, so that the spine $I^{(0,1,3)}$ of $\Delta^{(0,1,3)}$ is already present.

![Diagram](attachment:image.png)

When $n \geq 4$, we have that $(\Lambda^n_j)_1 = (\Delta^n)_1$ and $(\Lambda^n_j)_2 = (\Delta^n)_2$. The procedure to “build” Λ^n_j from I^n by adding subsimplices is: (1) first attach 2-simplices one at a time, in an allowable order; then (2) attach all needed higher dimensional subsimplices. In step (2) the order doesn’t matter since all 1-simplices (and hence all spines) are present in what has already been built. We leave the details of step (1) to the reader. \qed

5.10. **Nerves are characterized by unique inner horn extension.** Let X be an arbitrary simplicial set, and suppose it has unique inner horn extensions, i.e., each $\text{Hom}(\Delta^n, X) \to \text{Hom}(\Lambda^n_j, X)$ is a bijection for all $0 < j < n$ with $n \geq 2$.

Considering the unique extensions along $\Lambda^n_1 \subset \Delta^n$, we see that this defines a “composition law” on the set X_1. That is, given $f, g \in X_1$ such that $f_1 = g_0$ in X_0,\footnote{Recall that $f_1 = f(1)$ and $g_0 = g(0)$, regarded as maps $\Delta^0 \to X$ and thus as elements of X_0, using the notation discussed in §2.3.} there is a unique map u

$$u: \Lambda^n_2 = \Delta^{(0,1)} \cup \Delta^{(1,2)} \xrightarrow{(f,g)} X, \quad \langle 01 \rangle \mapsto f \in X_1, \quad \langle 12 \rangle \mapsto g \in X_1.$$

Let $\tilde{u}: \Delta^2 \to X$ be the unique extension of u along $\Lambda^n_1 \subset \Delta^n$, and define

$$g \circ f := \tilde{u}_{02}.$$

The 2-dimensional element \tilde{u} is uniquely characterized by: $\tilde{u}_{01} = f$, $\tilde{u}_{12} = g$, $\tilde{u}_{02} = g \circ f$.

This composition law is automatically unital. Given $x \in X_0$, write $1_x := x(0) \in X_1$, so that $\langle 1_x \rangle = x = \langle 1_x \rangle_1$. Then applying the composition law gives $1_x \circ f = f$ and $g \circ 1_x = g$. (Proof: consider the 2-dimensional elements $f(011), g(001) \in X_2$, and use the fact that their representing maps $\Delta^2 \to X$ are the unique extensions of their restrictions to $\Lambda^n_1 \subset \Delta^n$.)

Now consider $\Lambda^n_3 \subset \Delta^n$. Recall (4.19) that Λ^n_3 is a union (and colimit) of $\Delta^S \subset \Delta^n$ such that $S \supseteq \{0,2,3\}$. A map $\Lambda^n_3 \to X$ can be pictured as

![Diagram](attachment:image.png)

so that the planar 2-cells in the picture correspond to non-degenerate 2-dimensional elements of Δ^n which are contained in Λ^n_3, while the edges are labelled according to their images in X, using the composition law defined above. Let $v: \Delta^3 \to X$ be any extension of the above picture along
$\Lambda^3_1 \subset \Delta^3$, and consider the restriction $w := v(023): \Delta^2 \to X$ to the face $\Delta^2 \approx \Delta^{(0,2,3)} \subset \Delta^3$. Then $w_{01} = g \circ f$, $w_{12} = h$, and $w_{02} = (h \circ g) \circ f$, and thus the existence of w demonstrates that $h(g \circ f) = (h \circ g)f$.

In other words, the existence of extensions along $\Lambda^3_1 \subset \Delta^3$ implies that the composition law we defined above is associative. (We could carry out this argument using $\Lambda^3_2 \subset \Delta^3$ instead.)

Thus, given an X with unique inner horn extensions, we can construct a category C, so that objects of C are elements of X_0, morphisms of C are elements of X_1, and composition is given as above.

Next we construct a map $X \to NC$ of simplicial sets. There are obvious maps $\alpha_n: X_n \to (NC)_n$, corresponding to restriction along spines $I^n \subseteq \Delta^n$; i.e., $\alpha(x) = (x_{01}, \ldots, x_{n-1,n})$. These maps are compatible with simplicial operators, so that they define a map $\alpha: X \to NC$ of simplicial sets. Proof: For any n-dimensional element $x \in X_n$, all of its edges are determined by edges on its spine via the composition law: $x_{ij} = x_{j-1,j} \circ x_{j-2,j-1} \circ \cdots \circ x_{i,i+1}$, for all $0 \leq i \leq j \leq n$. Thus for $f: [m] \to [n]$ we have $\alpha(xf) = ((xf)_{01}, \ldots, (xf)_{n-1,n}) = (x_{f0}, f1, \ldots, x_{fn-1,fn}) = (x_{01}, \ldots, x_{n-1,fn})f_0 \cdot f_n = (\alpha x)f$.

Now we can prove that nerves are characterized by unique extension along inner horns.

Proof of (5.7). We have already shown (5.9) that nerves have unique extensions for inner horns. Consider a simplicial set X which has unique inner horn extension. By the discussion above, we obtain a category C and a map $\alpha: X \to NC$ of simplicial sets, which is clearly a bijection in degrees ≤ 2. We will show $\alpha_n: X_n \to (NC)_n$ is bijective by induction on n.

Fix $n \geq 3$, and consider the commutative square

$$
\begin{array}{ccc}
\text{Hom}(\Delta^n, X) & \xrightarrow{\sim} & \text{Hom}(\Lambda^n_1, X) \\
\alpha_{\Delta^n} \downarrow & & \downarrow \alpha_{\Lambda^n_1} \\
\text{Hom}(\Delta^n, NC) & \xrightarrow{\sim} & \text{Hom}(\Lambda^n_1, NC)
\end{array}
$$

The horizontal maps are induced by restriction, and are bijections (top by hypothesis, bottom by (5.9)). Because Λ^n_1 is a colimit of standard simplices of dimension $< n$ (4.19), the map $\alpha_{\Lambda^n_1}$ is a bijection by the induction hypothesis. Therefore so is α_{Δ^n}. \qed

6. QUASICATEGORIES

We can now define the notion of a quasicategory, by removing the uniqueness part of the inner horn extension criterion for nerves.

6.1. Identifying categories with their nerves. From this point on, I will (at least informally) often not distinguish a category C from its nerve. In particular, I may assert something like “let C be a simplicial set which is a category”, which should be read as “C is a simplicial set which is isomorphic to the nerve of some category”. This should not lead to much confusion, due to the fact that the nerve functor is a fully faithful embedding of Cat into sSet (3.10).

6.2. Definition of quasicategory. A quasicategory is a simplicial set C such that for every map $f: \Lambda^n_j \to C$ from an inner horn, there exists an extension of it to $g: \Delta^n \to C$. That is, C is a quasicategory if the function $\text{Hom}(\Delta^n, C) \to \text{Hom}(\Lambda^n_j, C)$ induced by restriction along $\Lambda^n_j \subset \Delta^n$ is surjective for all $0 < j < n$, $n \geq 2$, so there always exists a dotted arrow in any commutative diagram of the form

Any category (more precisely, the nerve of any category) is a quasicategory. In fact, by what we have shown (5.7) a category is precisely a quasicategory for which there exist unique extensions of inner horns.

Let C be a quasicategory. We refer to elements of C_0 as the objects of C, and elements of C_1 as the morphisms of C. Every morphism $f \in C_1$ has a source and target, namely its vertices
$f_0, f_1 \in C_0$. We write $f: f_0 \to f_1$, just as we would for morphisms in a category. Likewise, for every object $x \in C_0$, there is a distinguished morphism $1_x: x \to x$, called the identity morphism, defined by $1_x(x_0) = x_0$. When C is (the nerve of) a category, all the above notions coincide with the usual ones. (Note, however, that we cannot generally define composition of morphisms in a quasicategory in the same way we do for a category.)

We now describe some basic categorical notions which admit immediate generalizations to quasicategories. Many of these generalizations apply to arbitrary simplicial sets.

6.3. Products of quasicategories. Simplicial sets are functors, so the product of simplicial sets X and Y is just the product of the functors. Thus, $(X \times Y)_n = X_n \times Y_n$.

6.4. Proposition. The product of two quasicategories (as simplicial sets) is a quasicategory.

Proof. Exercise, using the bijective correspondence between the sets of (i) maps $K \to X \times Y$ and (ii) pairs of maps $(K \to X, K \to Y)$. □

6.5. Exercise. If C and D are categories, then $N(C \times D) \approx NC \times ND$. Thus, the notion of product of quasicategories generalizes that of categories.

6.6. Coproducts of quasicategories. The coproduct of simplicial sets X and Y is just the coproduct of functors, whence $(X \amalg Y)_n = X_n \amalg Y_n$; i.e., the set n-dimensional elements of the coproduct is the disjoint union of the sets of n-dimensional elements of X and Y. More generally, $(\coprod_s X_s)_n = \coprod_s (X_s)_n$ for an indexed collection $\{X_s\}$ of simplicial sets.

6.7. Proposition. The coproduct of any indexed collection of quasicategories is a quasicategory.

To prove this, we introduce the set of connected components of a simplicial set. Given a simplicial set X, define an equivalence relation \approx on the set $\coprod_{n \geq 0} X_n$ of elements of X, generated by the relation

$$a \approx af \quad \text{for all } n \geq 0, a \in X_n, f: [m] \to [n].$$

Thus two elements are related when you can get from one to another by a sequence of simplicial operators. An equivalence class for \approx is called a connected component of X, and we write $\pi_0 X$ for the set of connected components. This construction defines a functor $\pi_0: sSet \to Set$.

6.8. Exercise (Connected components are path components). Show that there is a canonical bijection

$$(X_0/ \approx_1) \xrightarrow{\sim} \pi_0 X,$$

where the left-hand side denotes the set of equivalence classes in the vertex set X_0 with respect to the equivalence relation \approx_1 which is generated by the relation \sim_1 on X_0, defined by

$$a \sim_1 b \quad \text{iff there exists } e \in X_1 \text{ such that } a = e_0, b = e_1.$$

6.9. Exercise. Show that there is a bijection $\colim_{\Delta^{op}} X \xrightarrow{\sim} \pi_0 X$, between the set of connected components of X and the colimit of the functor $X: \Delta^{op} \to Set$.

6.10. Exercise (Connected components respect colimits). Show that if X is the colimit of a functor $F: D \to sSet$ of some small category D, then $\pi_0 X \approx \colim_{D} \pi_0 F$. In particular, $\pi_0 (\coprod_s X_s) \approx \coprod_s \pi_0(X_s)$ for any collection $\{X_s\}$ of simplicial sets.

We say that a simplicial set X is connected if $\pi_0 X$ is a singleton.

6.11. Exercise. Show that every standard simplex Δ^n is connected, and that every horn Λ^n_j is connected.

6.12. Exercise (Every simplicial set is a coproduct of its connected components). Let X be a simplicial set. Given $a \in \pi_0 X$, let C_a denote its equivalence class (regarded as a subset of the set $\coprod_{n \geq 0} X_n$ of elements).
(1) Show that C_a is closed under the action of simplicial operators, and thus describes a subcomplex of X.

(2) Show that the evident map

$$\prod_{a \in \pi_0X} C_a \to X$$

is an isomorphism of simplicial sets.

Proof of (6.7). If $X = \coprod X_s$ is a coproduct of simplicial sets, then any connected component of X must be contained in exactly one of the X_s summands, by (6.10). The proof is now straightforward, using (6.12) and the fact that horns and standard simplices are connected (6.11). □

6.13. Exercise (Important). Show that the evident map $\pi_0(X \times Y) \to \pi_0X \times \pi_0Y$ is a bijection.

6.14. Subcategories of quasicategories. We say that a subcomplex $C' \subseteq C$ of a quasicategory C is a subcategory if for all $n \geq 0$ and all $a \in C_n$, we have that $a \in C'_n$ if and only if $a_{i-1,i} \in C'_1$ for all $i = 1, \ldots, n$.

6.15. Exercise. Show that a subcategory $C' \subseteq C$ is in fact a quasicategory.

When C is an ordinary category, a subcategory of C in the above sense is the same as a subcategory in the usual sense.

6.16. Full subcategories of quasicategories. We say that a subcomplex $C' \subseteq C$ of a quasicategory C is a full subcategory if for all n and all $a \in C_n$, we have that $a \in C'_n$ if and only if $a_i \in C'_0$ for all $i = 0, \ldots, n$.

6.17. Exercise. Show that a full subcategory $C' \subseteq C$ is in fact a subcategory as defined in (6.14), and thus a full subcategory C' is itself a quasicategory.

Given a quasicategory C and a set $S \subseteq C_0$ of vertices, let

$$C'_n = \{ a \in C_n \mid a_j \in S \text{ for all } j = 0, \ldots, n \},$$

the set of n-dimensional elements whose vertices are in S. This is evidently a full subcategory of C, called the full subcategory spanned by S.

6.18. Opposite of a quasicategory. Given a category C, the opposite category C^{op} has $\text{ob}C^{\text{op}} = \text{ob}C$, and $\text{Hom}_{C^{\text{op}}}(x,y) = \text{Hom}_C(y,x)$, and the sense of composition is reversed: $g \circ_{C^{\text{op}}} f = f \circ_C g$.

This concept also admits a generalization to quasicategories, which we define using a non-trivial involution $\text{op}: \Delta \to \Delta$ of the category Δ. This is the functor which on objects sends $[n] \mapsto [n]$, and on morphisms sends $(f_0, \ldots, f_n): [n] \to [m]$ to $(m - f_n, \ldots, m - f_0)$.

6.19. Remark. You can visualize this involution as the functor which “reverses the ordering” of the totally-ordered sets $[n]$. Note that the totally ordered set “$[n]$ with the order of its elements reversed” isn’t actually an object of Δ, but rather is uniquely isomorphic to $[n]$, via the function $x \mapsto n - x$.

The opposite of a simplicial set $X: \Delta^{\text{op}} \to \text{Set}$ is the composite functor $X^{\text{op}} := X \circ \text{op}$. We have that $(\Delta^n)^{\text{op}} = \Delta^n$, while $(\Lambda_j^n)^{\text{op}} = \Lambda_{n-j}^n$, so that the opposite of an inner horn is another inner horn. As a consequence, the opposite of a quasicategory is a quasicategory. It is straightforward to verify that $(NC)^{\text{op}} = N(C^{\text{op}})$, so the notion of opposite quasicategory generalizes the notion of opposite category. The functor $\text{op}: \Delta \to \Delta$ satisfies $\text{op} \circ \text{op} = \text{id}_{\Delta}$, so $(X^{\text{op}})^{\text{op}} = X$.

7. Functors and natural transformations

7.1. Functors. A functor between quasicategories is merely a map \(f : C \rightarrow D \) between the simplicial sets.

We write \(\text{qCat} \) for the category of quasicategories and functors between them.\(^5\) Clearly \(\text{qCat} \subseteq \text{sSet} \) is a full subcategory. Because the nerve functor is a full embedding of \(\text{Cat} \) into \(\text{qCat} \), any functor between ordinary categories is also a functor between quasicategories.

7.2. Exercise (Mapping property of a full subcategory). Let \(C \) be a quasicategory, and \(C' \subseteq C \) the full subcategory spanned by some subset \(S \subseteq C_0 \). Show that a functor \(f : D \rightarrow C \) factors through a functor \(f' : D \rightarrow C' \subseteq C \) if and only if \(f(D_0) \subseteq S \).

7.3. Natural transformations. Given functors \(F, G : C \rightarrow D \) between categories, a natural transformation \(\phi : F \Rightarrow G \) is a choice, for each object \(c \) of \(C \), of a map \(\phi(c) : F(c) \rightarrow G(c) \) in \(D \), such that for every morphism \(\alpha : c \rightarrow c' \) in \(C \) the square

\[
\begin{array}{ccc}
F(c) & \xrightarrow{\phi(c)} & G(c) \\
\downarrow f(\alpha) & & \downarrow g(\alpha) \\
F(c') & \xrightarrow{\phi(c')} & G(c')
\end{array}
\]

commutes in \(D \).

There is a standard convenient reformulation of this: a natural transformation \(\phi : F \Rightarrow G \) is the same thing as a functor \(H : C \times [1] \rightarrow D \), so that \(H[C \times \{0\}] = F \), \(H[C \times \{1\}] = G \), and \(H[C] \times [1] = \alpha(c) \) for each \(c \in \text{ob} C \). (Here we make implicit use of the evident isomorphisms \(C \times \{0\} \approx C \approx C \times \{1\} \).)

This reformulation admits a straightforward generalization to quasicategories. A natural transformation \(f : f_0 \Rightarrow f_1 \) of functors \(f_0, f_1 : C \rightarrow D \) between quasicategories is defined to be a map

\[
f : C \times N[1] = C \times \Delta^1 \rightarrow D
\]

of simplicial sets such that \(f[C \times \{i\}] = f_i \) for \(i = 0, 1 \). For ordinary categories this coincides with the classical notion.

8. Examples of Quasicategories

There are many ways to produce quasicategories, as we will see. Unfortunately, “hands-on” constructions of quasicategories are relatively rare. Here I give a few reasonably explicit examples to play with.

8.1. Large vs. small. I have been implicitly assuming that certain categories are small; i.e., they have sets of objects and morphisms. For instance, for the nerve of a category \(C \) to be a simplicial set, we need \(C_0 = \text{ob} C \) to be a set.

However, in practice many categories of interest are only locally small; i.e., the collection of objects is not a set but is a “proper class”, although for any pair of objects \(\text{Hom}_C(X, Y) \) is a set. For instance, the category \(\text{Set} \) of sets is of this type: there is no set of all sets. Other examples include the categories of abelian groups, topological spaces, (small) categories, simplicial sets, etc. It is also possible to have categories which are not even locally small, e.g., the category of locally small categories. These are called large categories.

We would like to be able to talk about large categories in exactly the same way we talk about small categories. This is often done by positing a hierarchy of (Grothendieck) “universes”.

\(^5\)Lurie [Lur09] denotes this category by \(\text{Cat}_\Delta \).
universe U is (informally) a collection of sets which is closed under the operations of set theory. We additionally assume that for any universe U, there is a larger universe U' such that $U \in U'$. Thus, if by “set” we mean “U-set”, then the category Set is a “U'-category”. This idea can be implemented in the usual set theoretic foundations by postulating the existence of suitable strongly inaccessible cardinals.

The same distinctions occur for simplicial sets. For instance, the nerve of a small category is a small simplicial set (i.e., the elements form a set), while the nerve of a large category is a large simplicial set.

I’m not going to be pedantic about this. I’ll usually assume categories like Set, Cat, sSet, etc., are categories whose objects are “small” sets/categories/simplicial sets/whatever, i.e., are built from sets in a fixed universe U of “small sets”. However, I sometimes need to consider examples of categories/simplicial sets/whatever which are not small. I leave it to the reader to determine when this is the case.

In practice, a main point of concern involves constructions limits and colimits. Many typical examples of categories $C = \text{Set}$, Cat, sSet, etc., in which objects are built out of small sets are small complete and small cocomplete: any functor $F : D \to C$ from a small category D has a limit and a colimit in C. This is not true if D is not assumed to be small. In this case care about the small/large distinction is necessary.

8.2. The Morita quasicategory. This is an example of a quasicategory in which objects are associative rings, morphisms between two rings are bimodules for the pair of rings, and 2-dimensional elements are given by certain isomorphisms of bimodules.

Define a simplicial set C, so that C_n is a set whose elements are data $x := (A_i, M_{ij}, f_{ijk})$, where

- for each $i \in [n]$, A_i is an associative ring,
- for each $i < j$ in $[n]$, M_{ij} is an (A_i, A_j)-bimodule,
- for each $i < j < k$ in $[n]$, $f_{ijk} : M_{ij} \otimes_A M_{jk} \to M_{ik}$ is an isomorphism of (A_i, A_k)-bimodules, such that
- for each $i < j < k < \ell$, the diagram

\[
\begin{aligned}
M_{ij} \otimes M_{jk} \otimes M_{k\ell} &\xrightarrow{id \otimes f_{jk\ell}} M_{ij} \otimes M_{j\ell} \\
\downarrow f_{ijk} &\quad \downarrow f_{ij\ell}
\end{aligned}
\]

(8.3)

commutes.

Here is a picture of the data of an n-simplex for $n \in \{0, 1, 2, 3\}$:

\[
\begin{array}{ccc}
A_0 & \xrightarrow{M_{01}} & A_1 \\
\downarrow & & \downarrow \\
A_2 & \xrightarrow{M_{12}} & A_3
\end{array}
\]

For an simplicial operator $\delta : [m] \to [n]$, we define $x\delta := (A_{\delta(i)}, M_{\delta(i)\delta(j)}, f_{\delta(i)\delta(j)\delta(k)})$. When δ is injective this stands as it is, but if δ is not injective, we must set $M_{ij} := A_{\delta(i)}$ when $\delta(i) = \delta(j)$, and set f_{ijk} to the canonical isomorphism $A_{\delta(i)} \otimes A_{\delta(j)} M_{\delta(j)\delta(k)} \to M_{\delta(i)\delta(k)}$ if $\delta(i) = \delta(j)$ or $M_{\delta(i)\delta(j)} A_{\delta(k)} \to M_{\delta(i)\delta(k)}$ if $\delta(j) = \delta(k)$.

I claim that C is a quasicategory. Fillers for $\Lambda^2_2 \subset \Delta^2$ always exist: a map $\Lambda^2_2 \to C$ is a choice of $(A_0, M_{01}, A_1, M_{12}, A_2)$, and an extension to Δ^2 can be given by setting M_{02} to be the tensor...
product, and f_{012} the identity map. Note that there can be more than one choice: even keeping M_{02} the same, there is a choice of isomorphism f_{012}.

Fillers for $\Lambda^1_3 \subset \Delta^3$ and $\Lambda^3_3 \subset \Delta^3$ always exist, and are unique: finding a filler amounts to choosing isomorphisms $f_{023} = f_{ik\ell}$ (for Λ_3^1) or $f_{013} = f_{ij\ell}$ (for Λ_3^3) making (8.3) commute, and such choices are unique. Similarly, all fillers in higher dimensions $\Lambda^3_3 \subset \Delta^n$ with $n \geq 4$ exist and are unique.

8.4. Quasicategory of categories. Define a simplicial set C so that C_n is a set whose elements are data $x := (C_i, F_{ij}, \phi_{ijk})$ where

- for each $i \in [n]$, C_i is a (small) category,
- for each $i < j$ in $[n]$, $F_{ij}: C_i \to C_j$ is a functor,
- for each $i < j < k$ in $[n]$, $\phi_{ijk}: F_{jk}F_{ij} \Rightarrow F_{ik}$ is a natural isomorphism of functors $C_i \to C_k$, such that
- for each $i < j < k < \ell$, the diagram

$$\begin{array}{ccc}
F_{k\ell}F_{jk}F_{ij} & \xrightarrow{\phi_{jk\ell}\id_{F_{ij}}} & F_{k\ell}F_{ij} \\
\id_{F_{k\ell}}\phi_{ijk} & \cong & \phi_{ijk}
\end{array}$$

commutes.

The action of simplicial operators is defined exactly as in the previous example, as is the proof that C is a quasicategory.

8.5. Nerve of a crossed module. A crossed module is data (G, H, ϕ, ρ), consisting of groups G and H, and homomorphisms $\phi: H \to G$ and $\rho: G \to \text{Aut}H$, such that

$$\phi(\rho(g)(h)) = g\phi(h)g^{-1}, \quad \rho(\phi(h))(h') = hh'h^{-1}, \quad \text{for all } g, h, h' \in H.$$

(For instance: $G = H = \text{the cyclic group of order } 4$, with $\phi(x) = x^2$ and ρ the non-trivial action.) From this we can construct a quasicategory (in fact, a “quasigroupoid”) much as in the last example: an n-simplex is data (g_{ij}, h_{ijk}) with $g_{ij} \in G$, $h_{ijk} \in H$, satisfying identities

$$g_{ij}g_{jk} = \phi(h_{ijk})g_{ik}, \quad h_{ijk}h_{k\ell} = \rho(g_{ij})(h_{j\ell})h_{ijk}.$$

8.6. Spans. (See [Bar14, §§2–3], where this is called the effective Burnside ∞-category.) For each object $[n]$ of Δ, define $[n]^{tw}$ to be the category with

- objects pairs (i, j) with $0 \leq i \leq j \leq n$, and
- a unique morphism $(i, j) \to (i', j')$ whenever $i' \leq i \leq j'$. The construction $[n] \mapsto [n]^{tw}$ defines a functor $\Delta \to \text{Cat}$. (The category $[n]^{tw}$ is called the twisted arrow category of $[n]$; in fact you can define a twisted arrow category C^{tw} for any category C.)

Let C be a category which has pullbacks; for an explicit example, think of the category of finite sets. Let $\mathcal{R}(C)$ be the simplicial set defined so that

$$\mathcal{R}(C)_n := \{\text{functors } ([n]^{tw})^{\text{op}} \to C\}.$$

Elements of $\mathcal{R}(C)_0$ are just objects of C. Elements of $\mathcal{R}(C)_1$, $\mathcal{R}(C)_2$, $\mathcal{R}(C)_3$ are respectively diagrams in C of shape

```
X_{00} ← X_{01} ← X_{02} ← X_{03} ← X_{04}
X_{10} ← X_{11} ← X_{12} ← X_{13} ← X_{14}
```

```
X_{20} ← X_{21} ← X_{22} ← X_{23} ← X_{24}
X_{30} ← X_{31} ← X_{32} ← X_{33} ← X_{34}
```
Let $\mathcal{A}(C)_n \subseteq \mathcal{R}(C)_n$ denote the subset whose n-dimensional elements are functors $X: ([n]^{\text{tw}})^{\text{op}} \to C$ such that for every $i' \leq i \leq j' \leq j$ the square

$$
\begin{array}{ccc}
X_{i'j'} & \longrightarrow & X_{ij'} \\
\downarrow & & \downarrow \\
X_{i'j} & \longrightarrow & X_{ij}
\end{array}
$$

is a pullback in C. Then $\mathcal{A}(C)$ is a subcomplex, and in fact is a quasicategory. This is another example in which extensions along inner horns $\Lambda^n_j \subset \Delta^n$ exist for $n \geq 2$, and are unique for $n \geq 3$.

8.7. **Singular complex of a space.** The **topological** n-simplex is

$$
\Delta_{\text{top}}^n := \left\{ (x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \mid \sum x_i = 1, x_i \geq 0 \right\},
$$

the convex hull of the standard basis vectors. These fit together to give a functor $\Delta_{\text{top}}: \Delta \to \text{Top}$, with $\Delta_{\text{top}}([n]) = \Delta_{\text{top}}^n$. A simplicial operator $f: [m] \to [n]$ sends $(x_0, \ldots, x_m) \in \Delta_{\text{top}}^m$ to $(y_0, \ldots, y_n) \in \Delta_{\text{top}}^n$ with $y_j = \sum_{i(i)=j} x_i$.

For a topological space T, we define $\text{Sing} T$ to be the simplicial set $[n] \mapsto \text{Hom}_{\text{Top}}(\Delta_{\text{top}}^n, T)$.

Define **topological horns**

$$
(\Lambda^n_j)_{\text{top}} := \{ x \in \Delta_{\text{top}}^n \mid \exists i \in [n] \setminus \{j\} \text{ such that } x_i = 0 \} \subseteq \Delta_{\text{top}}^n,
$$

and observe that continuous maps $(\Lambda^n_j)_{\text{top}} \to T$ correspond in a natural way with maps $\Lambda^n_j \to \text{Sing} T$.

Exercise. This is a consequence of the fact that Λ^n_j is a colimit of all the $\Delta^n_S \subseteq \Delta^n$, and that $(\Lambda^n_j)_{\text{top}}$ is similarly a colimit of all the $\Delta_{\text{top}}^S \subseteq (\Lambda^n_j)_{\text{top}}$. There exists a continuous retraction $\Delta_{\text{top}}^n \to (\Lambda^n_j)_{\text{top}}$.

Exercise: describe such a retraction, and thus we see that

$$
\text{Hom}(\Delta^n, \text{Sing} T) \to \text{Hom}(\Lambda^n_j, \text{Sing} T)
$$

is surjective for every horn (not just inner ones).

8.8. **Remark** (Kan complexes). A simplicial set X which has extensions for all horns is called a **Kan complex**. Thus, $\text{Sing} T$ is a Kan complex, and so in particular is a quasicategory (and as we will see below, a “quasigroupoid” (10.11)).

8.9. **Eilenberg-MacLane object.** Fix an abelian group A and an integer $d \geq 0$. We define a simplicial set $K = K(A, d)$, so that K_n is a set whose elements are data $a = (a_{i_0 \ldots i_d})$ consisting of

- for each $0 \leq i_0 \leq \cdots \leq i_d \leq n$, an element $a_{i_0 \ldots i_d} \in A$, such that
- $a_{i_0 \ldots i_d} = 0$ if $u-1 = i_u$ for any u, and
- for each $0 \leq j_0 \leq \cdots \leq j_{d+1} \leq n$ we have $\sum_u (-1)^u a_{j_0 \ldots \hat{i}_u \ldots j_{d+1}} = 0$.

(Here “$\hat{j}_0 \ldots \hat{j}_u \ldots j_{d+1}$” is shorthand for the subsequence $j_0, j_1, \ldots, \hat{j}_u, j_{u+1}, \ldots, j_d, j_{d+1}$ with j_u omitted.

For a map $\delta: [m] \to [n]$ we define

$$
(a\delta)_{i_0 \ldots i_d} = a_{(\delta(i_0)) \ldots (\delta(i_d))}.
$$

The object $K(A, d)$ is a Kan complex, and hence a quasicategory (and in fact a quasigroupoid). When $d = 0$, this is just a discrete simplicial set, equal to A in each dimension.

8.10. **Exercise.** Show that $K(A, 1)$ is isomorphic to the nerve of a category, namely the nerve of the group A regarded as a category with one object.

8.11. **Exercise.** Show that $K(A, d)$ is a Kan complex, i.e., that $\text{Hom}(\Delta^n, K(A, d)) \to \text{Hom}(\Lambda^n_j, K(A, d))$ is surjective for all horns $\Lambda^n_j \subset \Delta^n$. In fact, this map is bijective unless $n = d$.

(Hint: there are four distinct cases to check, namely $n < d$, $n = d$, $n = d + 1$, and $n > d + 1$.)
8.12. Exercise. Given a simplicial set \(X \), a **normalized d-cocycle** with values in an abelian group \(A \) is a function \(f : X_d \to A \) such that

1. \(f(x_{0,\ldots,i,d,\ldots,d-1}) = 0 \) for all \(x \in X_{d-1} \) and \(0 \leq i \leq d - 1 \), and
2. \(\sum (-1)^i f(x_{0,\ldots,i,d,\ldots,d+1}) = 0 \) for all \(x \in X_{d+1} \) and \(0 \leq i \leq d + 1 \).

Show that the set \(Z^d_{\text{norm}}(X; A) \) of normalized d-cocycles on \(X \) is in bijective correspondence with \(\text{Hom}_{\text{Set}}(X, K(A, d)) \). (Hint: an element \(a \in K_n \) is uniquely determined by the collection of elements \(a \delta \in K_d = A \), as \(\delta \) ranges over injective maps \([d] \to [n] \).)

8.13. Remark. Eilenberg-MacLane objects are an example of a simplicial abelian group: the map \(+ : K \times K \to K \) defined in each dimension by \((a + b)_{i_0,\ldots,i_d} = a_{i_0,\ldots,i_d} + b_{i_0,\ldots,i_d} \) is a map of simplicial sets which satisfies the axioms of an abelian group, reflecting the fact that \(Z^d_{\text{norm}}(X; A) \) is an abelian group.

9. Homotopy category of a quasicategory

Our next goal is to define the notion of an isomorphism in a quasicategory. This notion behaves much like that of homotopy equivalence in topology. We will define isomorphism by means of the homotopy category of a quasicategory. If we think of a quasicategory as an ordinary category with higher structure, then its homotopy category is the ordinary category obtained by “flattening out the higher structure”.

9.1. The fundamental category of a simplicial set. The homotopy category of a quasicategory is itself a special case of the notion of the fundamental category of a simplicial set, which we turn to first.

A **fundamental category** for a simplicial set \(X \) consists of (i) a category \(hX \), and (ii) a map \(\alpha : X \to N(hX) \) of simplicial sets, such that for every category \(C \), the map

\[
\alpha^* : \text{Hom}(N(hX), NC) \to \text{Hom}(X, NC)
\]

induced by restriction along \(\alpha \) is a bijection. This is a universal property which characterizes the fundamental category up to unique isomorphism, if it exists.

9.2. Proposition. Every simplicial set has a fundamental category.

Proof sketch. Given \(X \), we construct \(hX \) by generators and relations. First, consider the free category \(F \), whose objects are the set \(X_0 \), and whose morphisms are finite “composable” sequences \([a_n, \ldots, a_1]\) of edges of \(X_1 \). Thus, morphisms in \(F \) are “words”, whose “letters” are edges \(a_i \) with \((a_{i+1})_0 = (a_i)_1\), and composition is concatenation of words; the element \([a_n, \ldots, a_1]\) is then a morphism \((a_1)_0 \to (a_n)_1\). (Note: we also suppose that there is an empty sequence \(\emptyset \) in \(F \) for each vertex \(x \in X_0 \); these correspond to identity maps in \(F \).

Then \(hX \) is defined to be the largest quotient category of \(F \) subject to the following relations on morphisms:

- \([a] \sim [x] \) for each \(x \in X_0 \) where \(a = x_{00} \in X_1 \), and
- \([g, f] \sim [h] \) whenever there exists \(a \in X_2 \) such that \(a_{01} = f, a_{12} = g \), and \(a_{02} = h \).

The map \(\alpha : X \to N(hX) \) sends \(x \in X_n \) to the equivalence class of \([x_{n-1, n}, \ldots, x_{0, 1}]\). Given this, verifying the desired universal property of \(\alpha \) is formal.

(We will give another construction of the fundamental category in (13.19).)

9.3. Exercise. Complete the proof of (9.2) by showing that \(\alpha^* : \text{Hom}(N(hX), NC) \to \text{Hom}(X, NC) \) is a bijection for any category \(C \).

As a consequence: the fundamental category construction describes a functor \(h : sSet \to \text{Cat} \), which is left adjoint to the nerve functor \(N : \text{Cat} \to sSet \).
Warning: Sometimes people will not distinguish “fundamental category” from “homotopy category”. These show that write \(Pictorally: \)

Given \(f, g, h: x \to y \) in a quasicategory \(C \), we will prove

1. \(f \sim_\ell f \),
2. \(f \sim_\ell g \) and \(g \sim_\ell h \) imply \(f \sim_\ell h \),
3. \(f \sim_\ell g \) implies \(f \sim_r g \),
4. \(f \sim_r g \) implies \(g \sim_\ell f \).

These show that \(\sim_\ell \) is an equivalence relation, and also that \(\sim_r \) and \(\sim_\ell \) coincide. The idea is to use the inner-horn extension condition for \(C \) to produce the appropriate relations.

1. \(f \sim_\ell f \) is exhibited by \(f_{001} \in C_2 \).

2), (3), and (4) are demonstrated by the following diagrams, which present a map from an inner horn of \(\Delta^3 \) (respectively \(\Lambda^3_1, \Lambda^3_3 \), and \(\Lambda^3_2 \)) to \(C \) constructed from the given data. The restriction of any extension to \(\Delta^3 \) along the remaining face gives the conclusion.
9.7. Composition of homotopy classes of morphisms. We now define $f \approx g$ to mean $f \sim \ell g$ (equivalently $f \sim_r g$). We speak of homotopy classes $[f]$ of morphisms $f \in \text{hom}_C(x, y)$, meaning equivalence classes under \approx. Next we observe that we can compose homotopy classes.

Given $f \in \text{hom}_C(x, y)$, $g \in \text{hom}_C(y, z)$, $h \in \text{hom}_C(x, z)$, we say that h is a composite of (g, f) if there exists a 2-dimensional element $a \in C_2$ with $a(01) = f$, $a(02) = g$, $a(02) = h$; thus composition is a three-fold relation on $\text{hom}(x, y) \times \text{hom}(y, z) \times \text{hom}(x, z)$. The composite relation is compatible with the homotopy relation, as shown by the following.

9.8. Lemma. If $f \approx f'$, $g \approx g'$, h a composite of (g, f), and h' a composite of (g', f'), then $h \approx h'$.

Proof. Since \approx is an equivalence relation, it suffices prove the special cases (a) $f = f'$, and (b) $g = g'$. We prove case (b).

Let $a \in C_2$ exhibit $f \sim \ell f'$, and let $b, b' \in C_2$ exhibit h as a composite of (g, f) and h' as a composite of (g, f') respectively. The inner horn $\Delta_2^2 \to C$ defined by

```
0 1 2 3
```

extends to $u : \Delta^3 \to C$, and $u|\Delta^{0,1,3}$ exhibits $h \sim \ell h'$.

Thus, composites of (g, f) live in a unique homotopy class of morphisms in C, which only depends on the homotopy classes of g and f. I will write $[g] \circ [f]$ for this class.

I’ll leave the following as exercises; the proofs are much like what we have already seen.

9.9. Lemma. Given $f : x \to y$, we have $[f] \circ [1_x] = [f] = [1_y] \circ [f]$.

9.10. Lemma. If $[g] \circ [f] = [u]$, $[h] \circ [g] = [v]$, then $[h] \circ [u] = [v] \circ [f]$.

9.11. The homotopy category of a quasicategory. For any quasicategory, we define its homotopy category hC, so that $\text{ob}(hC) := C_0$, while $\text{hom}_{hC}(x, y) := \text{hom}_C(x, y)/\approx$, with composition defined by $[g] \circ [f]$. The above lemmas (9.9) and (9.10) exactly imply that hC is a category.

We define a map $\pi : C \to N(hC)$ of simplicial sets as follows. On vertices, π is the identity map $C_0 = N(hC)_0 = \text{ob} hC$. On edges, the map is defined by the tautological quotient maps $\text{hom}_C(x, y) \to \text{hom}_C(x, y)/\approx$ sending $f \mapsto [f]$. The map π sends an n-dimensional element $a \in C_n$ to the unique element $\pi(a) \in N(hC)_n$ such that $\pi(a)_{i-1,i} = \pi(a_{i-1,i})$. These functions are seen to be compatible with simplicial operators using the following exercise.

9.12. Exercise. Let C be a quasicategory and $a \in C_n$ an n-dimensional element, and define $f_i := a_{i-1,i} \in C_1$ for $i = 1, \ldots, n$ and $g := a_{0,n} \in C_1$. Show that $[f_n] \circ \cdots \circ [f_1] = [g]$ in the homotopy category hC.

Note that if C is an ordinary category, then $f \approx g$ if and only if $f = g$. Thus, $\pi : C \to N(hC)$ is an isomorphism of simplicial sets if and only if C is isomorphic to the nerve of a category.

The following says that the homotopy category of a quasicategory is its fundamental category, justifying the notation “hC”.

9.13. Proposition. Let C be a quasicategory and D a small category, and let $\phi : C \to N(D)$ be a map of simplicial sets. Then there exists a unique map $\psi : N(hC) \to N(D)$ such that $\psi \pi = \phi$.

Proof. We first show existence, by constructing a suitable map ψ, which being a map between nerves can be described as a functor $hC \to D$. On objects, let ψ send $x \in \text{ob}(hC) = C_0$ to $\phi(x) \in \text{ob}(D) = (ND)_0$. On morphisms, let ψ send $[f] \in \text{hom}_{hC}(x, y)$ to $\phi(f) \in \text{hom}_D(\phi(x), \phi(y)) \subseteq (ND)_1$.

Observe that the function on morphisms is well-defined since if \(f \sim_f f' \), exhibited by some \(a \in C_2 \), then \(\phi(a) \in (ND)_2 \) exhibits the identity \(\phi(f) = \phi(f') \phi(1_x) = \phi(f') \) in \(D \). It is straightforward to show that \(\psi \) so defined is actually a functor, and that \(\psi \pi = \phi \) as maps \(C \to N(D) \).

The functor \(\psi \) defined above is the unique solution: the value of \(\psi \) on objects and morphisms is uniquely determined, and \(\pi: C_k \to (hC)_k \) is bijective for \(k = 0 \) and surjective for \(k = 1 \). \(\square \)

In particular, the homotopy category construction gives a pair of adjoint functors

\[
h: q\text{Cat} \rightleftarrows \text{Cat}: N.
\]

9.15. Exercise (Easy but important). Show that for quasicategories \(C \) and \(D \) there is an isomorphism \(hC \times hD \approx h(C \times D) \).

9.16. A criterion for composition. We have observed that for morphisms \(f: x \to y \) and \(g: y \to z \) in a quasicategory that we can define a composite “\(g \circ f \)” using extension along \(\Lambda^2_2 \subset \Delta^2 \), and that though such compositions are not unique, they are unique up to homotopy, so we get a well-defined homotopy class \([g] \circ [f]\). The following proposition says that every element in this homotopy class is obtained from this construction.

9.17. Proposition. If \(f: x \to y \), \(g: y \to z \), and \(h: x \to z \) are morphisms in a quasicategory \(C \), then \([h] = [g] \circ [f]\) if and only if there exists \(u: \Delta^2 \to C \) such that

\[
u|\Delta^{0,1} = f, \quad u|\Delta^{1,2} = g, \quad u|\Delta^{0,2} = h.
\]

Thus, every morphism in the homotopy class of \(h \) can be interpreted as a composite of \(g \) with \(f \).

Proof. Clearly if \(u \) exists then \([h] = [g] \circ [f]\). Conversely, suppose given \(f, g, h \) with \(h \in [g] \circ [f] \), and choose \(a: \Delta^2 \to C \) with \(a_{01} = f \) and \(a_{12} = g \), whence \([g] \circ [f] = [h']\) for \(h' = a_{02} \). Since \(h \in [h'] \) there is a \(b \in C_2 \) witnessing the relation \(h' \sim_r h \), and using this we can construct a map \(\Lambda^2_2 \to C \) according to the diagram

\[
\begin{array}{ccc}
0 & \xrightarrow{a} & 1 \\
\downarrow{h'} & & \downarrow{h} \\
2 & \xrightarrow{g_{011}} & 3
\end{array}
\]

Extend to a map \(v: \Delta^3 \to C \); then \(u = v|\Delta^{0,1,3} \) exhibits \(h \) as a composite of \((g, f)\) as desired. \(\square \)

9.18. Exercise. Let \(C' \subseteq C \) be a subcategory of a quasicategory \(C \) (6.14). Show that if \(f, g: x \to y \) are morphisms of \(C \) such that \(f \approx g \), then \(f \in C_1 \) if and only if \(g \in C_1 \). Use this to show that there is a bijective correspondence

\[
(\text{subcategories of } C) \leftrightarrow (\text{subcategories } hC).
\]

10. ISOMORPHISMS IN A QUASICATEGORY

Let \(C \) be a quasicategory. We say that an edge \(f \in C_1 \) is an isomorphism\(^6\) if its image in the homotopy category \(hC \) is an isomorphism in the usual sense of category theory.

Explicitly, \(f: x \to y \) is an isomorphism if and only if there exists an edge \(g: y \to x \) such that \([g] \circ [f] = [1_x]\) and \([f] \circ [g] = [1_y]\), where equality is in the homotopy category \(hC \).

\(^6\)Lurie [Lur09, §1.2.4] uses the term “equivalence” for this. I prefer to go with “isomorphism” here, because it is in fact a generalization of the classical notion of isomorphism, and because so many other things also get to be called some kind of equivalence. Other authors also use “isomorphism” in this context.
10.1. Example. Consider \(f \in C_1 \). If we can produce \(g \in C_1 \) and \(a, b \in C_2 \) such that
\[
a_{01} = f = b_{12}, \quad a_{12} = g = b_{01}, \quad a_{02} = x_{00}, \quad b_{02} = y_{00};
\]
then \([g] \circ [f] = [1_x]\) and \([f] \circ [g] = [1_y]\), so \(f \) isomorphism. The converse also holds: if \(f \) is an isomorphism, then there exist \(g \in C_1 \) and \(a, b \in C_2 \) as above, which can be proved using (9.17).

10.2. Example (Identity maps are isomorphims). For every \(x \in C_0 \) the identity map \(1_x : x \to x \) is an isomorphism: for instance, use \(a = b = x_{000} \) in the above diagram.

10.3. Preinverses and postinverses. Let \(C \) be a quasicategory. Given \(f : x \to y \in C_1 \), a
postinverse\(^7\) of \(f \) is a \(g : y \to x \in C_1 \) such that \([g] \circ [f] = [1_x]\), and a preinverse\(^8\) of \(f \) is an \(e : y \to x \in C_1 \) such that \([f] \circ [e] = [1_y]\). An inverse is an \(f' \in C_1 \) which is both a postinverse and a preinverse. The following is trivial, but very handy.

10.4. Proposition. In a quasicategory \(C \) consider \(f \in C_1 \). The following are equivalent.
\begin{itemize}
 \item \(f \) is an isomorphism.
 \item \(f \) admits an inverse \(f' \).
 \item \(f \) admits a postinverse \(g \) and a preinverse \(e \).
 \item \(f \) admits a postinverse \(g \) and \(g \) admits a postinverse \(h \).
 \item \(f \) admits a preinverse \(e \) and \(e \) admits a preinverse \(d \).
\end{itemize}
If these equivalent conditions hold, then \(f \approx d \approx h \) and \(f' \approx e \approx g \), and all of them are isomorphisms.

Proof. All of these are equivalent to the corresponding statements about morphisms in the homotopy category \(hC \), where they are seen to be equivalent by elementary arguments. \(\square \)

Note that inverses to a morphism in a quasicategory are generally not unique, though necessarily they are unique up to homotopy.

10.5. Quasigrouopoids. A quasigrouopoid is a quasicategory \(C \) such that \(hC \) is a groupoid, i.e., a quasicategory in which every morphism is an isomorphism.

10.6. Exercise. If every morphism in a quasicategory admits a preinverse, then it is a quasigrouopoid. Likewise if every morphism admits a postinverse.

10.7. The core of a quasicategory. For an ordinary category \(A \), the core (or maximal subgrouopoid) of \(A \) is the subcategory \(A^{\text{core}} \subseteq A \) consisting of all the objects, and all the isomorphisms between the objects.

For a quasicategory \(C \), we define the core\(^9\) \(C^{\text{core}} \subseteq C \) to be the subcomplex consisting of elements all of whose edges are all isomorphisms. That is, \(C^{\text{core}} \) is defined so that the diagram
\[
\begin{array}{ccc}
 C^{\text{core}} & \longrightarrow & C \\
 \downarrow & & \downarrow \pi \\
 (hC)^{\text{core}} & \longrightarrow & hC
\end{array}
\]
is a pullback of simplicial sets. Observe that \(N(A^{\text{core}}) = (NA)^{\text{core}} \) for a category \(A \).

\(^7\)or left inverse, or retraction,
\(^8\)or right inverse, or section,
\(^9\)Lurie uses the notation \(C^? \) for what we are calling \(C^{\text{core}} \).
10.8. Proposition. Given a quasicategory C, its core C^{core} is a subcategory and a quasigroupoid, and every subcomplex of C which is a quasigroupoid is contained in C^{core}.

Proof. First, note that C^{core} is a subcomplex by construction: if $a \in C_n$ is such that all edges are isomorphisms, then the same is true for $af \in C_m$ for any $f: [m] \to [n]$, since $(af)_{i,j} = a_{f(i),f(j)}$ for any $0 \leq i \leq j \leq m$.

Next, we show that C^{core} is a subcategory. In fact, give $a \in C_n$ such that each edge $a_{i-1,i}$ is an isomorphism in C, it is clear that every edge a_{ij} is an isomorphism (since $[a_{ij}] = [a_{j-1,j}] \cdots [a_{i,i+1}]$ in hC). Therefore C^{core} is a quasicategory, and is easily seen to be a quasigroupoid, since an inverse of an isomorphism in C is also an isomorphism.

The final statement is clear: if $G \subseteq C$ is a subcomplex which is a quasigroupoid, then every edge in G has in inverse in G, and hence an inverse in C. \hfill \square

10.9. Kan complexes. Recall that a Kan complex (8.8) is a simplicial set which has the extension property with respect to all horns, not just inner horns. That is, K is a Kan complex iff

$$\text{Hom}(\Delta^n, K) \to \text{Hom}(\Lambda^n_j, K)$$

is surjective for all $0 \leq j \leq n$, $n \geq 1$.

10.10. Exercise. Show that every simplicial set X has extensions for 1-dimensional horns; i.e., every $\Lambda^2_1 \to X$ extends over $\Lambda^2_0 \subseteq \Delta^1$, where $j \in \{0,1\}$. Thus, X is a Kan complex if and only if it has extensions just for the horns inside simplices of dimension ≥ 2.

10.11. Proposition. Every Kan complex is a quasigroupoid.

Proof. It is immediate that a Kan complex K is a quasicategory. To show K is a quasigroupoid, note that the extension condition for $\Lambda^2_1 \subseteq \Delta^2$ implies that every morphism in hK admits a postinverse. Explicitly, if $f: x \to y$ is an edge in K, let $u: \Lambda^2_0 \to K$ with $u_{01} = f$ and $u_{02} = f_{00} = 1_x$, so there is an extension $v: \Delta^2 \to K$ and $g := v_{12}$ satisfies $gf \approx 1_x$. Use (10.6). \hfill \square

This proposition has a converse.

A. Deferred Proposition. Quasigroupoids are precisely the Kan complexes.

This is a very important technical result, and it is not trivial; it is the main result of [Joy02]. We will give the proof in (30.2).

Recall (§8.7) that we observed that the singular complex $\text{Sing} T$ of a topological space is a Kan complex, and therefore a quasigroupoid. It is reasonable to think of $\text{Sing} T$ as the fundamental quasigroupoid of the space T.

10.12. Exercise (for topologists). Show that if T is a space, then $h \text{Sing} T$, the homotopy category of the singular complex of T, is precisely the usual fundamental groupoid of T.

10.13. Quasigroupoids, components, and isomorphism classes. We say that two objects in a quasicategory are isomorphic if there exists an isomorphism between one. This is clearly an equivalence relation on C_0, and thus we speak of isomorphism classes of objects.

Recall (6.8) that the set of connected components of a simplicial set is given by

$$\pi_0 X \approx \left(\prod_{n \geq 0} X_n \right)/\sim \approx (X_0/\sim_1),$$

the equivalence classes of elements of X under the equivalence relation generated by “related by a simplicial operator”, or equivalently the equivalence classes of vertices of X under the equivalence relation generated by “connected by an edge”. Note that if T is a topological space, then elements of $\pi_0 \text{Sing} T$ correspond exactly to path components of T.

For quasigroupoids, π_0 recovers the set of isomorphism classes of objects.
10.14. **Proposition.** If C is a quasicategory, then

\[\pi_0(C^{\text{core}}) \approx \text{isomorphism classes of objects of } C. \]

Proof. Straightforward: edges in C^{core} are precisely the isomorphisms in C. \qed

10.15. **Exercise.** Show that for a quasicategory C, $\pi_0(C^{\text{core}}) \approx \pi_0(h(C^{\text{core}})) \approx \pi_0((hC)^{\text{core}})$.

11. **Function complexes and the functor quasicategory**

Given ordinary categories C and D, the *functor category* $\text{Fun}(C, D)$ has

- as objects, the functors $C \to D$, and
- as morphisms $f \to f'$, natural transformations of functors.

Furthermore, for any category A there is a bijective correspondence between sets of functors

\[\{ A \times C \to D \} \leftrightarrow \{ A \to \text{Fun}(C, D) \}. \]

Explicitly, a functor $\phi: A \to \text{Fun}(C, D)$ corresponds to $\widetilde{\phi}: A \times C \to D$, given on objects by $\widetilde{\phi}(a, c) = \phi(a)(c)$ for $a \in \text{ob} A$ and $c \in \text{ob} C$, and on morphisms by $\widetilde{\phi}(\alpha, \gamma) = \phi(a')(\gamma) \circ \phi(a)(c) = \phi(a)(c') \circ \phi(a)(\gamma): \phi(a)(c) \to \phi(a')(c')$ for $\alpha: a \to a' \in \text{mor} A$ and $\gamma: c \to c' \in \text{mor} C$.

The generalization of the functor category to quasicategories admits a similar adjunction, and in fact can be defined for arbitrary simplicial sets.

11.1. **Function complexes.** Given simplicial sets X and Y, we may form the *function complex* (or *mapping space*) $\text{Map}(X, Y)$. This is a simplicial set with

\[\text{Map}(X, Y)_n = \text{Hom}(\Delta^n \times X, Y), \]

so that the action of a simplicial operator $\delta: [m] \to [n]$ on $\text{Map}(X, Y)$ is induced by $\text{Hom}(\delta \times \text{id}_X, Y): \text{Hom}(\Delta^n \times X, Y) \to \text{Hom}(\Delta^m \times X, Y)$. In particular, the set $\text{Map}(X, Y)_0$ of vertices of the function complex is precisely the set of maps $X \to Y$ of simplicial sets.

11.2. **Proposition.** The function complex construction defines a functor

\[\text{Map}: \text{sSet}^{\text{op}} \times \text{sSet} \to \text{sSet}. \]

Proof. Left as an exercise. \qed

By construction, for each n, there is a bijective correspondence

\[\{ \Delta^n \times X \to Y \} \leftrightarrow \{ \Delta^n \to \text{Map}(X, Y) \}. \]

In fact, we can replace Δ^n with an arbitrary simplicial set.

11.3. **Proposition.** For simplicial sets X, Y, Z, there is a bijection

\[\text{Hom}(X \times Y, Z) \xrightarrow{\sim} \text{Hom}(X, \text{Map}(Y, Z)) \]

natural in all three variables.

Proof. The bijection sends $f: X \times Y \to Z$ to $\tilde{f}: X \to \text{Map}(Y, Z)$ defined so that for $x \in X_n$, the element $\tilde{f}(x) \in \text{Map}(Y, Z)_n$ is represented by the composite

\[\Delta^n \times Y \xrightarrow{x \times \text{id}} X \times Y \xrightarrow{f} Z. \]

The inverse of this bijection sends $g: X \to \text{Map}(Y, Z)$ to $\tilde{g}: X \times Y \to Z$, defined so that for $(x, y) \in X_n \times Y_n$, the element $\tilde{g}(x, y) \in Z_n$ is represented by

\[\Delta^n \xrightarrow{\text{id}_x \times y} \Delta^n \times Y \xrightarrow{g(x)} Z. \]

The proof amounts to showing that both \tilde{f} and \tilde{g} are in fact maps of simplicial sets, and that the above constructions are in fact inverse to each other. This is left as an exercise, as is the proof of naturality. \qed
11.4. **Exercise.** Show, using the previous proposition, that there are natural isomorphisms
\[\text{Map}(X \times Y, Z) \approx \text{Map}(X, \text{Map}(Y, Z)). \]
of simplicial sets. This implies that the function complex construction makes sSet into a *cartesian closed category*. (Hint: show that both objects represent *isomorphic* functors sSet\(^{\mathrm{op}} \to \text{Set} \), and apply the Yoneda lemma.)

11.5. **Remark.** The construction of the function complex is not special to simplicial sets. The construction of \(\text{Map}(X,Y) \) (and its properties as described above) works the same way in any category of functors \(C^{\mathrm{op}} \to \text{Set} \), where \(C \) is a small category (e.g., \(C = \Delta \)). In this general setting, the role of the standard \(n \)-simplices is played by the representable functors \(\text{Hom}_C(-, c) : C^{\mathrm{op}} \to \text{Set} \).

11.6. **Functor quasicategories.** Thus, we may expect the generalization of functor category to quasicategories to be defined by the function complex. In fact, if \(C \) and \(D \) are quasicategories, then the vertices of \(\text{Map}(C, D) \) are precisely the functors \(C \to D \), and the edges of \(\text{Map}(C, D) \) are precisely the natural transformations. Furthermore, for ordinary categories, the function complex recovers the functor category.

11.7. **Exercise.** Show that for ordinary categories \(C \) and \(D \) that \(N \text{Fun}(C, D) \approx \text{Map}(NC, ND) \). (Hint: use that \(N([n]) = \Delta^n \), and the fact that the nerve preserves finite products (6.5).)

It turns out that a function complex between quasicategories is again a quasicategory. In fact, we have the following.

B. Deferred Proposition. Let \(K \) be any simplicial set and \(C \) a quasicategory. Then \(\text{Map}(K, C) \) is a quasicategory.

For this reason, we will sometimes write \(\text{Fun}(K, C) \) for \(\text{Map}(K, C) \) when \(C \) is a quasicategory.

To prove (B), we need a to take a detour to develop some technology about “weakly saturated” classes of maps and “lifting properties”. After this, we will complete the proof in §16.

Part 2. Lifting properties

12. **Weakly saturated classes and inner-anodyne maps**

Quasicategories are defined by an “extension property”: they are the simplicial sets \(C \) such that any map \(K \to C \) extends over \(L \), whenever \(K \subset L \) is an inner horn inclusion \(\Lambda^n_j \subset \Delta^n \). The set of inner horns “generates” a larger class of maps (which will be called the class of *inner anodyne* maps), which “automatically” shares the extension property of the inner horns. This class of inner anodyne maps is called the \textit{weak saturation} of the set of inner horns.

For instance, we will observe that the spine inclusions \(I^n \subset \Delta^n \) are inner anodyne, so that quasicategories admit “spine extensions”, i.e., any \(I^n \to C \) extends over \(I^n \subset \Delta^n \) to a map \(\Delta^n \to C \).

12.1. **Weakly saturated classes.** Consider a category (such as sSet) which has all small colimits. A *weakly saturated class* is a class \(\mathcal{A} \) of morphisms in the category, which

1. contains all isomorphisms,
2. is closed under cobase change,
3. is closed under composition,
4. is closed under transfinite composition,
5. is closed under coproducts, and
6. is closed under retracts.

Given a class of maps \(S \), its \textit{weak saturation} \(\overline{S} \) is the smallest weakly saturated class containing \(S \).

We need to explain some of the elements of this definition.
• **Closed under cobase change** is also called **closed under pushout**: it means that if \(f' \) is the pushout of \(f : X \to Y \) along some map \(g : X \to Z \), then \(f \in A \) implies \(f' \in A \).

• **Closed under composition** means that if \(g, f \in A \) and \(gf \) is defined, then \(gf \in A \).

• We say that \(A \) is **closed under countable composition** if given a countable sequence of composable morphisms, i.e., maps

\[
X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} X_2 \xrightarrow{f_3} \cdots
\]

such that each \(f_k \in A \) for all \(k \in \mathbb{Z}_{>0} \), the induced map \(X_0 \to \text{colim}_k X_k \) to the colimit is in \(A \).

The notion **closed under transfinite composition** is the generalization of this, in which \(\mathbb{N} \) is replaced by an arbitrary ordinal \(\lambda \) (i.e., a well-ordered set). This means that for any ordinal \(\lambda \) and any functor \(X : \lambda \to \text{sSet} \), if for every \(i \in \lambda \) with \(i \neq 0 \) the evident map

\[
(\text{colim}_{j<i} X(j)) \to X(i)
\]

is in \(A \), then the induced map \(X(0) \to \text{colim}_{j \in \lambda} X(j) \) is in \(A \).

• **Closed under coproducts** means that if \(\{ f_i : X_i \to Y_i \} \) is a set of maps in \(A \), then \(\coprod_i f_i : \coprod_i X_i \to \coprod_i Y_i \) is in \(A \).

• We say that \(f \) is a **retract** of \(g \) if there exists a commutative diagram in \(C \) of the form

\[
\begin{array}{ccc}
\bullet & \xrightarrow{f} & \bullet \\
\downarrow & & \downarrow \\
\bullet & \xrightarrow{id} & \bullet \\
\end{array}
\quad
\begin{array}{ccc}
\bullet & \xrightarrow{g} & \bullet \\
\downarrow & & \downarrow \\
\bullet & \xrightarrow{id} & \bullet \\
\end{array}
\]

This is really a special case of the notion of a retract of an object in the functor category \(\text{Fun}([1], \text{sSet}) \). We say that \(A \) is **closed under retracts** if for every diagram as above, \(g \in A \) implies \(f \in A \).

12.2. **Remark.** This list of properties is not minimal: (3) is actually the special case of (4) when \(\lambda = [2] \), and (5) can be deduced from (2) and (4).

12.3. **Example.** Consider the category of sets. The class of all surjective maps is weakly saturated, and in fact is the weak saturation of \(\{ \{0, 1\} \to \{1\} \} \). Likewise, the class of injective maps is weakly saturated, and in fact is the weak saturation of \(\{ \emptyset \to \{1\} \} \).

12.4. **Example.** The classes of monomorphisms and epimorphisms of simplicial sets are weakly saturated classes. Later we will identify the class of monomorphisms of simplicial sets as the weak saturation of “cell inclusions” (15.25).

There is a dual notion of a **weakly cosaturated class**: a weakly cosaturated class is the same thing as a weakly saturated class in the opposite category, and is characterized by being closed under properties formally dual to (1)--(6).

12.5. **Classes of “anodyne” morphisms.** We use the following notation for sets of types of horns:

\[
\text{InnHorn} := \{ \Lambda^k_n \subseteq \Delta^n \mid 0 < k < n, n \geq 2 \}, \quad \text{(inner horns)},
\]

\[
\text{LHorn} := \{ \Lambda^k_n \subseteq \Delta^n \mid 0 \leq k < n, n \geq 1 \}, \quad \text{(left horns)},
\]

\[
\text{RHorn} := \{ \Lambda^k_n \subseteq \Delta^n \mid 0 < k \leq n, n \geq 1 \}, \quad \text{(right horns)},
\]

\[
\text{Horn} := \{ \Lambda^k_n \subseteq \Delta^n \mid 0 \leq k \leq n, n \geq 1 \}, \quad \text{(horns)}.
\]

The weak saturation of each of these sets will play an important role in what follows. Right now, we focus on the weak saturation \(\text{InnHorn} \) of the set of inner horns, which is called the class of
inner anodyne10 morphisms. (There are also classes of “left anodyne”, “right anodyne”, and plain old “anodyne” morphisms, about which we have more to say later.) Note that inner anodyne morphisms are always monomorphisms, since monomorphisms of simplicial sets themselves form a weakly saturated class.

12.6. Proposition. If C is a quasicategory and $A \subseteq B$ is an inner anodyne inclusion, then any $f : A \to C$ admits an extension to $g : B \to C$ so that $g|A = f$.

Proof. It suffices to show that the collection \mathcal{A} of monomorphisms $i : A \to B$ such that every map from A to a quasicategory extends along i is weakly saturated. Since $\text{InnHorn} \subseteq \mathcal{A}$ it then follows that $\text{InnHorn} \subseteq \mathcal{A}$. To prove this claim is a relatively straightforward exercise, which we leave for the reader: check that the class \mathcal{A} satisfies each of the conditions (1)–(6) of a weakly saturated class. It is highly recommended that you work through this argument this if you haven’t seen it before. □

12.7. Exercise (Easy but important). Show that every inner anodyne map induces a bijection on vertices. (Hint: show that the class of maps of simplicial sets which are a bijection on vertices is weakly saturated.)

12.8. Examples of inner anodyne morphisms. It is crucial to be able to prove that certain explicit maps are inner anodyne.

Let $S \subseteq [n]$. A generalized horn the subcomplex $\Lambda^n_S \subset \Delta^n$ defined by

$$\Lambda^n_S := \bigcup_{i \in S} \Delta^n \setminus \mathcal{S},$$

i.e., the union of codimension one faces of the n-simplex indexed by elements of S. In particular, $\Lambda^n_{[n]\setminus \{j\}}$ is the usual horn Λ^j_n. I’ll generalize this notation to arbitrary totally ordered sets, so $\Lambda^n_S := \bigcup_{i \in S} \Delta^n \setminus \mathcal{S}$ when $S \subseteq T$.

We call $\Lambda^n_S \subset \Delta^n$ a generalized inner horn if S is not an “interval” in $[n]$, i.e., if there exist $s < t < s'$ with $s, s' \in S$ and $t \notin S$.

12.9. Lemma. All generalized inner horn inclusions $\Lambda^n_S \subset \Delta^n$ are inner anodyne.

There is a slick proof of this given by Joyal [Joy08a, Prop. 2.12], which we present in the appendix (59.1).

12.10. Example. Consider $\Lambda^3_{\{0,3\}}$, which can be pictured as the solid diagram in

We can get from this to Δ^3 in two steps:

$$\Lambda^3_{\{0,3\}} \xrightarrow{\Delta^3_{\{0,3\}}} \Delta^3 \xrightarrow{\Lambda^3_{\{0,3\}}} \Delta^3$$

The square is a pushout of subcomplexes since $\Lambda^3_{\{0,3\}} \cap \Delta^3_{\{0,2,3\}} = \Lambda^3_{\{0,3\}}$, and the map along the top is isomorphic to $\Lambda^3_{\{0,3\}} \subset \Delta^2$, an inner horn inclusion. This proves that $\Lambda^3_{\{0,3\}} \subset \Delta^3$ is inner anodyne.

10The “anodyne” terminology for the weak saturation of a set of horns was introduced by Gabriel and Zisman [GZ67]. “Anodyne” derives from ancient Greek, meaning “without pain”; we leave it to the reader to decide whether this choice of terminology is appropriate.
Recall that every standard \(n \)-simplex contains a spine \(I^n \subseteq \Delta^n \).

12.11. Lemma. The spine inclusions \(I^n \subseteq \Delta^n \) are inner anodyne for all \(n \). Thus, for a quasicategory \(C \), any \(I^n \to C \) extends to \(\Delta^n \to C \).

This is proved in [Joy08a, Prop. 2.13]; we give the proof in the appendix (59.2).

12.12. Example. To show that \(I^3 \subseteq \Delta^3 \) is inner anodyne, observe that we can get from \(I^3 \) to a generalized inner horn two steps by gluing 2-simplices along inner horns inclusions:

\[
\begin{array}{ccc}
\Lambda_{\{0,1\}} & \longrightarrow & \Delta_{\{0,1\}} \\
\downarrow & & \downarrow \\
I^3 & \longrightarrow & I^3 \cup \Delta_{\{0,1\}}
\end{array}
\]

\[
\begin{array}{ccc}
\Lambda_{\{1,2\}} & \longrightarrow & \Delta_{\{1,2\}} \\
\downarrow & & \downarrow \\
I^3 \cup \Delta_{\{0,1\}} & \longrightarrow & \Delta_{\{1,2,3\}} \\
\end{array}
\]

since \(I^3 \cap \Delta_{\{0,1\}} = \Lambda_{\{0,1,2\}} \) and \((I^3 \cup \Delta_{\{0,1\}}) \cap \Delta_{\{1,2,3\}} = \Lambda_{\{1,2,3\}} \).

12.13. Exercise. Use (12.11) to show that the tautological map \(\pi: C \to N(hC) \) from a quasicategory to (the nerve of) its homotopy category is surjective in every degree.

13. Lifting calculus and inner fibrations

We have defined quasicategories by an “extension property”: in general, we say that \(X \) has satisfies the extension property for \(A \to B \) if in any diagram

\[
\begin{array}{ccc}
A & \xrightarrow{u} & X \\
\downarrow^f & & \downarrow^s \\
B & \xleftarrow{s} & Y
\end{array}
\]

there exists a morphism \(s \) making the diagram commute. In this section, we discuss a “relative” version of this, called a “lifting property”.

13.1. The lifting relation. Given morphisms \(f: A \to B \) and \(g: X \to Y \) in a category, a lifting problem for \((f, g) \) is a pair of morphisms \((u, v) \) such that \(vf = gu \). That is, a lifting problem is any commutative square of solid arrows of the form

\[
\begin{array}{ccc}
A & \xrightarrow{u} & X \\
\downarrow^f & & \downarrow^g \\
B & \xleftarrow{v} & Y
\end{array}
\]

A lift for the lifting problem is a morphism \(s \) such that \(sf = u \) and \(gs = v \), i.e., a dotted arrow making the diagram commute.

We may thus define the lifting relation on morphisms in our category: we write “\(f \square g \)” if every lifting problem for \((f, g) \) admits a lift\(^{11}\). Equivalently, \(f \square g \) exactly if

\[
\Hom(B, X) \xrightarrow{s \mapsto (sf, gs)} \Hom(A, X) \times_{\Hom(A, Y)} \Hom(B, Y)
\]

is a surjection, where the target is the set of pairs \((u: A \to X, v: B \to Y) \) such that \(gu = vf \) (i.e., the target is exactly the set of lifting problems for \((f, g) \)).

When \(f \square g \) holds, one sometimes says \(f \) has the left lifting property relative to \(g \), or that \(g \) has the right lifting property relative to \(f \). Or we just say that \(f \) lifts against \(g \).

We extend the notation to classes of maps, so “\(A \vartriangleleft \mathcal{B} \)” means: \(a \vartriangleleft b \) for all \(a \in A \) and \(b \in \mathcal{B} \).

\(^{11}\)Sometimes one sees the notation “\(f \perp g \)” or “\(f \pitchfork g \)” used instead. Our notation is taken from [Rie14, §11].
Given a class of morphisms A, define the right complement A^\square and left complement $^\square A$ by

$$A^\square = \{ g \mid a \triangleright g \text{ for all } a \in A \}, \quad ^\square A = \{ f \mid f \triangleleft a \text{ for all } a \in A \}.$$

13.2. Proposition. For any class B, the left complement $^\square B$ is a weakly saturated class.

13.3. Exercise (Important). Prove (13.2). (This is a “relative” version of the proof of (12.6).)

The above proposition (13.2) has a dual statement: any right complement B^\square is weakly cosaturated, i.e., satisfies dual versions of the closure properties of a weakly saturated class, or equivalently, corresponds to a weakly saturated class in the opposite category.

13.4. Exercise (Easy). Prove that if $A \subseteq B$, then $A^\square \supseteq B^\square$ and $^\square A \supseteq ^\square B$. Use this to show $A^\square = (^\square (A^\square))^\square$ and $^\square A = (^\square(A))^\square$.

13.5. Exercise (for those who know a little homological algebra). Fix an abelian category C (e.g., the category of modules over some ring R). Let \mathcal{P} be the class of morphisms in C of the form $0 \to P$ where P is projective, and let B be the class of epimorphisms in C. Show that $\mathcal{P} \subseteq B$; also, show that $B = P^\square$ if C has enough projectives.

13.6. Exercise. In the setting of the previous exercise, identify the class $^\square B$.

13.7. Inner fibrations. A map p of simplicial sets is an inner fibration if $\text{InnHorn} \supseteq p$. The class of inner fibrations $\text{InnFib} = \text{InnHorn}^\square$ is thus the right complement of the set of inner horns. Note that C is a quasicategory if and only if $C \to *$ is an inner fibration.

Because InnFib is a right complement, it is weakly cosaturated. In particular, it is closed under composition. This implies that if $p: C \to D$ is an inner fibration and D is a quasicategory, then C is also a quasicategory.

13.8. Exercise. Show that if $f: C \to D$ is any functor from a quasicategory C to a category D, then f is an inner fibration. In particular, all functors between categories are automatically inner fibrations. (Hint: use the fact that all inner horns mapping to a category have unique extensions to simplices.)

13.9. Exercise. Let $p: C \to D$ be a functor between quasicategories, and let $p^\text{core}: C^\text{core} \to D^\text{core}$ be the restriction of p to cores (10.7). Show that if p is an inner fibration then p^core is also an inner fibration. (Hint: There are two distinct cases of $(\Lambda^n_k \supset \Delta^n) \supseteq p^\text{core}$, namely $n = 2$ and $n \geq 3$.)

13.10. Factorizations. It turns out that we can always factor any map of simplicial sets into an inner anodyne map followed by an inner fibration. This is a consequence of the following general observation.

13.11. Proposition ("Small object argument"). Let S be a set of morphisms in sSet. Every map f between simplicial sets admits a factorization $f = pj$ with $j \in S$ and $p \in S^\square$.

The proof of this proposition is by means of what is known as the "small object argument". I’ll give the proof in the next section. For now we record a consequence.

13.12. Corollary. For any set S of morphisms in sSet, we have that $S = (S^\square)$.

Proof. That $S \subseteq (S^\square)$ is immediate from (13.2). Given f such that $f \subseteq S^\square$, use the small object argument (13.11) to choose $f = pj$ with $j \in S$ and $p \in S^\square$. We have a commutative diagram of solid arrows

```
\begin{tikzcd}
\bullet & \bullet & \bullet \\
\bullet & & \bullet \\
\end{tikzcd}
```

```
\begin{tikzcd}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\end{tikzcd}
```

```
\begin{tikzcd}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\end{tikzcd}
```

```
\begin{tikzcd}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\end{tikzcd}
```
A map s exists making the diagram commute, because $f \sqcap p$, so there is a lift in

```
\begin{tikzpicture}
    \node (X) at (0,0) {$f$};
    \node (Y) at (0,1) {$p$};
    \node (A) at (-1,0) {$\text{id}$};
    \node (B) at (-1,1) {$\bullet$};
    \node (C) at (-1,2) {$\bullet$};
    \node (D) at (-2,1) {$j$};
    \draw[->] (A) -- (B);
    \draw[->] (B) -- (C);
    \draw[->] (D) -- (B);
    \end{tikzpicture}
```

The diagram exhibits f as a retract of j, whence $f \in S$ since weak saturations are closed under retracts. \qed

The proof of the corollary is called the “retract trick”: given $f = pj$, $f \sqcap p$ implies that f is a retract of j, while $j \sqcup f$ implies that f is a retract of p.

In the case we are currently interested in, we have that $\text{InnHorn} = \text{InnFib}$ and $\text{InnHorn} = \text{InnFib}$, and thus any map can be factored into an inner anodyne map followed by an inner fibration.

13.13. **Weak factorization systems.** A weak factorization system in a category is a pair (L, R) of classes of maps such that

- every map f admits a factorization $f = r\ell$ with $r \in R$ and $\ell \in L$, and
- $L = \bar{R}$ and $R = \bar{L}$.

Thus, in any weak factorization the “left” class L is weakly saturated and the “right” class R is weakly cosaturated. The small object argument implies that (\bar{S}, S) is a weak factorization in $sSet$ for every set of maps S. In particular, $(\text{InnHorn}, \text{InnFib})$ is a weak factorization system.

13.14. **Exercise** (for those who know some homological algebra). In an abelian category, let A be the class of injective maps with projective cokernel, and let B be the class of surjections. Show that the pair (A, B) is a weak factorization system if and only if the category has enough projectives. (This exercise is related to (13.5).)

13.15. **Uniqueness of liftings.** The relation $f \sqcap g$ says that lifting problems admit solutions, but not that the solutions are unique. However, we can incorporate uniqueness into the lifting calculus if our category has pushouts.

Given a map $f: A \to B$, let $f^\flat := (f, f): B \amalg_A B \to B$ be the “fold” map, i.e., the unique map such that the composition with either of the canonical maps $B \to B \amalg_A B$ is f. It is straightforward to show that for a map $g: X \to Y$ we have that $\{f, f^\flat\} \sqcap g$ if and only if in every commutative square

```
\begin{tikzpicture}
    \node (A) at (0,0) {$A$};
    \node (X) at (2,0) {$X$};
    \node (B) at (0,1) {$B$};
    \node (Y) at (2,1) {$Y$};
    \draw[->] (A) -- (X);
    \draw[->] (B) -- (Y);
    \draw[->] (A) -- (B);
    \draw[->] (X) -- (Y);
    \end{tikzpicture}
```

there exists a unique lift s.

13.16. **Example.** Consider the category of topological spaces. Let A be the class of morphisms of the form $A \times \{0\} \to A \times [0, 1]$, where A is an arbitrary space. Then $(A \cup A^\vee)^\square$ contains all covering maps (by the “Covering Homotopy Theorem”).

A weak factorization system (L, R) in which liftings of type $L \sqcap R$ are always unique is called an orthogonal factorization system.

13.17. **Exercise.** Show that in an orthogonal factorization system, the factorizations $f = r\ell$ are unique up to unique isomorphism.

13.18. **Exercise.** Show that $(\{\text{surjections}\}, \{\text{injections}\})$ is an orthogonal factorization system for Set.
The small object argument implies that \((S \cup S^\lor, (S \cup S^\lor)^\Box)\) is an orthogonal factorization system for every set \(S\) of morphisms.

13.19. **Example** (The fundamental category via a weak factorization system). In simplicial sets, the projection map \(C \to \ast\) is in the right complement to \(S := \text{InnHorn} \cup \text{InnHorn}^\lor\) if and only if \(C\) is *isomorphic* to a nerve of a category (5.7). The small object argument using \(S\), applied to a projection \(X \to \ast\), thus produces a morphism \(\pi : X \to Y\) in \(\mathcal{S}\) with \(Y\) the nerve of a category.

Uniqueness of liftings in this case implies that \(\pi : X \to Y\) has precisely the universal property of the fundamental category of \(X\) defined in §9.1: given \(f : X \to C\) with \(C\) a category, a unique extension of \(f\) over \(X \to Y\) exists. Thus, the small object argument applied to \(S\) gives another construction of the fundamental category (9.1) of an arbitrary simplicial set \(S\).

13.20. **Exercise.** Prove that if \(f : X \to Y\) is any inner anodyne map, then the induced functor \(h(f) : hX \to hY\) between fundamental categories is an isomorphism. (Hint: use the universal property of fundamental categories to construct an inverse to \(h(f)\).)

14. **The small object argument**

In this section we give the proof of (13.11), i.e., that given a fixed set \(S = \{s_i : A_i \to B_i\}\) of maps of simplicial sets, we can factor any map \(f : X \to Y\) as \(f = pj\) with \(j \in \mathcal{S}\) and \(p \in S^\Box\). For the reader: it may be helpful to first work through the special case where \(Y = \Delta^0\) (the terminal object in simplicial sets).

14.1. **A factorization construction.** Given any map \(f : X \to Y\), we first produce a factorization

\[
X \xleftarrow{Lf} Ef \xrightarrow{Rf} Y, \quad (Rf)(Lf) = f
\]

as follows. Consider the set

\[
[S, f] := \{(s_i, u, v) \mid s_i \in S, fu = vs_i\} = \left\{ \begin{array}{c} A_i \xrightarrow{u} X \\ B_i \xrightarrow{v} Y \\ s_i \xrightarrow{f} \end{array} \right\}
\]

of all commutative squares which have an arrow from \(S\) on the left-hand side, and \(f\) on the right-hand side. We define \(Ef\), \(Lf\), and \(Rf\) using the diagram

\[
\begin{array}{cccc}
\prod_{(s_i, u, v)} A_i & \xrightarrow{(u)} & X \\
\prod_{s_i} & \xleftarrow{Lf} & \xleftarrow{f} & \xrightarrow{Rf} Y \\
\prod_{(s_i, u, v)} B_i & \xrightarrow{(v)} & Ef & \xrightarrow{Rf} Y
\end{array}
\]

where the the coproducts are indexed by the set \([S, f]\), and the square is a pushout. Note that \(Lf \in \mathcal{S}\) by construction; however, we do not expect that \(Rf\) in \(S^\Box\).

We can iterate the construction:

\[
\begin{array}{cccc}
X & \xrightarrow{Lf} & Ef & \xrightarrow{L^2f} & L^3f & \ldots & E^\omega f \\
X & \xrightarrow{Lf} & Ef & \xrightarrow{LRf} & E^2f & \xrightarrow{LR^2f} & E^3f & \ldots & E^\omega f \\
Y & \xrightarrow{Rf} & R^2f & \xrightarrow{R^3f} & \ldots & \end{array}
\]
Here each triple \((E^\alpha f, L^\alpha f, R^\alpha f)\) is obtained by factoring the “\(R\)” map of the previous one, so that
\[
(14.2) \quad E^{\alpha+1} f := E(R^\alpha f), \quad L^{\alpha+1} f := L(R^\alpha f) \circ (L^\alpha f), \quad R^{\alpha+1} f := R(R^\alpha f).
\]
Taking direct limits gives a factorization \(X \xrightarrow{L^\omega f} E^\omega f \xrightarrow{R^\omega f} Y\) of \(f\), with \(E^\omega f = \colim_{n \to \infty} E^n f\).

We can go even further, using the magic of transfinite induction, and define compatible factorizations \((E^\lambda f, L^\lambda f, R^\lambda f)\) for each ordinal\(^{12}\) \(\lambda\). For successor ordinals \(\alpha + 1\) use the prescription of (14.2), while for limit ordinals \(\beta\) take a direct limit \(E^\beta f := \colim_{\alpha < \beta} E^\alpha f\) as in the construction of \(E^\omega f\) above.

It is immediate that every \(L^\alpha f \in S\), because weak saturations are closed under transfinite composition. The maps \(R^\alpha f\) are not generally contained in \(S\), though they do satisfy a “partial lifting property”: whenever \(\alpha < \beta\) there exists by construction a dashed arrow making
\[
\begin{array}{ccc}
A_i & \xrightarrow{u'} & E^\alpha f \\
| & \downarrow{s_i} & \downarrow{} \\
B_i & \xrightarrow{} & Y \\
& \downarrow{v} & \\
& & Y
\end{array}
\]
commute, for any \(u'\) and \(v\) making the square commute. Thus, we get a solution to a lifting problem \((u, v)\) of \(s_i\) against \(R^\beta f\) whenever the map \(u: A_i \to E^\beta f\) on the top of a commutative square that we want a lift for can be factored through one of the maps \(E^\alpha f \to E^\beta f\) with \(\alpha < \beta\). This is so exactly because \(E^{\alpha+1} f\) was obtained from \(E^\alpha f\) by “formally adjoining” a solution to every such lifting problem.

The “small object argument” amounts to the following.

Claim. There exists an ordinal \(\kappa\) such that for every domain \(A_i\) of a map in \(S\), every map \(A_i \to E^\kappa f\) factors through some \(E^\alpha f \to E^\kappa f\) with \(\alpha < \kappa\).

Given this, it follows from the “partial lifting property” that \(S \not\subseteq R^\kappa f\), and so we obtain the desired factorization: \(f = (R^\kappa f) \circ (L^\kappa f)\) with \(L^\kappa f \in S\) and \(R^\kappa f \in S\).

It remains to prove the claim, which we will do by choosing \(\kappa\) to be a regular cardinal which is “bigger” than all the simplicial sets \(A_i\).

14.3. Regular cardinals

The **cardinality** of a set \(X\) is the smallest ordinal \(\lambda\) such that there exists a bijection between \(X\) and \(\lambda\); we write \(|X|\) for this. Ordinals which can appear this way are called **cardinals**. For instance, the first infinite ordinal \(\omega\) is the countable cardinal.

Note: the class of infinite cardinals is an unbounded subclass of the ordinals, so is well-ordered and can be put into bijective correspondence with ordinals. The symbol \(\aleph_\alpha\) denotes the \(\alpha\)th infinite cardinal, e.g., \(\aleph_0 = \omega\).

Say that \(\lambda\) is a **regular cardinal**\(^ {13}\) if it is an infinite cardinal, and if for every set \(A\) of ordinals such that (i) \(\alpha < \lambda\) for all \(\alpha \in A\), and (ii) \(|A| < \lambda\), then \(\sup A < \lambda\). For instance, \(\omega\) is a regular cardinal, since any finite collection of finite ordinals has a finite upper bound. Not every infinite cardinal is regular\(^ {14}\); however, there exist arbitrarily large regular cardinals\(^ {15}\).

Every ordinal \(\alpha\) defines a category, which is the poset of ordinals strictly less than \(\alpha\). Colimits of functors \(Y: \kappa \to \text{Set}\) with \(\kappa\) a regular cardinal have the following property: the map
\[
(14.4) \quad \colim_{\alpha < \kappa} \Hom(X, Y_\alpha) \to \Hom(X, \colim_{\alpha < \kappa} Y_\alpha)
\]
is a bijection whenever \(|X| < \kappa\). This generalizes the familiar case of \(\kappa = \omega\): any map of a finite set into the colimit of a countable sequence factors through a finite stage.

\(^{12}\)For a treatment of ordinals, see for instance the chapter on sets in [TS14].

\(^{13}\)In the terminology of [TS14, §3.7], a regular cardinal is one which is equal to its own cofinality.

\(^{14}\)For instance, \(\aleph_\omega = \sup \{ \aleph_k \mid k < \omega \}\) is not regular.

\(^{15}\)For instance, every successor cardinal \(\aleph_{\alpha+1}\) is regular.
14.5. Exercise. Prove that (14.4) is a bijection when $|X| < \kappa$.

14.6. **Small simplicial sets.** Given a regular cardinal κ, we say that a simplicial set is κ-small if it is isomorphic to the colimit of some functor $F: C \to \text{sSet}$, such that (i) $|\text{ob} C|, |\text{mor} C| < \kappa$, and (ii) each $F(c)$ is isomorphic to a standard simplex Δ^n. Morally, we are saying that a simplicial set is κ-small if it can be “presented” with fewer than κ generators and fewer than κ relations.

Given a functor $Y: \kappa \to \text{sSet}$ and a κ-small simplicial set X, we have a bijection as in (14.4). (This is sometimes phrased as: κ-small simplicial sets are κ-compact.) Thus, to prove the claim about the small object argument, we simply choose a regular cardinal κ greater than $\sup\{|A_i|\}$.

14.7. **Example.** The standard simplices Δ^n, as well as any subcomplex such as the horns Λ^n_k, are ω-small: this is a consequence of (4.19). Thus, when we carry out the small object argument for $S = \text{InnHorn}$, we can take $(E^\omega f, L^\omega f, R^\omega f)$ to be the desired factorization.

14.8. **Functoriality.** The construction $f \mapsto (X \xrightarrow{L f} E f \xrightarrow{R f} Y)$ is a functor $\text{Fun}([1], \text{sSet}) \to \text{Fun}([2], \text{sSet})$, and it follows that so is $f \mapsto (X \xrightarrow{L^\alpha f} E^\alpha f \xrightarrow{R^\alpha f} Y)$ for any α. Because the choice of regular cardinal κ depends only on S, not on the map f, we see that the small object argument actually produces a functorial factorization of a map into a composite of an element of \mathbb{S} with an element $S^{j\over k}$. We will have use of this later.

15. **Non-degenerate elements and the skeletal filtration**

We have noted that monomorphisms of simplicial sets form a weakly saturated class. Here we identify an important set of maps called Cell, so that the weak saturation of Cell is precisely the class of monomorphisms. We do so by getting a very explicit handle on monomorphisms of simplicial sets. This will involve the notion of degenerate and non-degenerate elements of a simplicial set.

15.1. **Boundary of a standard simplex.** For each $n \geq 0$, we define
\[\partial \Delta^n := \bigcup_{k \in [n]} \Delta^{[n]} \setminus \{k\} \subset \Delta^n, \]
the union of all codimension-one faces of the n-simplex. Equivalently,
\[(\partial \Delta^n)_k = \{ f: [k] \to [n] \mid f([k]) \neq [n] \}. \]
We call $\partial \Delta^n$ the boundary of Δ^n. Note that $\partial \Delta^0 = \emptyset$ and $\partial \Delta^1 = \Delta^0 \amalg \Delta^1$.

15.2. **Exercise.** Show that $\partial \Delta^n$ is the largest subcomplex of Δ^n which does not contain the “generator” $\langle 0 \ldots n \rangle \in (\Delta^n)_n$. In other words, $\partial \Delta^n$ is the maximal proper subcomplex of Δ^n.

15.3. **Exercise.** Show that if C is a category, then the evident maps $\text{Hom}(\Delta^n, C) \to \text{Hom}(\partial \Delta^n, C)$ defined by restriction are isomorphisms when $n \geq 3$, but not necessarily when $n \leq 2$.

15.4. **Trivial fibrations and monomorphisms.** Let Cell be the set consisting of the inclusions $\partial \Delta^n \subset \Delta^n$ for $n \geq 0$. The resulting right complement is $\text{TrivFib} := \text{Cell}^{\square}$, the class of trivial fibrations (also sometimes called acyclic fibrations). By the small object argument, we obtain a weak factorization system $(\overline{\text{Cell}}, \text{TrivFib})$.

Since the elements of Cell are monomorphisms, and the class of all monomorphisms is weakly saturated, we see that all elements of $\overline{\text{Cell}}$ are monomorphisms. We are going to prove the converse, i.e., we will show that $\overline{\text{Cell}}$ is precisely equal to the class of monomorphisms.
15.5. **Degenerate and non-degenerate elements.** Recall $\Delta^{\text{surj}}, \Delta^{\text{inj}} \subset \Delta$, the subcategories of the category Δ of simplicial operators, consisting of all the objects and the surjective and injective order-preserving maps respectively, and that every operator factors uniquely as $f = f^{\text{inj}} f^{\text{surj}}$, a surjection followed by an injection.

An element $a \in X_n$ is said to be **degenerate** if there exists a non-injective simplicial operator $f \in \Delta$ and an element b in X such that $a = bf$. In view of the factorization $f = f^{\text{inj}} f^{\text{surj}}$, we see that a is degenerate if and only if there exists a non-identity surjective simplicial operator $f \in \Delta^{\text{surj}}$ and an element b in X such that $a = bs$.

Likewise, an element $a \in X_n$ is said to be **non-degenerate** if it is not degenerate, i.e., if $a = bf$ for some f in Δ and b in X we must have $f \in \Delta^{\text{inj}}$. Equivalently, a is non-degenerate if $a = bf$ for some f in Δ^{surj} and b in X implies $f = id$.

We write $X_n = X_n^{\text{deg}} \amalg X_n^{\text{nd}}$ for the decomposition of X_n into complementary subsets of degenerate and non-degenerate elements. Note that if $f : A \to X$ is a map of simplicial sets, then $f(A^{\text{deg}}) \subseteq X_n^{\text{deg}}$, while $f^{-1}(X_n^{\text{nd}}) \subseteq A_n^{\text{nd}}$. Note that neither X_n^{deg} nor X_n^{nd} assemble to give a subcomplex of X (unless X is empty).

15.6. **Proposition.** If X is a simplicial set and $A \subseteq X$ is a subcomplex, then $A_n^{\text{nd}} = X_n^{\text{nd}} \cap A_n$ and $A_n^{\text{deg}} = X_n^{\text{deg}} \cap A_n$.

Proof. The first statement is a consequence of the second, since subsets of degenerate and non-degenerate element are complementary. It is clear that $A_n^{\text{deg}} \subseteq X_n^{\text{deg}} \cap A_n$. Conversely, suppose $a \in X_n^{\text{deg}} \cap A_n$, so $a \in A_n$ and $a = bg$ for some non-identity $g : [n] \to [k] \in \Delta^{\text{surj}}$ and $b \in X_k$. Any surjection in Δ has a section (4.17), so there exists $s : [k] \to [n]$ such that $gs = 1_{[k]}$. Then $b = bs = as \in A_k$, whence $a \in A_n^{\text{deg}}$ as desired. \(\square\)

15.7. **Exercise (easy).** For any simplicial set X, we have $X_0^{\text{deg}} = \emptyset$ and $X_0^{\text{nd}} = X_0$, while X_1^{deg} is the image of $(00)^* : X_0 \to X_1$ and X_1^{nd} is its complement.

15.8. **Example.** Here are all elements in the standard 2-simplex up to dimension 3, with the non-degenerate ones indicated by a box.

<table>
<thead>
<tr>
<th>$(\Delta^2)_0$</th>
<th>$(\Delta^2)_1$</th>
<th>$(\Delta^2)_2$</th>
<th>$(\Delta^2)_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>(00)</td>
<td>(000)</td>
<td>(0000)</td>
</tr>
<tr>
<td>(1)</td>
<td>(11)</td>
<td>(111)</td>
<td>(1111)</td>
</tr>
<tr>
<td>(2)</td>
<td>(22)</td>
<td>(222)</td>
<td>(2222)</td>
</tr>
<tr>
<td>(01)</td>
<td>(001)</td>
<td>(011)</td>
<td>(0011)</td>
</tr>
<tr>
<td>(02)</td>
<td>(002)</td>
<td>(022)</td>
<td>(0022)</td>
</tr>
<tr>
<td>(12)</td>
<td>(112)</td>
<td>(122)</td>
<td>(1122)</td>
</tr>
<tr>
<td></td>
<td>(012)</td>
<td></td>
<td>(0112)</td>
</tr>
</tbody>
</table>

15.9. **Exercise.** Describe the degenerate and non-degenerate elements of all the standard n-simplices Δ^n.

15.10. **Exercise.** For every $n \geq 0$, let S^n be the pushout of the diagram $\Delta^n \leftarrow \partial \Delta^n \to \Delta^0$, where $\partial \Delta^n \hookrightarrow \Delta^n$ is the usual inclusion and $\partial \Delta^n \to \Delta^0$ is the unique map to the terminal object. Describe all degenerate and non-degenerate elements of S^n.

15.11. **Exercise.** Show that if C is an ordinary category, then an element $a \in N(C)_k$ of the nerve is non-degenerate if and only if it is represented by a composable sequence of non-identity maps $c_0 \to \cdots \to c_k$ in the category C.

The following exercises show that the subcomplexes of a simplicial set X can be completely characterized by the sets of non-degenerate elements of X that they contain.
15.12. Exercise. Let \(X^\text{nd} = \coprod_{n \geq 0} X_n^\text{nd} \) be the set of non-degenerate elements of \(X \). For \(x, y \in X^\text{nd} \) write \(y \leq x \) if there exists \(f \in \Delta^\text{inj} \) such that \(y = xf \). Show that \(\leq \) is a partial order on the set \(X^\text{nd} \); it is called the face relation.

15.13. Exercise. Show that if \(xf = yg \) for some \(x, y \in X^\text{nd} \), \(f \in \Delta \) and \(g \in \Delta^\text{surj} \), then \(y \leq x \).

15.14. Exercise. Let \(S \subseteq X^\text{nd} \) be a subset of non-degenerate elements which is closed downward under \(\leq \), i.e., \(y \leq x \) and \(x \in S \) implies \(y \in S \). Show that there exists a unique subcomplex \(A \subseteq X \) such that \(A^\text{nd} = S \). (Hint: the elements of \(A \) are of the form \(xg \) where \(x \in S \) and \(g \in \Delta^\text{surj} \).)

15.15. Simplicial sets are canonically free with respect to surjective operators. The key observation is that degenerate elements in a simplicial set are precisely determined by knowledge of the non-degenerate elements.

15.16. Proposition (Eilenberg-Zilber lemma). Let \(a \) be an element of \(X \). Then there exists a unique pair \((b, \sigma) \) consisting of a non-degenerate element \(b \) and a map \(\sigma \) in \(\Delta^\text{surj} \) such that \(a = b\sigma \).

Proof. [GZ67, §II.3]. Given \(\sigma : [n] \to [m] \), let \(\Gamma(\sigma) = \{ \delta : [m] \to [n] \mid \sigma \delta = \operatorname{id}_{[m]} \} \) denote the set of sections of \(\sigma \). The sets \(\Gamma(\sigma) \) is non-empty when \(\sigma \in \Delta^\text{surj} \) (4.17). We note the following elementary observation, whose proof is left for the reader:

If \(\sigma, \sigma' \in \Delta^\text{surj} \) are such that \(\Gamma(\sigma) = \Gamma(\sigma') \), then \(\sigma = \sigma' \).

Let \(a \in X_n \) be such that \(a = b_i\sigma_i \) for \(b_i \in X^\text{nd}_{m_i}, \sigma_i \in \Delta^\text{surj}([n], [m_i]) \), for \(i = 1, 2 \). We want to show that \(m_1 = m_2, b_1 = b_2 \), and \(\sigma_1 = \sigma_2 \).

Pick any \(\delta_1 \in \Gamma(\sigma_1) \) and \(\delta_2 \in \Gamma(\sigma_2) \). Then we have

\[
\begin{align*}
b_1 &= b_1\sigma_1\delta_1 = a\delta_1 = b_2\sigma_2\delta_1, \\
b_2 &= b_2\sigma_2\delta_2 = a\delta_2 = b_1\sigma_1\delta_2,
\end{align*}
\]

so \(b_1 \) and \(b_2 \) are related by the simplicial operators \(\sigma_2\delta_1 \) and \(\sigma_1\delta_2 \). Since \(b_1 \) and \(b_2 \) are both non-degenerate, \(\sigma_2\delta_1 : [m_1] \to [m_2] \) and \(\sigma_1\delta_2 : [m_2] \to [m_1] \) must be injective. This implies \(m_1 = m_2 \), and since the only order-preserving injective map \([m] \to [m] \) is the identity map, we must have \(\sigma_2\delta_1 = \operatorname{id} = \sigma_1\delta_2 \), from which it follows that \(b_1 = b_2 \). This also shows that \(\delta_1 \in \Gamma(\sigma_2) \) and \(\delta_2 \in \Gamma(\sigma_1) \).

Since \(\delta_1 \) and \(\delta_2 \) were arbitrarily chosen sections, we have shown \(\Gamma(\sigma_1) = \Gamma(\sigma_2) \), and therefore \(\sigma_1 = \sigma_2 \).

\(\square \)

We can reinterpret the Eilenberg-Zilber lemma as follows.

15.17. Corollary. For any simplicial set \(X \), the evident maps

\[
\coprod_{j \geq 0} X_j^\text{nd} \times \operatorname{Hom}_{\Delta^\text{surj}}([n], [j]) \to X_n
\]

defined by \((j, x, \sigma) \mapsto x\sigma \) are bijections. Furthermore, these bijections are natural with respect to surjective simplicial operators \([n'] \to [n]\).

Proof. The bijection is a restatement of (15.16). For the second statement, note that if \(\tau : [n'] \to [n] \) is a surjective simplicial operator, then \((k, x, \sigma \tau) \mapsto (x\sigma)\tau \).

\(\square \)

Another way to say this: the restricted functor \(X([\Delta^\text{surj}])^{\operatorname{op}} : ([\Delta^\text{surj}])^{\operatorname{op}} \to \text{Set} \) is canonically isomorphic to a coproduct of representable functors \(\operatorname{Hom}_{\Delta^\text{surj}}(-, [k]) \) indexed by the nondegenerate simplicies of \(X \). Or more simply: simplicial sets are canonically free with respect to surjective simplicial operators.

15.18. Remark. A simplicial set can be recovered up to isomorphism if you only know (i) its sets of non-degenerate elements, and (ii) the faces of the non-degenerate elements. The proposition we proved above tells how to reconstruct the degenerate elements; simplicial operators on degenerate elements are computed using the fact that any simplicial operator factors into a surjection followed by an injection.
Warning. The faces of a non-degenerate element can be degenerate; this happens for instance in (15.10) when \(n \geq 2 \). If \(X \) is such that all faces of non-degenerate elements are also non-degenerate, then we get a functor \(X^{\text{nd}} : (\Delta^{\text{nd}})^{\text{op}} \to \text{Set} \), and the full simplicial set \(X \) can be recovered from \(X^{\text{nd}} \). For instance, this is so for the standard simplices \(\Delta^n \), as well as any subcomplexes of such. Functors \((\Delta^{\text{nd}})^{\text{op}} \to \text{Set} \) are the combinatorial data behind the notion of a \(\Delta \)-complex, as seen in Hatcher’s textbook on algebraic topology [Hat02, Ch. 2.1].

The following exercises give a different point of view of this principle.

15.19. Exercise. Fix an object \([n]\) in \(\Delta \), and consider the category \(\Delta^{\text{surj}}_{[n]/} \), which has

- **objects** the surjective morphisms \(\sigma : [n] \to [k] \) in \(\Delta \), and
- **morphisms** commutative triangles in \(\Delta \) of the form

\[
\begin{array}{ccc}
[n] & \xrightarrow{\sigma} & [k] \\
\downarrow & & \downarrow \\
\sigma' & \nearrow & [k']
\end{array}
\]

Show that the category \(\Delta^{\text{surj}}_{[n]/} \) is isomorphic to the poset \(\mathcal{P}(n) \) of subsets of the set \(n = \{1, \ldots, n\} \).

In particular, \(\Delta^{\text{surj}}_{[n]/} \) is a lattice (i.e., has finite products and coproducts, called meets and joins in this context).

15.20. Exercise. Let \(X \) be a simplicial set. Given \(n \geq 0 \) and \(\sigma : [n] \to [k] \) in \(\Delta^{\text{surj}} \), let \(X^n_\sigma := \sigma^*(X_k) \), the image of the operator \(\sigma^* \) in \(X_n \). Show that \(X^n_\sigma \cap X^n_{\sigma'} \), where \(\sigma \cap \sigma' \) is join in the lattice \(\Delta^{\text{surj}}_{[n]/} \). Conclude that for each \(x \in X_n \) there exists a maximal \(\sigma \) such that \(x \in X^n_\sigma \).

15.21. Skeleta. Given a simplicial set \(X \), the \(k \)-skeleton \(\text{Sk}_k X \subseteq X \) is the subcomplex with \(n \)-dimensional elements.

\[
(\text{Sk}_k X)_n = \bigcup_{0 \leq j \leq k} \{ yf \mid y \in X_j, f : [n] \to [j] \in \Delta \}.
\]

It is immediate that this defines a subcomplex of \(X \), which is in fact the smallest subcomplex containing all elements of dimensions \(\leq k \). Note that \(X = \bigcup_k \text{Sk}_k X \), and that a map \(X \to Y \) of simplicial sets restricts to a map \(\text{Sk}_k X \to \text{Sk}_k Y \).

In view of (15.16) and (15.17), we see that

\[
(\text{Sk}_k X)_n \approx \prod_{0 \leq j \leq k} X_j^{\text{nd}} \times \text{Hom}_{\Delta^{\text{surj}}}([n],[j]).
\]

Note that \(X = \text{colim}_{k \to \infty} \text{Sk}_k X \). The complement of \(\text{Sk}_{k-1} X \) in \(\text{Sk}_k X \) consists precisely of the nondegenerate \(k \)-dimensional elements of \(X \) together with their degeneracies (in dimensions \(> k \)).

The skeleta constructions define functors \(\text{Sk}_k : \text{sSet} \to \text{sSet} \).

15.22. Example. The \((n-1)\)-skeleton of the standard \(n \)-simplex is precisely what we have called its boundary: \(\text{Sk}_{n-1} \Delta^n = \partial \Delta^n \). The only simplices of \(\Delta^n \) not contained in its boundary are the generator \(\iota = (0 \ldots n) \in (\Delta_n)_n \) together with the degenerate elements associated to it.

15.23. Proposition. The evident square

\[
\begin{array}{ccc}
\coprod_{a \in X_k^{\text{nd}}} \partial \Delta^k & \longrightarrow & \text{Sk}_{k-1} X \\
\downarrow & & \downarrow \\
\coprod_{a \in X_k^{\text{nd}}} \Delta^k & \longrightarrow & \text{Sk}_k X
\end{array}
\]
is a pushout of simplicial sets. More generally, for any subcomplex $A \subseteq X$, the evident square
\[
\begin{array}{c}
\prod_{a \in X_{k}^{\text{nd}} \setminus A_{k}^{\text{nd}}} \partial \Delta^{k} \longrightarrow A \cup \text{Sk}_{k-1} X \\
\downarrow \\
\prod_{a \in X_{k}^{\text{nd}} \setminus A_{k}^{\text{nd}}} \Delta^{k} \longrightarrow A \cup \text{Sk}_{k} X
\end{array}
\]
is a pushout.

Proof. In each of the above squares, the complements of the vertical inclusions coincide precisely. In particular, the complement of the inclusion $(A \cup \text{Sk}_{k-1} X)_{n} \subseteq (A \cup \text{Sk}_{k} X)_{n}$ is in bijective correspondence with $(X_{k}^{\text{nd}} \setminus A_{k}^{\text{nd}}) \times \text{Hom}_{\Delta_{\text{ord}}}([n], [k])$, and thus the square is a pushout (15.24). □

In the proof, we used the following fact, which is worth recording.

15.24. Lemma. If
\[
\begin{array}{ccc}
X' & \longrightarrow & X \\
\downarrow i & & \downarrow j \\
Y' & \longrightarrow & Y \\
\downarrow f & & \downarrow \
\end{array}
\]
is a pullback of simplicial sets such that (i) j is a monomorphism, and (ii) f induces in each degree n a bijection $Y_{n}' \setminus i(X_{n}') \cong Y_{n} \setminus j(X_{n})$, then the square is a pushout square.

Proof. Verify the analogous statement for a pullback square of sets. □

15.25. Corollary. Cell is precisely the class of monomorphisms.

Proof. We know all elements of Cell are monomorphisms. Any monomorphism is isomorphic to an inclusion $A \subseteq X$ of a subcomplex, so we only need show that such inclusions are contained in Cell. Since $X \cong \text{colim}_{k} A \cup \text{Sk}_{k} X$, (15.23) exhibits the inclusion as a countable composite of pushouts along coproducts of elements of Cell. □

15.26. Geometric realization. Recall the singular complex functor $\text{Sing}: \text{Top} \to \text{sSet}$ (8.7). This functor has a left adjoint $\| - \|: \text{sSet} \to \text{Top}$, called geometric realization, constructed explicitly by

\[
\| X \| := \text{Cok} \left[\prod_{f: [m] \to [n]} X_{n} \times \Delta^{m}_{\text{top}} \Rightarrow \prod_{[p]} X_{p} \times \Delta^{p}_{\text{top}} \right];
\]

that is, take a collection of topological simplices indexed by elements of X, and make identifications according to the simplicial operators in X. (Here the symbol “Cok” represents taking a “coequalizer”, i.e., the colimit of a diagram of shape $\bullet \Rightarrow \bullet$.)

15.28. Exercise. Describe the two unlabelled maps in (15.27). Then show that $\| - \|$ is in fact left adjoint to Sing.

Because geometric realization is a left adjoint, it commutes with colimits. It is straightforward to check that $\| \Delta^{n}_{\text{top}} \| \approx \Delta^{n}_{\text{top}}$, and that $\| \partial \Delta^{n}_{\text{top}} \| \approx \partial \Delta^{n}_{\text{top}}$. Applying this to the skeletal filtration, we discover that there are pushouts
\[
\begin{array}{c}
\prod_{a \in X_{k}^{\text{nd}}} \partial \Delta^{k}_{\text{top}} \longrightarrow \| \text{Sk}_{k-1} X \| \\
\downarrow \\
\prod_{a \in X_{k}^{\text{nd}}} \Delta^{k}_{\text{top}} \longrightarrow \| \text{Sk}_{k} X \|
\end{array}
\]
of spaces, and that $\|X\| = \bigcup \|\text{Sk}_k X\|$ with the direct limit topology. Thus, $\|X\|$ is presented to us as a CW-complex, whose cells are in an evident bijective correspondence with the set of non-degenerate elements of X.

16. Pushout-product and pullback-power

We are going to prove several “enriched” versions of lifting properties associated to inner anodyne maps and inner fibrations. As a consequence we’ll be able to prove that function complexes of quasicategories are themselves quasicategories.

16.1. Definition of pushout-product and pullback-hom. Given maps $f: A \to B$, $g: K \to L$ and $h: X \to Y$ of simplicial sets, we define new maps $f \Box g$ and $g \Box h$ called the pushout-product16 and the pullback-hom.17,18 The pushout-product $f \Box g: (A \times L) \coprod_{A \times K} (B \times K) \to B \times L$ is the unique map fitting in the diagram

$$
\begin{array}{ccc}
A \times K & \xrightarrow{id \times g} & A \times L \\
\downarrow f & & \downarrow f \times id \\
B \times K & \xrightarrow{(f \times id) \Box g} & (A \times L) \coprod_{A \times K} (B \times K)
\end{array}
$$

while the pullback-hom $h \Box g : \text{Map}(L, X) \to \text{Map}(K, X) \times_{\text{Map}(K, Y)} \text{Map}(L, Y)$ is the unique map fitting in the diagram

$$
\begin{array}{ccc}
\text{Map}(L, X) & \xrightarrow{h \Box g} & \text{Map}(K, X) \\
\downarrow & & \downarrow \\
\text{Map}(K, X) \times_{\text{Map}(K, Y)} \text{Map}(L, Y) & \xrightarrow{\text{Map}(f, id)} & \text{Map}(K, Y) \\
\downarrow & & \\
\text{Map}(L, Y) & \xrightarrow{\text{Map}(id, h)} & \text{Map}(K, Y)
\end{array}
$$

16.2. Remark. Typically we form $f \Box g$ when f and g are monomorphisms, in which case $f \Box g$ is also a monomorphism. In this case, the elements $(b, \ell) \in B_n \times L_n$ which are not in the image of $f \Box g$ are exactly those such that $b \in B_n \setminus A_n$ and $\ell \in L_n \setminus K_n$.

16.3. Remark (Important!). On vertices, the pullback-hom $h \Box g$ is just the “usual” map $\text{Hom}(L, X) \to \text{Hom}(K, X) \times_{\text{Hom}(K, Y)} \text{Hom}(L, Y)$ sending $s \mapsto (sg, hs)$. Thus, $h \Box g$ is surjective on vertices if and only if $g \Box h$.

We think of the pullback-hom as encoding an “enriched” version of the lifting problem for (g, h). Thus, the target of $h \Box g$ is an object which “parameterizes families” of commutative squares involving g and h. Similarly, the source of $h \Box g$ “parameterizes families” of commutative squares together with lifts.

16This is sometimes called the box-product. Some also call it the Leibniz-product, as its form is that of the Leibniz rule for boundary of a product space: $\partial(X \times Y) = (\partial X \times Y) \cup_{\partial X \times \partial Y} (X \times \partial Y)$ (which is itself reminiscent of the original Leibniz rule $D(fg) = (Df)g + f(Dg)$ of calculus).

17Sometimes called the box-power or pullback-power. A common alternate notation is $g \triangleright h$. This may also be called the Leibniz-hom, though I don’t know what rule of calculus it is related to.

18This notation for pullback-hom is kinda awkward, and I’d like to change it. However, a new notation ought to admit compatible variants to describe the “pullback-slice” and “alternate pullback-slice” constructions which appear later on. I don’t see a good way to do this.
16.4. **Proposition.** We have that \((f \Box g) \equiv h\) if and only if \(f \equiv (h \Box g)\).

Proof. Compare the two lifting problems using the product/map adjunction.

\[
\begin{array}{ccc}
(A \times L) \amalg_{A \times K} (B \times K) & \xrightarrow{(u,v)} & X \\
\downarrow{f \Box g} & \iff & \downarrow{h} \\
B \times L & \xrightarrow{w} & Y
\end{array}
\]

On the left-hand side are maps

\[
u: A \times L \to X, \quad v: B \times K \to X, \quad w: B \times L \to Y, \quad s: B \times L \to X,
\]

while on the right-hand side are maps

\[
\tilde{u}: A \to \text{Map}(L, X), \quad \tilde{v}: B \to \text{Map}(K, X), \quad \tilde{w}: B \to \text{Map}(L, Y), \quad \tilde{s}: B \to \text{Map}(L, X).
\]

The data of \((u,v,w)\) giving a commutative square as on the left corresponds bijectively to data \((\tilde{u}, \tilde{v}, \tilde{w})\) giving a commutative square as on the right. Similarly, lifts \(s\) correspond bijectively to lifts \(\tilde{s}\). \(\square\)

It is important to note the special cases where one or more of \(A = \emptyset\), \(K = \emptyset\), or \(Y = *\) hold. For instance, if \(K = \emptyset\) and \(Y = *\), the proposition implies

\[
(A \times L \xrightarrow{f \times L} B \times L) \Box (X \to *) \iff (A \xrightarrow{f} B) \Box (\text{Map}(L, X) \to *).
\]

This is the kind of case we are interested in for proving that \(\text{Map}(K, C)\) is a quasicategory whenever \(C\) is. The more general statement of the proposition is a kind of “relative” version of the thing we want; it is especially handy for carrying out inductive arguments.

16.5. **Exercise** (if you like monoidal categories). Let \(C := \text{Fun}([1], \text{sSet})\), the “arrow category” of simplicial sets. Show that \(\square: C \times C \to C\) defines a symmetric monoidal structure on \(C\), with unit object \((\emptyset \subseteq \Delta^0)\). Furthermore, show that this is a closed monoidal structure, with \(- \Box q\) left adjoint to \((-) \Box q: C \to C\).

16.6. **Inner anodyne maps and pushout-products.** The key fact we want to prove is the following.

16.7. **Proposition.** We have that \(\text{InnHorn} \sqcup \text{Cell} \subseteq \text{InnHorn}\), i.e., that \(i \sqcup j\) is inner anodyne whenever \(i\) is inner anodyne and \(j\) is a monomorphism.

To set up the proof we need the following.

16.8. **Proposition.** For any sets of maps \(S\) and \(T\), we have \(S \Box T \subseteq S \Box T\).

Proof. Let \(F = (S \Box T)^\square\). From the small object argument we have that \(S \Box T = \Box F\) (13.12), so we will show \((S \Box T) \Box F\). First we show that \((S \Box T) \Box F\). Consider

\[
\mathcal{A} := \{a \mid (a \Box T) \Box F\}
\]

by correspondence between lifting problems for pushout-products and pullback-homs (16.4). Thus \(\mathcal{A}\) is a left complement, and so is weakly saturated. Since \(S \subseteq \mathcal{A}\) then \(S \subseteq \mathcal{A}\), i.e., \((S \Box T) \Box F\). The same idea applied to

\[
\mathcal{B} := \{b \mid (S \Box b) \Box F\} \approx \{b \mid b \Box (F \Box T)\},
\]

gives \(T \subseteq \mathcal{B}\), whence \((S \Box T) \Box F\). \(\square\)
16.9. **Lemma.** We have $\text{InnHorn} \sqsubset \text{Cell} \subseteq \text{InnHorn}$.

Proof. This is a calculation, given in [Joy08a, App. H], and presented in the appendix (60.3). □

Proof of (16.7). We have that

$$\text{InnHorn} \sqsubset \text{InnHorn} \sqsubset \text{Cell} \subseteq \text{InnHorn}.$$

The first inclusion is (16.8), while the second is an immediate consequence of $\text{InnHorn} \sqsubset \text{Cell} \subseteq \text{InnHorn}$ (16.9).

Let’s carry out a proof of (16.9) explicitly in one case, by showing that $(\Lambda^2_1 \subset \Delta^2) \sqsubset (\partial \Delta^1 \subset \Delta^1)$ is inner anodyne. This map is the inclusion

$$(\Lambda^2_1 \times \Delta^1) \cup_{\Lambda^2_1 \times \partial \Delta^1} (\Delta^2 \times \partial \Delta^1) \subset \Delta^2 \times \Delta^1,$$

whose target is a “prism”, and whose source is a “trough”. To show this is in InnHorn, we’ll give an explicit procedure for constructing the prism from the trough by successively attaching simplices along inner horns.

Note that $\Delta^2 \times \Delta^1 = N([2] \times [1])$, so we are working inside the nerve of a poset, whose elements (objects) are “i,j” with $i \in \{0,1,2\}$ and $j \in \{0,1\}$. Here is a picture of the trough, showing all the non-degenerate simplices.

```
01 ------ 11 ------ 21
   |         |         |
   |         |         |
   |         |         |
00 ------ 10 ------ 20
```

The complement of this in the prism consists of three non-degenerate 3-dimensional elements, five non-degenerate 2-dimensional elements (two of which form the “lid” of the trough, while the other three are in the interior of the prism), and one non-degenerate edge element (separating the two 2-dimensional elements which form the lid).

The following chart lists all non-degenerate elements in the complement of the trough, along with their codimension one faces (in order). The “√” marks elements which are contained in the trough.

<table>
<thead>
<tr>
<th>(00, 21)</th>
<th>(00, 20, 21)</th>
<th>(00, 01, 21)</th>
<th>(00, 10, 21)</th>
<th>(00, 11, 21)</th>
<th>(00, 10, 20, 21)</th>
<th>(00, 10, 11, 21)</th>
<th>(00, 01, 11, 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>√(21)</td>
<td>√(20, 21)</td>
<td>√(01, 21)</td>
<td>√(10, 21)</td>
<td>√(11, 21)</td>
<td>√(10, 20, 21)</td>
<td>√(10, 11, 21)</td>
<td>√(01, 11, 21)</td>
</tr>
<tr>
<td>√(10)</td>
<td>√(00, 21)</td>
<td>√(00, 21)</td>
<td>√(00, 21)</td>
<td>√(00, 21)</td>
<td>√(00, 21)</td>
<td>√(00, 11, 21)</td>
<td>√(00, 11, 21)</td>
</tr>
<tr>
<td>√(00, 20)</td>
<td>√(00, 01)</td>
<td>√(00, 10)</td>
<td>√(00, 11)</td>
<td>√(00, 10, 21)</td>
<td>√(00, 10, 21)</td>
<td>√(00, 10, 21)</td>
<td>√(00, 10, 21)</td>
</tr>
</tbody>
</table>

Note that the elements (00, 21), (00, 10, 21), and (00, 11, 21) of the complement appear multiple times as faces. We can attach simplices to the domain in the following order:

- 1⟨00, 10, 21⟩, 2⟨00, 10, 20, 21⟩, 3⟨00, 10, 11, 21⟩, 4⟨00, 01, 11, 21⟩.

In each case, the intersection of the simplex with (domain+previously attached simplices) is an inner horn. This directly exhibits $(\Lambda^2_1 \subset \Delta^2) \sqsubset (\partial \Delta^1 \subset \Delta^1)$ as an inner anodyne map.

17. **Function complexes of quasicategories are quasicategories**

17.1. **Enriched lifting properties.** We record the immediate consequences of $\text{InnHorn} \sqsubset \text{Cell} \subseteq \text{InnHorn}$ (16.7).

17.2. **Proposition.**

1. If $i: A \to B$ is inner anodyne and $j: K \to L$ a monomorphism, then

 $$i \sqcup j: (A \times L) \cup_{A \times K} (B \times K) \to B \times L$$

 is inner anodyne.
17.4. **Proposition.** Let S, T, and U be sets of morphisms in $sSet$. Write \overline{S}, \overline{T}, and \overline{U} for the weak saturations of these sets, and let $SFib := S^{\Box}$, $TFib := T^{\Box}$, and $UFib := U^{\Box}$ denote the respective right complements. If $S\Box T \subseteq \overline{U}$, then

$$\overline{SFib} \subseteq SFib, \quad \overline{UFib} \subseteq TFib.$$

Proof. Exercise using (16.4). \qed

There are many useful special cases of (17.2), obtained by taking the domain of a monomorphism to be empty, or the target of an inner fibration to be terminal.

- If $i : A \to B$ is inner anodyne, so is $i \times id_L : A \times L \to B \times L$.
- If $p : X \to Y$ is an inner fibration, then so is $Map(L,p) : Map(L,X) \to Map(L,Y)$.
- If $j : K \to L$ is a monomorphism and C a quasicategory, then $Map(j,C) : Map(L,C) \to Map(K,C)$ is an inner fibration.
- If $i : A \to B$ is inner anodyne and C a quasicategory, then $Map(i,C) : Map(B,C) \to Map(A,C)$ is a trivial fibration.
- If C is a quasicategory, so is $Map(L,C)$. Thus we have proved (B).

Let’s spell out the proof of (B) in a little more detail. Because $\overline{\text{InnHorn}} \subseteq \text{InnHorn}$, we have (16.7) that

$$(\Lambda^n_j \subseteq \Delta^n) \Box (\emptyset \subseteq K) = (\Lambda^n_j \times K \to \Delta^n \times K)$$

is inner anodyne for any K and $0 < j < n$. Thus, for any diagram

$$\begin{array}{ccc}
\Lambda^n_j \times K & \longrightarrow & C \\
\downarrow & & \\
\Delta^n \times K & \\
\end{array}$$

with C a quasicategory, a dotted arrow exists. By adjunction, this is the same as saying we can extend $\Lambda^n_j \to Map(K,C)$ along $\Lambda^n_j \subseteq \Delta^n$. That is, we have proved that $Map(K,C)$ is a quasicategory.

17.4. **Remark.** Most weakly saturated classes \overline{S} that we will explicitly discuss in these notes will have the property that $S\Box Cell \subseteq \overline{S}$, and thus analogues of the above remarks will hold for such classes.
17.5. Exercise (Important). Show that $\overline{\text{Cell}} \sqcup \overline{\text{Cell}} \subseteq \overline{\text{Cell}}$. (Hint: (15.25).) State the analogue of (17.2) associated to this inclusion.

17.6. Composition functors. Rewrite this to use $n = 2$ as the basic example.

We can use the above theory to construct “composition functors”. If C is an ordinary category, the operation of composing a sequence of n maps can be upgraded to a functor:

$$\text{Fun}([1], C) \times C \cdots \times C \text{Fun}([1], C) \to \text{Fun}([1], C)$$

which on objects describes composition of a sequence of maps. The source of this functor is the evident inverse limit in Cat; it can be identified (using simplicial set language) with $\text{Fun}(I^n, C)$.

We can generalize such composition functors to quasicategories. We use the following observation:

any trivial fibration admits a section, since $(\emptyset \to Y) \sqcup (p: X \to Y)$ if p is a trivial fibration (17.2).

Let C be a quasicategory. Then map $r: \text{Fun}(\Delta^n, C) \to \text{Fun}(I^n, C)$ induced by restriction along $I^n \subseteq \Delta^n$ is a trivial fibration by (17.2), since the spine inclusion is inner anodyne (12.11). Therefore r admits a section s, so we get a diagram

$$\text{Fun}(I^n, C) \xymatrix{ \ar[r]^s & \text{Fun}(\Delta^n, C) \ar[r]^{r'} & \text{Fun}(\Delta^{(0,n)}, C) }$$

where r' is restriction along $\Delta^{(0,n)} \subset \Delta^n$. The composite $r's$ can be thought of as a kind of “n-fold composition” functor. It is not unique, since s isn’t, but we’ll see (??) that this is ok: all functors constructed this way are “naturally isomorphic” to each other.

17.7. A useful variant. The proof of (16.7) actually proves something a little stronger.

17.8. Proposition ([Joy08a, §2.3.1], [Lur09, §2.3.2]). We have that \{\Lambda^2_2 \subset \Delta^2\} \sqcup \text{Cell} = \text{InnHorn}.

Proof. We give a proof in the appendix (60.3). □

A consequence of this is another characterization of quasicategories.

17.9. Corollary. A simplicial set C is a quasicategory if and only if $f: \text{Map}(\Delta^2, C) \to \text{Map}(\Lambda^2_1, C)$ is a trivial fibration.

Proof. First notice that $(\partial \Delta^k \subset \Delta^k) \sqcup f$ for all $k \geq 0$ iff $(\partial \Delta^k \subset \Delta^k) \sqcup (\Lambda^2_1 \subset \Delta^2) \sqcup (C \to *)$ for all $k \geq 0$, since $f = (C \to *) \sqcup (\Lambda^2_1 \subset \Delta^2)$, Therefore $f \in \text{TrivFib} = \text{InnHorn}^\square$ if and only if $(C \to *) \in (\text{Cell} \sqcup \{\Lambda^2_1 \subset \Delta^2\})^\sqcup$. The conclusion immediately follows using (17.8). □

18. Natural isomorphisms

18.1. Natural isomorphisms of functors. Let C and D be quasicategories. Recall that a natural transformation between functors $f_0, f_1: C \to D$ is defined to be a morphism $\alpha: f_0 \to f_1$ in the functor quasicategory $\text{Fun}(C, D)$, or equivalently a map $\overline{\alpha}: C \times \Delta^1 \to D$ such that $\overline{\alpha}|C \times \Delta^{(i)} = f_i$, $i = 0, 1$.

Say that $\alpha: f_0 \to f_1$ is a natural isomorphism if α is an isomorphism in the quasicategory of functors $\text{Fun}(C, D)$. Thus, α is a natural isomorphism iff there exists a natural transformation $\beta: f_1 \to f_0$ such that $\beta \alpha \approx 1_{f_0}$ and $\alpha \beta \approx 1_{f_1}$, where “$\approx$” is homotopy between morphisms in the quasicategory $\text{Fun}(C, D)$.

This notion of natural isomorphism corresponds with the usual one for ordinary categories, since in that case homotopy of morphisms is the same as equality of morphisms.

Observe that “there exists a natural isomorphism $f_0 \to f_1$” is an equivalence relation on the set of all functors $C \to D$, as this relation precisely coincides with “there exists an isomorphism $f_0 \to f_1$” in the category $h \text{Fun}(C, D)$. We say that f_0 and f_1 are naturally isomorphic factors.

Furthermore, the “naturally isomorphic” relation is compatible with composition: if f, f' are naturally isomorphic and g, g' are naturally isomorphic, then so are gf and $g'f'$. You can read this off
from the fact the operation of composition of functors extends to a functor $\text{Fun}(D, E) \times \text{Fun}(C, D) \to \text{Fun}(C, E)$ between quasicategories, and so induces a functor

$$h \text{Fun}(D, E) \times h \text{Fun}(C, D) \approx h(\text{Fun}(D, E) \times \text{Fun}(C, D)) \to h \text{Fun}(C, E).$$

(This uses (9.15) to identify the homotopy category of the product with the product of homotopy categories.)

18.2. **Objectwise criterion for natural isomorphisms.** Recall that if C and D are ordinary categories, a natural transformation $\alpha: f_0 \to f_1$ between functors $f_0, f_1: C \to D$ is a natural isomorphism iff and only if α is “an isomorphism objectwise”; i.e., if for each object c of C the evident map $\alpha(c): f_0(c) \to f_1(c)$ is an isomorphism in D. That natural isomorphisms are “objectwise isomorphisms” is immediate. The opposite implication follows from the fact that a natural transformation between functors of ordinary values can be completely recovered from its “values on objects”. Thus, given $\alpha: f_0 \to f_1$ such that each $\alpha(c): f_0(c) \to f_1(c)$ is an isomorphism, we may explicitly construct an inverse transformation $\beta: f_1 \to f_0$ by setting $\beta(c) := \alpha(c)^{-1}: f_1(c) \to f_0(c)$. Note that this β is in fact the unique inverse to α (since inverses to morphisms are unique when they exist).

One of these directions is straightforward for quasicategories.

18.3. **Proposition.** Let C and D be quasicategories. If $\alpha: C \times \Delta^1 \to D$ is a natural isomorphism between functors $f_0, f_1: C \to D$, then for each object c of C the induced map $\alpha(c): f_0(c) \to f_1(c)$ is an isomorphism in D.

Proof. The map $\text{Fun}(C, D) \to \text{Fun}(\{c\}, D) = D$ induced by restriction along $\{c\} \subseteq C$ is a functor between quasicategories, so it takes isomorphisms to isomorphisms. It sends α to $\alpha(c)$. \qed

The converse to this proposition is also true.

C. **Deferred Proposition.** A natural transformation $\alpha: C \times \Delta^1 \to D$ of functors between quasicategories is a natural isomorphism if and only if each of the maps $\alpha(c)$ are isomorphisms in D.

Unfortunately, this is much more subtle to prove, as it requires using the existence of inverses to the $\alpha(c)$s to produce an inverse to α, which though it exists is not at all unique. We will prove this converse later (31).

18.4. **Remark.** An immediate consequence of (C) is that if D is a quasigroupoid, then so is $\text{Fun}(C, D)$.

18.5. **Remark.** The objectwise criterion (C) can be reformulated in terms of homotopy categories. The homotopy category construction takes quasicategories to categories, and takes functors to functors. Furthermore, given a natural transformation $\alpha: f_0 \to f_1$ of functors $f_0, f_1: C \to D$ between quasicategories (i.e., a functor $\alpha: C \times \Delta^1 \to D$ such that $(\alpha|C \times \{j\}) = f_j$), we obtain an induced transformation $h\alpha: h\alpha_0 \to h\alpha_1$ of functors $h\alpha_0, h\alpha_1: hC \to hD$ between their homotopy categories (so that the value of $h\alpha$ at an object $c \in \text{ob} hC = C_0$ is the homotopy class of the edge $\alpha(\{c\} \times \Delta^1) \subseteq D$). Then (C) asserts that α is a natural isomorphism of functors between quasicategories if and only if $h\alpha$ is a natural isomorphism of functors between ordinary categories.

19. **Categorical equivalence**

We are now in position to define the correct generalization of the notion of “equivalence” of categories. This will be called **categorical equivalence** of quasicategories, and will be a direct generalization of the classical notion.

Given this, we use it to define a notion of categorical equivalence which applies to arbitrary maps of simplicial sets. Finally, we will show that the two definitions agree for maps between quasicategories.
19.1. **Categorical equivalences between quasicategories.** A categorical inverse to a functor $f: C \to D$ between quasicategories is a functor $g: D \to C$ such that gf is naturally isomorphic to 1_C and fg is naturally isomorphic to 1_D. We provisionally say that a functor f between quasicategories is a **categorical equivalence** if it admits a categorical inverse.

19.2. **Remark.** Categorical equivalence between quasicategories is a kind of “homotopy equivalence”, where homotopies are natural isomorphisms between functors.

If C and D are nerves of ordinary categories, then natural isomorphisms between functors in our sense are precisely natural isomorphisms between functors in the classical sense, and that categorical equivalence between nerves of categories coincides precisely with the usual notion of equivalence of categories.

If quasicategories are equivalent, then their homotopy categories are equivalent.

19.3. **Proposition.** If $f: C \to D$ is a categorical equivalence between quasicategories, then $h(f): hC \to hD$ is an equivalence of categories.

Proof. Immediate, given that natural transformations $f \Rightarrow g: C \to D$ induce natural transformations $h(f) \Rightarrow h(g): hC \to hD$. □

Note: the converse is not at all true. For instance, there are many examples of quasicategories which are not equivalent to Δ^0, but whose homotopy categories are: e.g., $\text{Sing} T$ for any non-contractible simply connected space T, or $K(A,d)$ for any non-trivial abelian group A and $d \geq 2$.

19.4. **Exercise (Categorical inverses are unique up to natural isomorphism).** Let $f: C \to D$ be a functor between quasicategories, and suppose $g, g': D \to C$ are both categorical inverses to f. Show that g and g' are naturally isomorphic.

19.5. **General categorical equivalence.** We can extend the notion of categorical equivalence to maps between arbitrary simplicial sets. Say that a map $f: X \to Y$ between arbitrary simplicial sets is a **categorical equivalence** if for every quasicategory C, the induced functor $\text{Fun}(f, C): \text{Fun}(Y, C) \to \text{Fun}(X, C)$ of quasicategories admits a categorical inverse.

We claim that on maps between quasicategories this general definition of categorical equivalence coincides with the provisional notion described earlier.

19.6. **Lemma.** For a map $f: C \to D$ between quasicategories, the two notions of categorical equivalence described above coincide. That is, the following are equivalent:

1. f admits a categorical inverse.
2. For every quasicategory E, the functor $\text{Fun}(f, E): \text{Fun}(D, E) \to \text{Fun}(C, E)$ admits a categorical inverse.

To prove this, we will need the following observation. The construction $X \mapsto \text{Map}(X, E)$ is a functor $sSet^{op} \to sSet$, and so in particular induces a natural map

$$\gamma_0: \text{Hom}(X, Y) \to \text{Hom}(\text{Map}(Y, E), \text{Map}(X, E))$$

of sets, which sends $f: X \to Y$ to $\text{Map}(f, E): \text{Map}(Y, E) \to \text{Map}(X, E)$. The observation we need is that this construction admits an “enrichment”, to a map

$$\gamma: \text{Map}(X, Y) \to \text{Map}(\text{Map}(Y, E), \text{Map}(X, E)),$$

which coincides with γ_0 on vertices. The map γ is defined to be adjoint to the “composition” map $\text{Map}(X, Y) \times \text{Map}(Y, E) \to \text{Map}(X, E)$. (**Exercise:** Describe explicitly what γ does to n-dimensional elements.) We say that the functor $\text{Map}(\cdot, E)$ is an **enriched** functor, as it gives not merely a map between hom-sets (i.e., acts on vertices in function complexes), but in fact gives a map between function complexes.
Thus, we have shown that we must have that id is a categorical inverse of f. Conversely, suppose $f: C \to D$ is a categorical equivalence in the general sense, so that $f^*: \text{Map}(C, E) \to \text{Map}(D, E)$ admits a categorical inverse for every quasicategory E, which implies that each functor
\[
\gamma(f^*): h \text{Fun}(D, E) \to h \text{Fun}(C, E)
\]
is an equivalence of ordinary categories (19.3). In particular, it follows that f^* induces a bijection of sets
\[
f^*: \pi_0(\text{Fun}(D, E)_{\text{core}}) \to \pi_0(\text{Fun}(C, E)_{\text{core}});
\]
recall that $\pi_0(\text{Fun}(D, E)_{\text{core}}) \approx \pi_0((h \text{Fun}(D, E))_{\text{core}})$ is precisely the set of natural isomorphism classes of functors $D \to E$.

Taking $E = C$, this implies that there must exist $g \in \text{Fun}(D, C)_0$ such that there exists a natural isomorphism $gf \to \text{id}_C$ in $\text{Fun}(C, C)_1$. Taking $E = D$, we note that since
\[
f^*(\text{id}_D) = \text{id}_D f = f \text{id}_C \approx fgf = f^*(fg),
\]
we must have that $\text{id}_D \approx fg$, i.e., there exists a natural isomorphism $\text{id}_D \to fg$ in $\text{Fun}(D, D)_1$. Thus, we have shown that g is a categorical inverse of f, as desired. \qed

19.7. Remark. The definition of categorical equivalence we are using here is very different to the definition adopted by Lurie [Lur09, §2.2.5]. It is also slightly different from the notion of “weak categorical equivalence” used by Joyal [Joy08a, 1.20]. As we will show soon (22.12), Joyal’s weak categorical equivalence is equivalent to our definition of categorical equivalence. The discussion around [Lur09, 2.2.5.8] show’s that Lurie’s and Joyal’s definitions are equivalent, and so they are both equivalent to the one we have used.

19.8. Exercise. Let $f: C \to D$ be a functor between quasicategories. Show that f is a categorical equivalence if and only if for all simplicial sets X, the induced functor $f_*: \text{Map}(X, C) \to \text{Map}(X, D)$ is a categorical equivalence.

20. Trivial fibrations and inner anodyne maps

Inner anodyne maps and trivial fibrations are particular kinds of categorical equivalences.

20.1. Trivial fibrations to the terminal object. Recall that a trivial fibration $p: X \to Y$ of simplicial sets is a map such that $(\partial \Delta^k \subset \Delta^k) \sqcup p$ for all $k \geq 0$. That is, $\text{TrivFib} = \text{Cell}^\sqcup$, so p is a trivial fibration if and only if $\text{Cell} \sqcup \sqcup p$.

20.2. Exercise. Consider an indexed collection of trivial fibrations $p_i: X_i \to Y_i$. Show that $p := \coprod p_i: \coprod X_i \to \coprod Y_i$ is a trivial fibration. (Hint: similar to proof of (6.7).)

20.3. Proposition. Let X be a simplicial set and $p: X \to \ast$ be a trivial fibration whose target is the terminal simplicial set. Then X is a Kan complex (and thus a quasigroupoid) and p is a categorical equivalence.

Proof. Enriched lifting (17.3) applied to $\text{Cell} \circ \text{Cell} \subseteq \text{Cell}$ (17.5) means that for any monomorphism $i: A \to B$ of subcomplexes the pullback-hom map
\[
p^{\sqcup} = \text{Map}(i, X): \text{Map}(B, X) \to \text{Map}(A, X) \times_{\text{Map}(A, \ast)} \text{Map}(B, \ast) = \text{Map}(A, X)
\]
is a trivial fibration. In particular, it implies that $\text{Map}(i, X)$ is surjective on vertices, so $\text{Hom}(B, X) \to \text{Hom}(A, X)$ is surjective.

It follows immediately that X is a Kan complex, by taking i to be any horn inclusion.

To show that p is a categorical equivalence, first note that X is non-empty, since $\text{Hom}(\Delta^0, X) \to \text{Hom}(\emptyset, X) = \ast$ is surjective. Choose any $s \in \text{Hom}(\Delta^0, X)$. Clearly $ps = \text{id}_{\Delta^0}$. We will show that $sp : X \to X$ is naturally isomorphic to id_X. Consider the commutative diagram

\[
\begin{array}{ccc}
 X \amalg X & \xrightarrow{(\text{id}_X, sp)} & X \\
 \downarrow & & \downarrow p \\
 X \times \Delta^1 & \xrightarrow{h} & X \\
 \downarrow & & \downarrow \\
 X \times \Delta^1 & \xrightarrow{} & \ast
\end{array}
\]

Since p is a trivial fibration, a lift h exists, which exhibits a natural transformation $\text{id}_X \to sp$; note that h represents a morphism in $\text{Fun}(X, X)$. To show that h represents an isomorphism, it's enough to know that $\text{Fun}(X, X)$ is actually a quasigroupoid. In fact, restriction along $\emptyset \to X$ a trivial fibration $\text{Fun}(X, X) \to \text{Fun}(\emptyset, X) = \ast$, whence $\text{Fun}(X, X)$ is a Kan complex by the argument given above. □

We will prove a partial converse to this later (36.11): if C is a quasicategory which is categorically equivalent to \ast, then $C \to \ast$ is a trivial fibration.

20.4. Preisomorphisms. We need a way to produce categorical equivalences between simplicial sets which are not necessarily quasicategories.

Let X be a simplicial set. Say that an edge $a \in X_1$ is a preisomorphism if it projects to an isomorphism under $\alpha : X \to hX$, the tautological map to the (nerve of the) fundamental category (9.1). If X is actually a quasicategory, the preisomorphisms are just the isomorphisms (since in that case the fundamental category is the same as the homotopy category). Note that degenerate edges are always preisomorphisms, since they go to identity maps in the fundamental category.

20.5. Proposition. An edge $a \in X_1$ is a preisomorphism if and only if for every map $g : X \to C$ to a quasicategory C, the image $g(a)$ is an isomorphism in C.

Proof. Isomorphisms in C are exactly the edges which are sent to isomorphisms under $\gamma : C \to hC$. Given this the proof is straightforward, using the fact that the formation of fundamental categories is functorial, and that hX is itself a category and hence a quasicategory. □

As a consequence, any map $X \to Y$ of simplicial sets takes preisomorphisms to preisomorphisms. In particular, any map from a quasicategory takes isomorphisms to preisomorphisms. We will use this observation below.

20.6. Example. Consider the subcomplex $\Lambda^3_{\{0,3\}} = \Delta^{\{0,1,2\}} \cup \Delta^{\{1,2,3\}}$ of Δ^3. Define Z to be the pushout of the diagram

\[
\begin{array}{ccc}
 \Lambda^3_{\{0,3\}} & \xrightarrow{j} & \Delta^{\{0,2\}} \amalg \Delta^{\{1,3\}} \\
 \downarrow & & \downarrow p_x \amalg p_y \\
 \Delta^{\{x\}} \amalg \Delta^{\{y\}} & \xrightarrow{} & \ast
\end{array}
\]

where j is the evident inclusion, $\Delta^{\{x\}}$ and $\Delta^{\{y\}}$ are simplicial sets isomorphic to Δ^0, but with vertices labelled “x” and “y” respectively, and p is induced by the evident projections $\Delta^{\{0,2\}} \to \Delta^{\{x\}}$ and $\Delta^{\{1,3\}} \to \Delta^{\{y\}}$. The resulting complex Z looks like

\[
\begin{array}{ccc}
y & \xrightarrow{y_{00}} & y \\
g & \downarrow b & \downarrow a \amalg h \\
x & \xrightarrow{x_{00}} & x
\end{array}
\]
with seven non-degenerate elements: \(x, y \in Z_0, f, g, h \in Z_1, a, b \in Z_2 \). The simplicial set \(Z \) is not a quasicategory (why not?). However, any map \(\phi: Z \to C \) to a quasicategory sends \(f, g, h \) to morphisms \(\phi(f), \phi(g), \phi(h) \) of \(C \) so that \(\phi(g) \) is a preinverse of \(\phi(f) \) and \(\phi(h) \) is a postinverse of \(\phi(f) \). Therefore these (and thus all) edges of \(Z \) are preisomorphisms.

20.7. Example. Here is a variant of the previous example. Consider the subcomplex \(\Lambda^3_{0,3} = \Delta^{0,1,2} \cup \Delta^{1,2,3} \) of \(\Delta^3 \). Define \(Z' \) to be the pushout of the diagram

\[
\begin{array}{ccc}
\Lambda^3_{0,3} & \xrightarrow{j} & \Delta^{0,1} \cup \Delta^{0,2} \cup \Delta^{1,3} \cup \Delta^{2,3} \\
\downarrow & & \downarrow p \\
\Delta^{y<x} & & \\
\end{array}
\]

where \(j \) is the evident inclusion, \(\Delta^{y<x} \) is a simplicial set isomorphic to \(\Delta^1 \) but with vertices labelled “\(y \)” and “\(x \)” instead of “\(0 \)” and “\(1 \)”, and \(p \) is the unique map which on vertices sends \(0, 2 \mapsto y \), \(1, 3 \mapsto x \). The resulting complex \(Z' \) looks like

\[
\begin{array}{ccc}
y & \xrightarrow{y_{00}} & y \\
g & \downarrow b & \downarrow g \\
x & \xleftarrow{x_{00}} & x \\
\end{array}
\]

with six non-degenerate elements: \(x, y \in Z'_0, f, g \in Z'_1, a, b \in Z'_2 \). Again, \(Z' \) is not a quasicategory, but all edges of \(Z' \) are preisomorphisms.

Say that vertices in a simplicial set \(X \) are preisomorphic if they can be connected by a chain of preisomorphisms (which can point in either direction). Clearly, any map \(g: X \to C \) to a quasicategory takes preisomorphic vertices of \(X \) to isomorphic objects of \(C \).

We can apply this to function complexes. If two maps \(f_0, f_1: X \to Y \) are preisomorphic (viewed as vertices in \(\text{Map}(X,Y) \)), then for any quasicategory \(C \), the induced functors \(\text{Map}(f_0,C), \text{Map}(f_1,C): \text{Map}(Y,C) \to \text{Map}(X,C) \) are naturally isomorphic. To see this, consider

\[
\Delta^1 \xrightarrow{a} \text{Map}(X,Y) \xrightarrow{b} \text{Map}(\text{Map}(Y,C),\text{Map}(X,C))
\]

where \(b \) is adjoint to the composition map \(\text{Map}(Y,C) \times \text{Map}(X,Y) \to \text{Map}(X,C) \). If \(a \) represents a preisomorphism \(f_0 \to f_1 \) in \(\text{Map}(X,Y) \), then \(ba \) represents an isomorphism \(\text{Map}(f_0,C) \to \text{Map}(f_1,C) \), since the target of \(b \) is a quasicategory. As a consequence we get the following.

20.8. Lemma. If \(f: X \to Y \) and \(g: Y \to X \) are maps of simplicial sets such that \(gf \) is preisomorphic to \(\text{id}_Y \) in \(\text{Map}(X,Y) \) and \(fg \) is preisomorphic to \(\text{id}_X \) in \(\text{Map}(Y,Y) \), then \(f \) and \(g \) are categorical equivalences.

It is important to note that this is a sufficient condition for a map to be a categorical equivalence, but not a necessary one: there are many categorical equivalences of simplicial sets to which the lemma cannot be applied (see (21.3) below).

20.9. Trivial fibrations are always categorical equivalences.

20.10. Proposition. Every trivial fibration between simplicial sets is a categorical equivalence.

Here is some notation. Given maps \(f: A \to Y \) and \(g: B \to Y \), we write \(\text{Map}/_Y(f,g) \) or \(\text{Map}/_Y(A,B) \) for the simplicial set defined by the pullback square

\[
\begin{array}{ccc}
\text{Map}/_Y(A,B) & \xrightarrow{\text{Map}(A,B)} & \text{Map}(A,B) \\
\downarrow & & \downarrow \text{g_*=Map(A,g)} \\
\{f\} & \xrightarrow{\text{Map}(A,Y)} & \text{Map}(A,Y) \\
\end{array}
\]
Note that vertices of $\text{Map}_{/Y}(A,B)$ correspond exactly to “sections of g over f”, i.e., to $s: A \to B$ such that $gs = f$. You can think of $\text{Map}_{/Y}(A,B)$ as a simplicial set which “parameterizes” sections of g over f. I’ll call this the relative function complex over Y.

20.11. Exercise. Show that n-dimensional elements of $\text{map}_{/Y}(A,B)$ correspond to maps $a: \Delta^n \times A \to B$ such that $ga = \pi(\text{id} \times f)$, where $\pi: \Delta^n \times Y \to Y$ is the projection.

Proof of (20.10). Fix a trivial fibration $p: X \to S$. We regard both X and S as objects over S, via p and id_S, and consider various relative function complexes over S.

Note that since p is a trivial fibration, so are $\text{Map}(X,p) = p^\Delta(\varnothing \subset X)$ and $\text{Map}(S,p) = p^\Delta(\varnothing \subset X)$ by enriched lifting $\text{Cell} \boxtimes \text{Cell} \subseteq \text{Cell}$. The maps

$$\text{Map}_{/S}(S,X) \to \text{Map}_{/S}(S,S) = \star \quad \text{and} \quad \text{Map}_{/S}(X,X) \to \text{Map}_{/S}(X,S) = \star$$

are (by construction) base changes of $\text{Map}(S,p)$ and $\text{Map}(X,p)$ respectively, and so are also trivial fibrations since TrivFib is closed under base change. It follows from (20.3) that both $\text{Map}_{/S}(S,X)$ and $\text{Map}_{/S}(X,X)$ are quasigroupoids which are categorically equivalent to the terminal object (and so are non-empty and such that all objects are isomorphic). Note that these are subcomplexes of simplicial sets $\text{Map}(S,X)$ and $\text{Map}(X,X)$ respectively, which however need not be quasicategories. The edges of $\text{Map}_{/S}(S,X)$ and $\text{Map}_{/S}(X,X)$ are preisomorphisms in $\text{Map}(S,X)$ and $\text{Map}(X,X)$.

Pick any vertex s of $\text{Map}_{/S}(S,X)$, so that s can be regarded as a map $s: S \to X$ such that $ps = \text{id}_S$. Pick any isomorphism $a: \text{id}_X \to sp$ in $\text{Map}_{/S}(X,X)$, which is hence a preisomorphism in $\text{Map}(X,X)$.

Thus, we have exhibited maps p and s whose composites are preisomorphic to identity functors, and therefore they are categorical equivalences by (20.8).

20.12. Remark (“Uniqueness” of sections of trivial fibrations). Suppose that $p: C \to D$ is a trivial fibration between quasicategories. As we have noted, the relative function complex $\text{Map}_{/D}(D,C)$ “parameterizes sections of p”. Since this is a quasigrouopoid equivalent to the terminal quasicategory (20.10), not only is p a categorical equivalence, but also

- p admits a section, which is a categorical inverse to p, and
- any two sections of p are naturally isomorphic.

We will often make use of this observation.

20.13. Inner anodyne maps are always categorical equivalences.

20.14. Proposition. Every inner anodyne map between simplicial sets is a categorical equivalence.

Proof. Let $j: X \to Y$ be a map in InnHorn, and let C be any quasicategory. The induced map $\text{Map}(j,C): \text{Map}(Y,C) \to \text{Map}(X,C)$ is a trivial fibration by enriched lifting and $\text{InnHorn} \boxtimes \text{Cell} \subseteq \text{InnHorn} (17.2)$, and therefore is a categorical equivalence. \hfill \Box

20.15. Every simplicial set is categorically equivalent to a quasicategory.

(1) There exists a quasicategory C and an inner anodyne map $f: X \to C$, which is therefore a categorical equivalence.

(2) For any two $f_i: X \to C_i$ as in (1), there exists a categorical equivalence $g: C_1 \to C_2$ such that $gf_1 = f_2$.

(3) Any two categorical equivalences $g_1, g_2: C_1 \to C_2$ such that $g_1f_1 = f_2$ are naturally isomorphic.
Here is some more notation. Given maps \(f: X \to A \) and \(g: X \to B \), we write \(\text{Map}_X(f,g) \) or \(\text{Map}_X(A,B) \) for the simplicial set defined by the pullback square

\[
\begin{array}{ccc}
\text{Map}_X(A,B) & \to & \text{Map}(A,B) \\
\downarrow & & \downarrow f^* = \text{Map}(f,B) \\
\{g\} & \to & \text{Map}(X,B)
\end{array}
\]

This is the relative function complex under \(X \).

20.17. Exercise. Show that \(n \)-dimensional elements of \(\text{map}_X(A,B) \) correspond to maps \(a: \Delta^n \times A \to B \) such that \(a(\text{id} \times f) = g \pi \), where \(\pi: \Delta^n \times X \to X \) is the projection.

Proof of (20.16). (1) By the small object argument (13.11), we can factor \(X \to * \) into \(X \xrightarrow{j} C \xrightarrow{p} * \) where \(j \in \text{InnHorn} \) and \(p \in \text{InnFib} \). The inner anodyne map \(j \) is the desired categorical equivalence to a quasicategory.

(2) For \(i,j \in \{1,2\} \), we have a restriction map \(f_{i,j}^*: \text{Map}(C_i,C_j) \to \text{Map}(X,C_j) \), which is necessarily a trivial fibration by enriched lifting since \(\text{Cell} \sqsubset \text{Cell} \). Therefore the maps \(\text{Map}_X(C_i,C_j) \to * \) (obtained by base-change from the \(f_{i,j}^* \)) are all trivial fibrations, i.e., each \(\text{Map}_X(C_i,C_j) \) is a quasigroupoid with only one isomorphism class of objects (20.3). As in the proof of (20.10) we construct \(g: C_1 \to C_2 \) and \(g': C_2 \to C_1 \) which are categorically inverse to each other; details are left to the reader.

(3) The maps \(g_1,g_2 \) correspond to vertices in \(\text{Map}_X(C_1,C_2) \), which as we have observed is a quasigroupoid with only one isomorphism class of objects. \(\square \)

Thus, we can always “replace” a simplicial set \(X \) by a categorically equivalent quasicategory \(C \). Although such \(C \) is not unique, it is unique up to categorical equivalence.

You can think of such a replacement \(X \to C \) of \(X \) as a quasicategory “freely generated” by the simplicial set \(X \), an idea which is validated by the fact that \(\text{Fun}(j,D): \text{Fun}(C,D) \to \text{Map}(X,D) \) is a categorical equivalence for every quasicategory \(D \).

21. Some examples of categorical equivalences

21.1. Free monoid on one generator. Let \(F \) denote the free monoid on one generator \(g \). This is a category with one object \(x \), and morphism set \(\{ g^n \mid n \geq 0 \} \).

Associated to the generator \(g \) is a map

\[
\gamma: S := \Delta^1/\partial \Delta^1 \to N(F)
\]

sending the image of the generator \(\iota \in (\Delta^1)_1 \) in \(S \) to \(g \). (We use “\(L/K \)” as a shorthand for “\(L \amalg_K * \)” whenever \(K \subseteq L \). The object \(S \) is called the “simplicial circle”, which has exactly two nondegenerate simplicies, one in dimension 0 and one in dimension 1.)

It is not hard to see that \(F \) is “freely generated” as a category by \(S \), in the sense that \(hS = F \) (the fundamental category of \(S \) is \(F \)). It turns out that \(N(F) \) is actually freely generated as a quasicategory by \(S \).

21.2. Proposition. The map \(\gamma: S \to N(F) \) is a categorical equivalence, and in fact is inner anodyne.

Proof. This is an explicit calculation. Note that a general element in \(N(F)_d \) corresponds to a sequence \((g^{m_1}, \ldots, g^{m_d}) \) of elements of the monoid \(F \), where \(m_1, \ldots, m_d \geq 0 \). Let \(a_k \in N(F)_k \) denote the \(k \)-dimensional element corresponding to the sequence \((g,g,\ldots,g) \), and let \(Y_k \subseteq N(F) \)
denote the subcomplex which is the image of the representing map $a_k: \Delta^k \to N(F)$. For $f: [d] \to [k]$ we compute that $a_k f = (g^{m_1}, \ldots, g^{m_d})$ where $m_i = f(i) - f(i-1)$, so that

$$(Y_k)_d = \{a_k f \mid f: [d] \to [k] \} = \{(g^{m_1}, \ldots, g^{m_d}) \mid m_1 + \cdots + m_d \leq k \},$$

Clearly $N(F) = \bigcup_{k \geq 1} Y_k$, with $Y_1 \approx S$ and $Y_2 \approx Y_1 \cup \Lambda^3_0 \Delta^2$. Furthermore we have the following:

- An element f of $(\Delta^k)_d$ is such that $a_k f$ is in the subcomplex Y_{k-1} of Y_k if and only if $f(d) - f(0) < k$, i.e., if and only if f is in the subcomplex $\Lambda^k_{\{0,k\}} = \Delta^{\{0,\ldots,k-1\}} \cup \Delta^{\{1,\ldots,k\}}$.

- Every element y of Y_k not in Y_{k-1} is the image under a_k of a unique element in Δ^k. (I.e., if $f: [d] \to [k]$, then $m_1 + \cdots + m_d = f(d) - f(0)$, which is equal to k if and only if $f(0) = 0$ and $f(d) = k$, and if this is the case then $f(i) = m_1 + \cdots + m_i$.)

In other words, the square

$$\Lambda^k_{\{0,k\}} \to Y_{k-1} \quad \frac{\Lambda^k_{\{0,k\}}}{\Lambda^k} \to Y_k \to Y_{k-1}$$

is a pullback, and a_k induces in each dimension d a bijection $(\Delta^k)_d \setminus (\Lambda^k_{\{0,k\}})_d \overset{\sim}{\to} (Y_k)_d \setminus (Y_{k-1})_d$.

It follows (15.24) that the square is a pushout.

The inclusion $\Lambda^k_{\{0,k\}} \subset \Delta^k$ is a generalized inner horn, and we have noted this is inner anodyne when $k \geq 2$ (12.9). It follows that each $Y_{k-1} \to Y_k$ is inner anodyne for $k \geq 2$, whence $S \to N(F)$ is inner anodyne.

21.3. Remark. This gives an explicit example of a categorical equivalence to which (20.8) does not apply: γ does not admit an “inverse up to preisomorphims”. There is only one map $\delta: N(F) \to S$, namely the composite $N(F) \to \ast \to S$, and it is clear that neither $\delta \gamma: N(F) \to N(F)$ nor $\gamma \delta: S \to S$ are preisomorphic to identity functors.

21.4. Free categories. We can generalize the above to free monoids with arbitrary sets of generators, and in fact to free categories. Let S be a 1-dimensional simplicial set, i.e., one such that $S = Sk_1 S$. These are effectively the same thing as directed graphs (allowed to have multiple parallel edges and loops): S_0 corresponds to the set of vertices of the directed graph, and S_1^{nd} corresponds to the set of edges of the directed graph.

Let $F := hS$. We call F the free category on the 1-dimensional simplicial set S. In this case, the morphisms of the fundamental category are precisely the words in the edges S_1^{nd} of the directed graph (including empty words for each vertex, corresponding to identity maps).

21.5. Proposition. The evident map $\gamma: S \to N(F)$ is a categorical equivalence, and in fact is inner anodyne.

Proof. This is virtually the same as the proof of (21.2). In this case, $Y_k \subseteq N(F)$ is the subcomplex generated by all $a: \Delta^k \to N(F)$ such that each spine-edge $a_{i-1,i}$ is in S_1^{nd}, and Y_k is obtained by attaching a generalized horn to Y_{k-1} for each such a. \qed

As a consequence, it is “easy” to construct functors $F \to C$ from a free category to a quasicategory: start with a map $S \to C$, which amounts to specifying vertices and edges in C corresponding to elements S_0 and S_1^{nd}, and extend over $S \subseteq F$. The evident restriction map $\text{Fun}(F, C) \to \text{Map}(S, C)$ is a categorical equivalence, and in fact a trivial fibration.

21.6. Exercise. Describe the ordinary category $A := hA^3_0$ “freely generated” by A^3_0. Show that the tautological map $A^3_0 \to N(A)$ is inner anodyne.
21.7. **Free commutative monoids.** Let F be the free monoid on one generator again, with generator corresponding to simplicial circle $S = \Delta^1/\partial\Delta^1 \subset F$. Recall that F^{x_n} is the free commutative monoid on n generators. Recall that the nerve functor preserves products, so $N(F^{x_n}) \approx N(F)^{x_n}$. We obtain a map

$$\delta = \gamma^{x_n}: S^{x_n} \to N(F^{x_n})$$

from the “simplicial n-torus”.

21.8. **Proposition.** The map $\delta: S^{x_n} \to N(F^{x_n})$ is a categorical equivalence, and in fact is inner anodyne.

Proof. This is a consequence of the fact that if $j: A \to B$ is inner anodyne and K an arbitrary simplicial set, then $j \times K: A \times K \to B \times K$ is inner anodyne (because \text{InnHorn} \sqsubseteq \text{Cell} \sqsubseteq \text{InnHorn}). It follows that $A^{x_n} \to B^{x_n}$ is a composite of inner anodyne maps, and so is inner anodyne and thus a categorical equivalence (20.14). Also use the fact that the nerve construction preserves products (6.5), so $N(F^{x_n}) = N(F)^{x_n}$. \hfill \square

21.9. **Exercise.** Let $S \cup S \subset S^{x_2}$ be the subcomplex obtained as the evident “one-point union” of the two “coordinate circles”; i.e., $S \cup S = (S \times \{x\}) \cup (\{x\} \times S)$. Suppose given a map $\phi: S \cup S \to C$ to a quasicategory C, corresponding to a choice of object $x \in C_0$ together with two morphisms $f, g: x \to x$ in C_1. Show that there exists an extension of ϕ along $S \cup S \subset N(F^{x_2})$ if and only if $[f][g] = [g][f]$ in hC.

21.10. **Remark.** The analogue of the above exercise for $n = 3$ isn’t true. That is, consider the subcomplex $S \cup S \cup S \subset S^{x_3}$ which is a one-point union of three circles, suppose we have $S \cup S \cup S \to C$ commuting to three morphisms $f, g, h: x \to x$ in C, and suppose we also know that $[f][g] = [g][f]$, $[g][h] = [h][g]$, and $[f][h] = [h][f]$ in hC. Then you can show that there exists an extension to a map $\text{Sk}_2(S^{x_3}) \to C$ as in (21.9). However, there need not exist an extension to a map $S^{x_3} \to C$, and thus there may not exist an extension to a map $N(F^{x_3}) \to C$. (For an explicit example where this fails, take $C = \text{Sing} T$, where $T \subset (S^1)^{x_3}$ is the subspace of the 3-torus consisting of tuples (x_1, x_2, x_3) such that at least one x_i is the basepoint of S^1.)

Thus, this is a situation where the “higher structure” of a quasicategory plays a role. When C is an ordinary category, it is easy to show that the desired extension does always exist. However, for a general quasicategory C, three pairwise-commuting endomorphisms of an object do not generally give rise to a functor $N(F^{x_3}) \to C$ from the free commutative monoid on 3 generators.

21.11. **Finite groups are not finite.** If A is any ordinary category, then $\text{Sk}_2 N(A)$ “freely generates $N(A)$ as a category”, in the sense that $h(\text{Sk}_2 N(A)) \approx A$, or equivalently that $\text{Map}(N(A), N(B))$ is an isomorphism for any category B. However, it is often the case that no finite dimensional subcomplex “freely generates $N(A)$ as a quasicategory”. In fact, this is the case for every non-trivial finite group.

21.12. **Example.** Let G be a finite group, and let $C = N(G)$. The geometric realization $BG := ||N(G)||$ is the classifying space of G. I want to show that if G is not the trivial group, then NG is not categorically equivalent to any finite dimensional simplicial set K (i.e., one with no non-degenerate elements above a certain dimension). We need to use some homotopy theory, along with a fact to be proved later\footnote{I don’t know if this will actually get proved later. It is proved in [GJ09]}: if $f: X \to Y$ is any categorical equivalence of simplicial sets, then the induced map $||f||: ||X|| \to ||Y||$ on geometric realizations is a homotopy equivalence of spaces.

First consider $G = \mathbb{Z}/n$ with $n > 1$. A standard calculation in topology says that $H^k(||N(G)||, \mathbb{Z}) \approx \mathbb{Z}/n \approx 0$ for all $k > 0$. This implies that $||N(G)||$ cannot be homotopy equivalent to any finite dimensional complex.

Now consider a general non-trivial finite group G, and choose a non-trivial cyclic subgroup $H \leq G$. We know the fundamental group: $\pi_1 ||K|| \approx \pi_1 ||N(G)|| = G$. Covering space theory tells us we can
construct a covering map \(p: E \to \|N(G)\| \) so that \(\pi_1 E \to \pi_1 \|N(G)\| \) is the inclusion \(H \to G \). In fact, \(E \) is homotopy equivalent to the classifying space \(BH \) (because \(\pi_k E \approx 0 \) for \(k \geq 2 \)). But if \(\|N(G)\| \) is finite dimensional then so is \(E \), but this would then contradict the observation that \(H^*(BH, \mathbb{Z}) \approx H^*(E, \mathbb{Z}) \approx 0 \) for infinitely many \(* \).

Thus, non-trivial finite groups are never “freely generated as a quasicategory” by finite dimensional complexes.

21.13. Remark. Let \(T \) be a finite CW-complex, and \(G \) a finite group. A theorem of Haynes Miller (the “Sullivan conjecture”) implies that every functor \(N(G) \to \text{Sing} T \) is naturally isomorphic to a constant functor (i.e., one which factors through \(\Delta^0 \)). Thus, the singular complex of a finite CW-complex cannot “contain” any non-trivial finite group, even if its fundamental group contains a non-trivial finite subgroup.

22. The homotopy category of quasicategories

22.1. The homotopy category of \(\text{qCat} \). The homotopy category \(h\text{qCat} \) of quasicategories is defined as follows. The objects of \(h\text{qCat} \) are the quasicategories. Morphisms \(C \to D \) in \(h\text{qCat} \) are natural isomorphism classes of functors. That is,

\[
\text{Hom}_{h\text{qCat}}(C, D) := \text{isomorphism classes of objects in } h\text{Fun}(C, D) = \pi_0(\text{Fun}(C, D)^{\text{core}}).
\]

That this defines a category results from the fact that composition of functors passes to a functor \(h\text{Fun}(D, E) \times h\text{Fun}(C, D) \to h\text{Fun}(C, E) \), and thus is compatible with natural isomorphism.

It comes with an obvious functor \(\text{qCat} \to h\text{qCat} \). Note that a map \(f: C \to D \) of quasicategories is a categorical equivalence if and only if its image in \(h\text{qCat} \) is an isomorphism.

22.2. Remark. We can similarly define a category \(h\text{Cat} \), whose objects are categories and whose morphisms are isomorphism classes of functors. The nerve functor evidently induces a full embedding \(h\text{Cat} \to h\text{qCat} \).

22.3. Warning. Although we use the word “homotopy”, the definition of \(h\text{qCat} \) given above is not an example of the notion of the homotopy category of a quasicategory defined in §9: \(\text{qCat} \) is a (large) ordinary category, so is isomorphic to its own homotopy category in that sense. Here we are using the equivalence relation on morphisms (=functors) defined by natural isomorphism.

We define \(h\text{Kan} \subset h\text{qCat} \) to be the full subcategory of the homotopy category spanned by quasicategories which are Kan complexes.

For future reference, we note that \(h\text{qCat} \) and \(h\text{Kan} \) have finite products, which just amount to the usual products of simplicial sets.

22.4. Proposition. The terminal simplicial set \(\Delta^0 \) is a terminal object in \(h\text{qCat} \). If \(C_1, C_2 \) are quasicategories, then the projection maps exhibit \(C_1 \times C_2 \) as a product in \(h\text{qCat} \).

Proof. This is straightforward. The key observation for the second statement is the fact that isomorphism classes of objects in a product of quasicategories correspond to pairs of isomorphism classes in each \((6.13) \), and the fact that \(\text{Map}(X, C_1 \times C_2) \cong \text{Map}(X, C_1) \times \text{Map}(X, C_2) \).

22.5. The 2-out-of-6 and 2-out-of-3 properties. A class of morphisms \(W \) in a category is said to satisfy the \textbf{2-out-of-6 property} if (i) \(W \) contains all identity maps, and (ii) given sequence \((h, g, f) \) of maps such that the composites \(gf \) and \(hg \) are defined, if \(gf, hg \in W \) then also \(f, g, h, hgf \in W \).

A class of morphisms \(W \) in a category is said to satisfy the \textbf{2-out-of-3 property} if (i) \(W \) contains all identity maps, and (ii) given a sequence \((g, f) \) of maps such that the composite \(gf \) is defined, if any two of \((f, g, gf) \) are in \(W \), so is the third.

22.7. Proposition. If \(W \) satisfies 2-out-of-6, then it satisfies 2-out-of-3.

Proof. Given \(f, g \) such that \(gf \) is defined, apply 2-out-of-6 to the composable sequences \((\text{id}, g, f)\), \((g, \text{id}, f)\), \((g, f, \text{id})\). □

22.8. Exercise. Given a functor \(f : C \to D \) between categories, let \(W \) be the class of maps in \(C \) that \(f \) takes to isomorphisms in \(D \). Show that \(W \) satisfies 2-out-of-6, and thus 2-out-of-3.

22.9. Example (2-out-of-6 for equivalences of categories). In \(\text{Cat} \), the category of small categories and functors, the class of equivalences satisfies 2-out-of-6, and thus 2-out-of-3.

To see this, first suppose \((h, g, f)\) is a triple of functors such that there are natural isomorphisms \(gf \approx \text{id} \) and \(hg \approx \text{id} \). Then, since (i) natural isomorphism is an equivalence relation on functors and (ii) is compatible with composition, we see that

\[h = h \text{id} \approx h(gf) = (hg)f \approx \text{id} f = f, \]

and thus that \(g \) is an equivalence since \(hg \approx \text{id} \) and \(gh \approx gf \approx \text{id} \).

Next, note that composites of equivalences are equivalences, by a straightforward argument: if \(g \) and \(f \) are equivalences and composable, and \(g' \) and \(f' \) are categorical inverses to them, then \(f'g' \) is easily seen to be a categorical inverse to \(gf \).

Now suppose that \((h, g, f)\) are such that \(gf \) and \(hg \) are categorical equivalences. Choose categorical inverses \(u \) and \(v \) for these, so that

\[gfu \approx \text{id}, \quad ugf \approx \text{id}, \quad hgv \approx \text{id}, \quad vhg \approx \text{id}. \]

Apply the above remarks to the triples \((ug, f, ug), (vh, g, fu), (gv, h, gv), \) and \((ugv, hgf, vgu)\) to show that \(f, g, h \) are equivalences, where we use that

\[fug \approx (vhg)fug = vh(gfu)g \approx vhg \approx \text{id}, \quad gvh \approx gvh(gfu) = g(vhg)f u \approx gfu \approx \text{id}. \]

It follows that the composite \(hgf \) is also an equivalence.

Alternately, we can apply (22.8) to the tautological functor \(\text{Cat} \to h\text{Cat}, \) which sends a functor to an isomorphism in \(h\text{Cat} \) if and only if it is an equivalence.

22.10. Proposition. The class \(\text{CatEq} \) of categorical equivalences in \(s\text{Set} \) satisfies 2-out-of-6, and thus 2-out-of-3.

Proof. It is immediate that the identity map of a simplicial set is a categorical equivalence.

Next consider functors \(f, g, h \) between quasicategories such that \(gf \) and \(hg \) are are defined and are categorical equivalences. Then \(f, g, h \) and \(hgf \) are categorical equivalences by an argument which is word-for-word the same as in (22.9).

For the general case, we reduce to the quasicategory case by applying \(\text{Fun}(\cdot, C) \), where \(C \) is an arbitrary quasicategory. □

22.11. Weak categorical equivalence. Joyal [Joy08a, 1.20] uses a variant of the notion of categorical equivalence, which turns out to be equivalent to what we are using. A map \(f : X \to Y \) of simplicial sets is a weak categorical equivalence \(^{20}\) if for every quasicategory \(C \), the induced map \(h\text{Fun}(Y, C) \to h\text{Fun}(X, C) \) is an equivalence of ordinary categories. Note that, like categorical equivalences, the class of weak categorical equivalences also satisfies 2-out-of-3.

22.12. Proposition. A map is a categorical equivalence if and only if it is a weak categorical equivalence.

\(^{20}\)This is not to be confused with “weak equivalence”, which we will talk about later (35.1).
Proof. \((\Rightarrow)\) Straightforward. \((\Leftarrow)\) In the case that \(f\) is a weak categorical equivalence between quasicategories, this is exactly what the second half of the proof of (19.6) really shows. For a general map \(f\), use factorization to construct a commutative square

\[
\begin{array}{c}
X \\
\downarrow u \\
X' \\
\end{array}
\begin{array}{c}
\downarrow v \\
Y \\
\downarrow Y' \\
\end{array}
\begin{array}{c}
\xrightarrow{f} \\
\xrightarrow{f'} \\
\end{array}
\]

so that \(u\) and \(v\) are inner anodyne (and so categorical equivalences), and \(X'\) and \(Y'\) are quasicategories. Applying \(h\text{Fun}(\cdot, C)\) to the square with \(C\) a quasicategory, we see that the vertical maps become equivalences of categories, so if \(f\) is weak categorical equivalence so is \(f'\), which is then a categorical equivalence by what we have already proved, whence \(f\) is a categorical equivalence by 2-out-of-3. \(\square\)

22.13. The homotopy 2-category of \(q\text{Cat}\). A 2-category \(E\) is a category which is itself “enriched” over \(\text{Cat}\). That is,

- for each pair of objects \(x, y \in \text{ob}\ E\), there is a category \(\text{Hom}_E(x, y)\), so that
- the objects of \(\text{Hom}_E(x, y)\) are precisely the set \(\text{Hom}_E(x, y)\) of morphisms of \(E\), and
- there are “composition functors” \(\text{Hom}_E(y, z) \times \text{Hom}_E(x, y) \to \text{Hom}_E(x, z)\) for all \(x, y, z \in \text{ob}\ E\) which on objects is just ordinary composition of morphisms in \(E\), which
- is unital and associative in the evident sense.

One refers to the objects of \(\text{Hom}_E(x, y)\) as 1-morphisms \(f: x \to y\) of \(E\), and the morphisms of \(\text{Hom}_E(x, y)\) as 2-morphisms \(\alpha: f \Rightarrow g\) of \(E\). The underlying category of \(E\) consists of the objects and 1-morphisms only.

The standard example of a 2-category is \(\text{Cat}\), the category of categories, with objects=categories, 1-morphisms=functors, 2-morphisms=natural transformations.

We can enlarge the category \(q\text{Cat}\) of quasicategories to a homotopy 2-category \(h2q\text{Cat}\), so that

\[
\text{Hom}_{h2q\text{Cat}}(C, D) := h\text{Fun}(C, D).
\]

That is,

- objects of \(h2q\text{Cat}\) are quasicategories,
- 1-morphisms of \(h2q\text{Cat}\) are functors between quasicategories,
- 2-morphisms of \(h2q\text{Cat}\) are isomorphism classes of natural transformations of functors.

Note that \(q\text{Cat}\) sits inside \(h2q\text{Cat}\) as its underlying category; thus, \(h2q\text{Cat}\) contains all the information of \(q\text{Cat}\). On the other hand \(h\text{qCat}\) is obtained from \(h2q\text{Cat}\) by first identifying 1-morphisms (functors) which are 2-isomorphic (i.e., naturally isomorphic), and then throwing away the 2-morphisms.

Part 3. Joins, slices, and Joyal’s extension and lifting theorems

In this part we describe and apply two new methods to construct new quasicategories from old, called “joins” and “slices”. They are both generalizations of constructions which can be carried out on categories: the most familiar of these classical constructions is slice category \(C/x\) associated to an object \(x\) of a category \(C\), in which objects of slice \(C/x\) are morphisms \(c \to x\) in \(C\).

With these constructions in hand, we will be able to define notions of limits and colimits in quasicategories. We will also be able to prove some of the results we have deferred up until now, including the equivalence of quasigroupoids and Kan complexes (A) and the objectwise criterion for natural isomorphisms (C). Much of the material in this part comes from Joyal’s seminal paper [Joy02].
23. Join of categories. If A and B are ordinary categories, we can define a category $A \star B$ called the join. This has

$$
\text{ob}(A \star B) = \text{ob} A \amalg \text{ob} B, \quad \text{mor}(A \star B) = \text{mor} A \amalg (\text{ob} A \times \text{ob} B) \amalg \text{mor} B,
$$

so that we put in a unique map from each object of A to each object of B. Explicitly,

$$
\text{Hom}_{A \star B}(x, y) := \begin{cases}
\text{Hom}_A(x, y) & \text{if } x, y \in \text{ob} A, \\
\text{Hom}_B(x, y) & \text{if } x, y \in \text{ob} B,
\{\ast\} & \text{if } x \in \text{ob} A, \ y \in \text{ob} B, \\
\emptyset & \text{if } x \in \text{ob} B, \ y \in \text{ob} A,
\end{cases}
$$

with composition defined so that the evident inclusions $A \to A \star B \to B$ are functors. (Check that this really defines a category, and that A and B are identified with full subcategories of $A \star B$.)

23.2. Example. We have that $[p] \star [q] \approx [p + 1 + q]$.

23.3. Exercise (Functors from a join of categories). Show that functors $f: A \star B \to C$ are in bijective correspondence with triples $(f_A: A \to C, \ f_B: B \to C, \ \gamma: f_A \circ \pi_A \Rightarrow f_B \circ \pi_B)$, where f_A and f_B are functors, and γ is a natural transformation of functors $A \times B \to C$, where $\pi_A: A \times B \to A$ and $\pi_B: A \times B \to B$ denote the evident projection functors.

23.4. Exercise (Functors to a join of categories). Show that functors $f: C \to A \star B$ are in bijective correspondence with triples of functors $(\pi: C \to [1], \ f_{\{0\}}: C^{\{0\}} \to A, \ f_{\{1\}}: C^{\{1\}} \to B)$, where $C^{\{j\}} := \pi(\{j\}) \subseteq C$ is the fiber of π over $j \in \text{ob}[1]$, i.e., the subcategory of C consisting of objects which π sends to j and morphisms which π sends to id_j.

23.5. Exercise. Describe an isomorphism $(A \star B)^{\text{op}} \approx B^{\text{op}} \ast A^{\text{op}}$.

An important special case are the left cone and right cone of a category, defined by $A^\triangleleft := [0] \star A$ and $A^\triangleright := A \star [0]$. For instance, the right cone A^\triangleright is the category obtained by adjoining one additional object v to A, as well as a unique map $x \to v$ for each object x of A^\triangleright. In this case, v becomes a terminal object for A^\triangleright, and we can say that $A \mapsto A^\triangleright$ freely adjoins a terminal object to A. (Note that a terminal object of A will not be terminal in A^\triangleright anymore.) Likewise, $A \mapsto A^\triangleleft$ freely adjoins an initial object to A.

Limits and colimits of functors can be characterized using cones: if $p: A \to C$ is a functor, a colimit of p is a functor $\hat{p}: A^\triangleright \to C$ which is initial among functors which extend p, and likewise, a limit of p is a functor $\hat{p}: A^\triangleleft \to C$ which is terminal among functors which extend p.

23.6. Remark. It is worthwhile to spell this out in detail. Given a functor $p: A \to C$, to describe a functor $q: A^\triangleright \to C$ which extends p, it suffices to give

1. an object $q(v)$ in C,
2. for each object $a \in \text{ob} A$ a morphism $q(a \to v): p(a) = q(a) \to q(v)$ in C, such that
3. for each morphism $\alpha: a \to a'$ in A we have an equality $q(a' \to v) \circ p(\alpha) = q(a \to v)$ of morphisms $p(a) \to q(v)$ in C.

$$
\begin{array}{ccc}
a & \Downarrow & p(\alpha) \\
\alpha & \Downarrow & q(a \to v) \\
a' & \Downarrow & q(a' \to v)
\end{array}
$$

Given functors $q, q': A^\triangleright \to C$, we may consider natural transformations $\phi: q \to q'$ which extend the identity transformation of p. Explicitly, such a transformation ϕ is exactly determined by
(1) a morphism \(\phi(v) : q(v) \to q'(v) \) in \(C \) such that
(2) for each object \(a \in \text{ob} A \) we have an equality \(q'(a \to v) = \phi(v) \circ q(a \to v) \) of morphisms
\(p(a) \to q'(v) \) in \(C \).

\[
\begin{array}{ccc}
a & \Rightarrow & p(a) \\
\downarrow \phi(v) & & \downarrow \phi(v) \\
q'(a \to v) & & q'(v)
\end{array}
\]

An extension \(\widehat{p} : A^p \to C \) of \(p \) is a colimit of \(p \) if for every \(q \) extending \(p \) there exists a unique map
\(\phi(v) : \widehat{p}(v) \to q(v) \) in \(C \) such that \(q(a \to v) = \phi(v) \circ \widehat{p}(a \to v) \) for all \(a \in \text{ob} A \). The object \(\widehat{p}(v) \) is
what is colloquially known as “the colimit of \(p \)”, although the full data of a colimit of \(p \) is actually
the functor \(\widehat{p} \). We will call the functor \(\widehat{p} \) a colimit cone it what follows.

23.7. Ordered disjoint union. As noted above (23.2), the join operation on categories effectively
descends to \(\Delta \). We will call this the ordered disjoint union. It is a functor \(\sqcup : \Delta \times \Delta \to \Delta \),
defined so that \([p] \sqcup [q] := [p + 1 + q] \), to be thought of as the disjoint union of underlying sets,
ordered so that the subsets \([p] \) and \([q] \) retain their ordering, and elements of \([p] \) come before elements
of \([q] \).

It is handy to extend this to the category \(\Delta_+ \), the full subcategory of ordered sets obtained by
adding the empty set \([−1] := \emptyset \) to \(\Delta \). The functor \(\sqcup \) extends in an evident way to \(\sqcup : \Delta_+ \times \Delta_+ \to \Delta_+ \).
This extended functor makes \(\Delta_+ \) into a (nonsymmetric but strict) monoidal category, with unit
object \([−1] \).

Note that for any map \(f : [p] \to [q_1] \sqcup [q_2] \) in \(\Delta_+ \), there is a unique decomposition
\([p] = [p_1] \sqcup [p_2] \) such that \(f = f_1 \sqcup f_2 \) for some (necessarily unique) \(f_1 : [p_1] \to [q_1] \) in \(\Delta_+ \).
(We need an object \([−1] \) to be able to say this, even if \(p, q_1, q_2 \geq 0 \); if \(f([p]) \subseteq [q_1] \) then \(p_2 = −1 \).)

23.8. Join of simplicial sets. Let \(X \) and \(Y \) be simplicial sets. The join of \(X \) and \(Y \) is a simplicial
set \(X \star Y \) defined as follows.

The join of simplicial sets \(X \) and \(Y \) is a simplicial set \(X \star Y \) with \(n \)-dimensional elements
\[
(X \star Y)_n := \coprod_{[n] = [n_1] \sqcup [n_2]} X_{n_1} \times Y_{n_2},
\]
where \([n_1], [n_2] \in \text{ob} \Delta_+ \), and we declare \(X_{−1} = * = Y_{−1} \) to be a one-point set. The action
of simplicial operators is defined in the evident way, using the observation of the previous paragraph: for
\((x, y) \in X_{n_1} \times Y_{n_2} \subseteq (X \star Y)_n \) and \(f : [m] \to [n] \), we have \((x, y)f = (xf_1, yf_2) \in X_{m_1} \times Y_{m_2} \subseteq (X \star Y)_m \),
where \(f = f_1 \sqcup f_2 \), \(f_j : [m_j] \to [n_j] \) is the unique decomposition of \(f \) over \([n] = [n_1] \sqcup [n_2] \).

23.9. Exercise. Check that the above defines a simplicial set.

In particular,
\[
\begin{align*}
(X \star Y)_0 &= X_0 \sqcup Y_0, \\
(X \star Y)_1 &= X_1 \sqcup X_0 \times Y_0 \sqcup Y_1, \\
(X \star Y)_2 &= X_2 \sqcup X_1 \times Y_0 \sqcup X_0 \times Y_1 \sqcup Y_2,
\end{align*}
\]
and so on.

Note that there are evident maps \(X \to X \star Y \leftarrow Y \), which give isomorphisms from \(X \) and \(Y \) to
subcomplexes of \(X \star Y \), and these subcomplexes are disjoint from each other.

There are isomorphisms
\[
(X \star Y) \star Z \simeq X \star (Y \star Z),
\]
natural in \(X, Y, Z \): on either side, the set of \(n \)-dimensional simplices can described as
\(\coprod_{[n] = [n_1] \sqcup [n_2] \sqcup [n_3]} X_{n_1} \times Y_{n_2} \times Z_{n_3} \). Together with the evident isomorphisms \(\emptyset \star X \approx X \star X \star \emptyset \), the
join gives a monoidal structure on sSet with unit object $\Delta^{-1} := \emptyset$. Note that $*$ is not symmetric monoidal, though it is true that $(Y \star X)^{\text{op}} \approx X^{\text{op}} \star Y^{\text{op}}$.

23.10. Joins of simplices. We have the (unique) isomorphism

$$\Delta^p \star \Delta^q \approx \Delta^{p+1+q}.$$

Furthermore, if $f : [p'] \to [p]$ and $g : [q'] \to [q]$ are simplicial operators, then the induced map $f \star g : \Delta^{p'} \star \Delta^{q'} \to \Delta^p \star \Delta^q$ between joins of simplices is uniquely isomorphic to $(f \sqcup g) : \Delta^{p'+1+q'} : \Delta^{p+1+q}$.

In particular, if $S \subseteq [p]$ and $T \subseteq [q]$ are subsets, giving rise to subcomplexes $\Delta^S \subseteq \Delta^p$ and $\Delta^T \subseteq \Delta^q$, then the evident map $\Delta^S \star \Delta^T \to \Delta^p \star \Delta^q \approx \Delta^{p+1+q}$ realizes the inclusion of the subcomplex $\Delta^{S \sqcup T} \subseteq \Delta^{p+1+q}$ associated to the subset $S \sqcup T \subseteq [p] \sqcup [q] = [p+1+q]$. This makes it relatively straightforward to describe the join of subcomplexes of standard simplices.

23.11. Left and right cones of simplicial sets. An important example of joins of simplicial sets are the cones. The left cone and right cone of a simplicial set X are

$$X^\langle := \Delta^0 \star X, \quad X^\rangle := X \star \Delta^0.$$

Note that outer horns are examples of cones:

$$(\partial \Delta^n)^\langle = \Delta^0 \star \partial \Delta^n \approx \Lambda_0^{n+1}, \quad (\partial \Delta^n)^\rangle = \partial \Delta^n \star \Delta^0 \approx \Lambda_0^{n+1}.$$

23.12. Exercise. Let $f : [m] \to [n]$ be any simplicial operator. Show that the induced map $f : \Delta^m \to \Delta^n$ on standard simplices is uniquely isomorphic to a join of maps $f_0 \cdot f_1 \cdots \cdot f_n$, with $f_j : \Delta^{m_j} \to \Delta^0$, where each $m_j \geq -1$.

It is straightforward to show that the nerve takes joins of categories to joins of simplicial sets: $N(A \star B) \approx N(A) \star N(B)$, and thus $N(A^\langle) \approx (N(A))^\langle$ and $N(A^\rangle) \approx (N(A))^\rangle$. (Exercise: prove this.)

23.13. The join of quasicategories is a quasicategory. Here is a handy rule for constructing maps into a join (compare (23.4)). Note that every join admits a canonical map $\pi : X \star Y \to \Delta^0 \star \Delta^0 \approx \Delta^1$, namely the join applied to the projections $X \to \Delta^0$ and $Y \to \Delta^0$.

23.14. Lemma ([Joy08a, Prop. 3.5], compare (23.4)). Maps $f : K \to X \star Y$ are in bijective correspondence with the set of triples

$$\left(\pi : K \to \Delta^1, \quad f_{\{0\}} : K^{\{0\}} \to X, \quad f_{\{1\}} : K^{\{1\}} \to Y, \right)$$

where $K^{\{j\}} := \pi^{-1}(\{j\}) \subseteq K$, the pullback of $\{j\} \to \Delta^1$ along π.

Proof. This is a straightforward exercise. In one direction, the correspondence sends f to $(\pi f, f|K^{\{0\}}, f|K^{\{1\}})$, where $\pi : X \star Y \to \Delta^0 \star \Delta^0 \approx \Delta^1$. \qed

23.15. Proposition. If C and D are quasicategories, so is $C \star D$.

Proof. Use the previous lemma (23.14), together with the observations (which we leave as an exercise) that for any map $\pi : \Lambda^0_j \to \Delta^1$ from an inner horn, the preimages $\pi^{-1}(\{0\})$ and $\pi^{-1}(\{1\})$ are either inner horns, standard simplices, or are empty, and for any map $\pi : \Delta^n \to \Delta^1$ from a standard simplex, the preimages are either a standard simplex or empty. \qed

24. Slices

24.1. Slices of categories. Given an ordinary category C, and an object $x \in \text{ob} C$, we may form the slice categories $C_{/x}$ and $C_{x/}$, also called undercategory and overcategory, or slice-over category and slice-under category.

For instance, the slice-over category $C_{/x}$ is the category whose objects are maps $f : c \to x$ with target x, and whose morphisms $(f : c \to x) \to (f' : c' \to x)$ are maps $g : c \to c'$ such that $f'g = f$.

This can be reformulated in terms of joins. Let “T” denote the terminal category (isomorphic to $[0]$). Note that $\text{ob} \, C_p$ corresponds to the set of functors $f : [0] \times T \to C$ such that $f|T = x$, and $\text{mor} \, C_p$ corresponds to the set of functors $g : [1] \times T \to C$ such that $g|T = x$.

More generally, given a functor $p : A \to C$ of categories, we obtain slice categories $C_{p/}$ and $C_{/p}$ defined as follows. The category $C_{p/}$ has

- **objects**: functors $f : [0] \times A \to C$ such that $f|A = p$.
- **morphisms** $f \to f'$: functors $g : [1] \times A \to C$ such that $g|A = p$.

Likewise, the category $C_{/p}$ has

- **objects**: functors $f : A \times [0] \to C$ such that $f|A = p$.
- **morphisms** $f \to f'$: functors $g : A \times [1] \to C$ such that $g|A = p$.

24.2. Exercise. Describe composition of morphisms in $C_{p/}$ and $C_{/p}$.

24.3. Exercise. Show that $(C_{p/})^{\text{op}} \approx (C^{\text{op}})_{p^{\text{op}}/}$ (isomorphism of categories).

24.4. Exercise. Fix a functor $p : A \to C$, and let B be a category. Construct bijections

$$\{\text{functors } f : B \to C_{p/}\} \leftrightarrow \{\text{functors } g : B \times A \to C \text{ s.t. } g|A = p\}$$

and

$$\{\text{functors } f : B \to C_{/p}\} \leftrightarrow \{\text{functors } g : A \times B \to C \text{ s.t. } g|A = p\}.$$

24.5. Remark. The notions of limits and colimits can be formulated very compactly in terms of the general notion of slices. Thus, given a functor $p : A \to C$, a colimit of p is the same data as an initial object of $C_{p/}$, while a limit of p is the same data as a terminal object of $C_{/p}$. (**Exercise:** prove this; this will be the starting case for formulating notions of limits and colimits for quasicategories. Compare (23.6).)

24.6. Joins and colimits of simplicial sets. The join functor $\star : s\text{Set} \times s\text{Set} \to s\text{Set}$ is in some ways analogous to the product functor \times, e.g., it is a monoidal functor.

The product operation $(-) \times (-)$ on simplicial sets commutes with colimits in each input, and the functors $X \times -$ and $- \times X$ admit right adjoints (in both cases, the right adjoint is $\text{Map}(X, -)$).

The join functor does not commute with colimits in each variable, but almost does so; the only obstruction is the value on the initial object.

More precisely, the functors $X \star -$ and $- \star X : s\text{Set} \to s\text{Set}$ do not preserve the initial object, since $X \star \emptyset \approx X \approx \emptyset \star X$. However, the identity map of X is tautologically the initial object of $s\text{Set}_{X/}$, the slice category of simplicial sets under X.

24.7. Proposition. For every simplicial set X, the induced functors

$$X \star -, \quad - \star X : s\text{Set} \to s\text{Set}_{X/}$$

preserve colimits.

Proof. This follows from the degreewise formula for the join, which has the form:

$$(X \star Y)_n = X_n \amalg (X_{n-1} \times Y_0) \amalg \cdots \amalg (X_0 \times Y_{n-1}) \amalg Y_n = X_n \amalg \text{terms which are “linear” in } Y.$$

That is, for each $n \geq 0$ the functor $Y \mapsto (X \star Y)_n : s\text{Set} \to s\text{Set}_{X/}$ is seen to be colimit preserving, since each functor $X_k \times (-) : Set \to Set$ is colimit preserving.

24.8. Exercise (Trivial, but important). Show that the functors $X \star -$ and $- \star X : s\text{Set} \to s\text{Set}$ preserve pushouts.
24.9. Slices of simplicial sets. We have seen that the functors
\[S \star - : s\text{Set} \to s\text{Set}_{S/} \quad \text{and} \quad - \star T : s\text{Set} \to s\text{Set}_{T/} \]
preserve colimits, and therefore we predict that they admit right adjoints. These exist, and are called slice functors, denoted
\[(p: S \to X) \mapsto X_{p/} : s\text{Set}_{S/} \to s\text{Set} \]
and
\[(q: T \to X) \mapsto X_{q/} : s\text{Set}_{T/} \to s\text{Set}. \]
I will sometimes distinguish these as slice-under and slice-over, respectively. Explicitly, there are are bijective correspondences
\[
\begin{align*}
(p: S \to X) & \mapsto X_{p/} : s\text{Set}_{S/} \to s\text{Set} \\
(q: T \to X) & \mapsto X_{q/} : s\text{Set}_{T/} \to s\text{Set}
\end{align*}
\]
where we write “\(S \to S \star K \)” and “\(T \to K \star T \)” for the inclusions \(S \star \emptyset \subseteq S \star K \) and \(\emptyset \star T \subseteq K \star T \), using the canonical isomorphisms \(S \star \emptyset = S \) and \(\emptyset \star T = T \).

Taking \(K = \Delta^n \) we obtain the formulas
\[
\begin{align*}
(X_{p/})_n &= \text{Hom}_{s\text{Set}_{S/}}(S \star \Delta^n, X), \\
(X_{q/})_n &= \text{Hom}_{s\text{Set}_{T/}}(\Delta^n \star T, X),
\end{align*}
\]
which we regard as the definition of slices. (I.e., these formulas specify the \(n \)-dimensional elements of the slices, and naturality in “\(\Delta^n \)” specifies the action of simplicial operators.)

24.11. Exercise. Given this explicit definition of slices in terms of their elements and the action of simplicial operators, verify the bijective correspondences (24.10).

In particular, we note the special cases associated to \(x : \Delta^0 \to X \):
\[
\begin{align*}
\text{Hom}_{s\text{Set}}(K, (X_x)) &= \text{Hom}_{s\text{Set}_{\Delta^0/}}(\Delta^0 \star K, X), \\
\text{Hom}_{s\text{Set}}(K, (X_x)) &= \text{Hom}_{s\text{Set}_{\Delta^0/}}(K \star \Delta^0, X),
\end{align*}
\]
The notation \((X, x) \) with \(x \in X_0 \) represents a pointed simplicial set, the category of which is \(s\text{Set}_x := s\text{Set}_{\Delta^0/} \). We write \(v \) for the cone point of \(K^< \) and \(K^< \).

The slice construction for simplicial sets agrees with that for categories.

24.12. Proposition. The nerve preserves slices; i.e., if \(p : A \to C \) is a functor, then \(N(C_{p/}) \approx (NC)_{Np/} \) and \(N(C_{p/}) \approx (NC)_{Np/} \).

Proof. Left as an exercise. \(\square \)

24.13. Slice as a functor. The function complex construction \(\text{Map}(-, -) \) is a functor in two variables, contravariant in the first and covariant in the second. The slice constructions also behave something like a functor of two variables, though it is a little more complicated, because the slice constructions also depend on a map between the two objects. A precise statement is that every diagram on the left gives rise to commutative diagrams as on the right.

\[
\begin{align*}
S \xrightarrow{p} X \\
\downarrow j \\
T \xrightarrow{fpj} Y
\end{align*}
\]
\[
\begin{align*}
X_{p/} \rightarrow Y_{fp/} \\
\downarrow \\
X_{pj/} \rightarrow Y_{fpj/}
\end{align*}
\]
There seems to be no decent notation for the maps in the right-hand squares. The whole business of joins and slices can get pretty confusing because of this.
24.14. **Remark.** A very precise formulation is that each kind of slice defines a functor \(\text{sSet}^{\text{tw}} \to \text{sSet} \) from the *twisted arrow category* of simplicial sets, whose objects are maps \(p \) of simplicial sets, and whose morphisms are pairs \((j, f) : p \to fpj \), where \(j \) and \(f \) are themselves maps of simplicial sets.

Let’s spell this out in terms of the correspondence between “maps into slices” and “maps from joins”. Given \(T \xrightarrow{j} S \xrightarrow{p} X \xrightarrow{f} Y \), consider “restriction map” \(X_{p/} \to Y_{fpj/} \). The composite of a map \(u : K \to X_{p/} \) with this restriction map is described in terms of the bijection of (24.10) as follows. The map \(u \) corresponds to a dotted arrow in

\[
\begin{array}{ccc}
T & \xrightarrow{j} & S \\
\downarrow & & \downarrow \xrightarrow{p} \\
T * K & \xrightarrow{j * K} & S * K
\end{array}
\]

The composite \(K \xrightarrow{u} X_{p/} \to Y_{fpj/} \) corresponds to \(f\bar{u}(j * K) \).

A particular special case which we will see a lot of are the “restriction” functors

\(X_{/p} \to X \) and \(X_{p/} \to X \)

induced by sequence \(\emptyset \xrightarrow{j} S \xrightarrow{p} X \), using that \(X_{/\emptyset} = X = X_{\emptyset/} \). For instance, \(X_{/p} \to X \) sends an \(n \)-dimensional element \(x \in (X_{/p})_n \) corresponding to \(\bar{x} : \Delta^n * S \to X \) extending \(p \) to the \(n \)-dimensional element of \(X \) represented by the map \(\bar{x}(\Delta^n * \emptyset) \) defined as the composite

\(\Delta^n = \Delta^n * \emptyset \to \Delta^n * S \xrightarrow{x} X \).

Another special case of interest are the “projection” functors

\(X_{/p} \to Y_{/fp} \) and \(X_{p/} \to Y_{fp/} \)

induced by the sequence \(S \xrightarrow{p} X \xrightarrow{f} Y \). For instance, \(X_{/p} \to Y_{/fp} \) sends an \(n \)-dimensional element \(x \in (X_{/p})_n \) corresponding to \(\bar{x} : \Delta^n * S \to X \) extending \(p \) to the \(n \)-dimensional element of \(Y_{fp/} \) represented by \(f\bar{x} : \Delta^n * S \to Y \).

24.15. **Exercise.** Let \(p : S \to X \) and \(q : T \to X \) be maps of simplicial sets. Describe and prove bijections between the following sets of solutions to lifting problems:

\[
\begin{cases}
S \amalg T \xrightarrow{(p,q)} X \\
S * T \xrightarrow{p} X
\end{cases}
\]

Here \(X_{p/} \to X \) and \(X_{/q} \to X \) are the evident restriction functors, and \(S \amalg T \to S * T \) the tautological inclusion.

25. Slices of Quasicategories

In this section we show that, given a quasicategory \(C \) and an object \(x \in C_0 \), both \(C_{/x} \) and \(C_{x/} \) are also quasicategories.

We recall the sets **left horns**

\[\text{LHorn} := \{ \Lambda^n_k \subset \Delta^n \mid 0 \leq k < n, \ n \geq 1 \} = \text{InnHorn} \cup \{ \Lambda^n_0 \subset \Delta^n \mid \ n \geq 1 \} \]

and the **right horns**

\[\text{RHorn} := \{ \Lambda^n_k \subset \Delta^n \mid 0 < k \leq n, \ n \geq 1 \} = \text{InnHorn} \cup \{ \Lambda^n_n \subset \Delta^n \mid \ n \geq 1 \}. \]
The associated weak saturations \(\text{LHorn} \) and \(\text{RHorn} \) are the \textbf{left anodyne} and \textbf{right anodyne} maps. The associated right complements
\[
\text{LFib} := \text{LHorn}^\square, \quad \text{RFib} := \text{RHorn}^\square
\]
are the \textbf{left fibrations} and \textbf{right fibrations}. Note that
\[
\text{InnHorn} \subseteq \text{LHorn} \cap \text{RHorn} \quad \text{and} \quad \text{LFib} \cup \text{RFib} \subseteq \text{InnFib}.
\]
These classes correspond to each other under the opposite involution \((-)^{\text{op}}\): \(\text{sSet} \rightarrow \text{sSet}\); i.e., \(\text{LHorn}^{\text{op}} = \text{RHorn}\), \(\text{LFib}^{\text{op}} = \text{RFib}\).

25.1. \textbf{Proposition.} Let \(C\) be a quasicategory and \(x \in C_0\). The evident maps \(C_{x/} \rightarrow C\) and \(C_{/x} \rightarrow C\) which “forget \(x\)” (i.e., induced by the sequence \(\emptyset \rightarrow \{x\} \rightarrow C\)) are left fibration and right fibration respectively. In particular, \(C_{x/}\) and \(C_{/x}\) are also quasicategories.

\textbf{Proof.} I claim that \(\pi: C_{x/} \rightarrow C\) is a right fibration. Explicitly, this map sends the \(n\)-dimensional element \(a: \Delta^n \rightarrow C_{x/}\), which corresponds to \(\tilde{a}: \Delta^n \ast \Delta^0 \rightarrow C\) such that \(\tilde{a}((\emptyset \ast \Delta^0)) = x\), to the \(n\)-dimensional element \(\tilde{a}((\Delta^n \ast \emptyset)) \rightarrow C\). Using the join/slice adjunction, there is a bijective correspondence between lifting problems
\[
\begin{array}{ccc}
\Lambda^n_j & \xrightarrow{f} & C_{x/} \\
\downarrow \pi & & \downarrow \pi \\
\Delta^n & \xrightarrow{g} & C \\
\end{array}
\Longrightarrow
\begin{array}{ccc}
\emptyset \ast \Delta^0 & \xrightarrow{(f,g)} & (\Lambda^n_j \ast \Delta^0) \cup (\Delta^n \ast \emptyset) & \rightarrow & C \\
\downarrow \downarrow \downarrow \downarrow \downarrow \\
\Delta^n \ast \Delta^0 \\
\end{array}
\]
Note that there is a unique isomorphism \(\Delta^n \ast \Delta^0 \approx \Delta^{n+1}\). For any subset \(S \subset [n]\), the above isomorphism identifies the subcomplex \(\Delta^S \ast \Delta^0 \subset \Delta^n \ast \Delta^0\) with \(\Delta^S \ast \emptyset \subset \Delta^n \ast \Delta^0\), while \(\Delta^S \ast \emptyset \subset \Delta^n \ast \Delta^0\) is identified with \(\Delta^S \subset (\Delta^n \ast \emptyset)\), we see that
\begin{enumerate}
\item the subcomplex \((\Delta^n_j \ast \Delta^0) \cup (\Delta^n \ast \emptyset)\) of \(\Delta^n \ast \Delta^0\) is the horn \(\Lambda^n_{j+1} \subset \Delta^{n+1}\), and
\item the subcomplex \(\emptyset \ast \Delta^0\) of \(\Delta^n \ast \Delta^0\) is the vertex \([n+1]\).
\end{enumerate}
Thus, the right hand diagram above is isomorphic to
\[
\begin{array}{ccc}
\{n+1\} & \xrightarrow{x} & \Lambda^n_{j+1} \\
\downarrow & & \downarrow \\
\Delta^{n+1} & \rightarrow & C \\
\end{array}
\]
If \(C\) is a quasicategory, then an extension exists for \(0 < j \leq n\).

Since right fibrations are inner fibrations, the composite \(C_{x/} \rightarrow C \rightarrow \ast\) is an inner fibration, and thus \(C_{x/}\) is a quasicategory.

The case of \(C_{x/} \rightarrow C\) is similar, using the correspondence
\[
\begin{array}{ccc}
\Lambda^n_j & \xrightarrow{x} & C_{x/} \\
\downarrow \pi & & \downarrow \pi \\
\Delta^n & \xrightarrow{g} & C \\
\end{array}
\Longrightarrow
\begin{array}{ccc}
\{0\} & \xrightarrow{x} & \Lambda^n_{j+1} \\
\downarrow & & \downarrow \\
\Delta^{n+1} & \rightarrow & C \\
\end{array}
\]
26. Initial and terminal objects

We give the definition of initial and terminal object in a quasicategory, and we reformulate it in terms of slices.

26.1. Initial and terminal objects. An initial object\(^{21}\) of a quasicategory \(C\) is an \(x \in C_0\) such that every \(f : \partial \Delta^n \to C\) (for all \(n \geq 1\)) such that \(f\{\{0\}\} = x\), there exists an extension \(f' : \Delta^n \to C\).

A terminal object of \(C\) is an initial object of \(C^{\text{op}}\). That is, a \(y \in C_0\) such that every \(f : \partial \Delta^n \to C\) with \(f\{\{n\}\} = y\) extends to \(\Delta^n\).

Let’s spell out the first parts of the definition of initial object applied to \(x \in C_0\):

- The condition for \(n = 1\) says that for every object \(c\) in \(C\) there exists \(f : x \to c\),
- The condition for \(n = 2\) says that for every triple of maps \(f : x \to c\), \(g : c \to c'\), and \(h : x \to c'\), we must have \([h] = [g][f]\). In particular (taking \(f = 1_x\)), we see there is at most one homotopy class of maps from \(x\) to any object.

If \(C\) is the nerve of an ordinary category, then \(\text{Hom}(\Delta^n, C) \cong \text{Hom}(\partial \Delta^n, C)\) for all \(n \geq 3\). Thus, for ordinary categories, this definition coincides with the usual notion of initial object.

For general quasicategories, we see that an initial object \(x \in C_0\) necessarily satisfies \(\text{Hom}_{hC}(x, y) \approx *\) for all \(y \in C_0\), so that \(x\) represents an initial object in the homotopy category \(hC\), but this is not sufficient to be initial in \(C\): there are also an infinite sequence of “higher” conditions that an initial object of a quasicategory must satisfy.

We will now reformulate these notions using slice categories.

26.2. Reformulation of initial/terminal via slices. We can restate the definition of initial/terminal object using the “forgetful” functor of the relevant slice.

26.3. Proposition. If \(C\) is a quasicategory, then \(x \in C_0\) is initial if and only if \(C_{x/} \to C\) is a trivial fibration, and terminal if and only if \(C_{/x} \to C\) is a trivial fibration.

Proof. This is an application of the join/slice adjunction. Applied to \(\partial \Delta^n \subset \Delta^n\) with \(n \geq 0\) and \(C_{x/} \to C\), this has the form

\[
\begin{array}{c}
\partial \Delta^n \xrightarrow{f} C_{x/} \\
\Delta^n \xrightarrow{g} C
\end{array} \iff \begin{array}{c}
\Delta^0 \star \emptyset \xrightarrow{(\Delta^0 \star \partial \Delta^n) \cup \emptyset \star \partial \Delta^n} (\emptyset \star \Delta^n) \xrightarrow{(f,g)} C
\end{array}
\]

The right-hand diagram is isomorphic to

\[
\begin{array}{c}
\{0\} \xrightarrow{x} \partial \Delta^{n+1} \xrightarrow{\emptyset} C
\end{array}
\]

\(^{21}\)We use Joyal’s definition of initial and terminal object \([Joy02, \S4]\) here. Lurie’s definition \([Lur09, 1.2.12.1]\) is different, but is equivalent to what we use, by \([Lur09, 1.2.12.5]\) and (26.3).
Thus $C_{x/}$ is in $\text{TrivFib} = \text{Cell}^{\square}$ if and only if x is an initial object of C, as desired.

26.4. Remark. This implies that if x is initial, then $C_{x/} \to C$ is a categorical equivalence. Later (40.1) we’ll be able to show the converse: if $C_{x/} \to C$ is a categorical equivalence, then x is initial.

26.5. **Uniqueness of initial and terminal objects.** A crucial fact about initial and terminal objects in an ordinary category is that they are *unique up to unique isomorphism.* One way to formulate this is as follows: given a category C, let $C^{\text{init}} \subseteq C$ be the full subcategory spanned by the initial objects. Then one of two cases applies: either there are no initial objects, so C^{init} is empty, or there is at least one initial object, and C^{init} is equivalent to the terminal category $[0]$.

This leads to an analogous formulation for quasicategories.

26.6. **Proposition.** Let C be a quasicategory. Let C^{init} and C^{term} denote respectively the full subcategories spanned by initial objects and terminal objects. Then (i) either C^{init} is empty or is categorically equivalent to the terminal quasicategory Δ^0, and (ii) either C^{term} is empty or is categorically equivalent to the terminal quasicategory Δ^0.

Proof. Since $C^{\text{term}} = ((C^{\text{op}})^{\text{init}})^{\text{op}}$, we just need to consider the case of initial objects. By definition of initial object, any $f: \partial \Delta^n \to C^{\text{init}}$ with $n \geq 1$ can be extended to $g: \Delta^n \to C$, and the image of g must lie in the full subcategory C^{init} since all of its vertices do. If $C^{\text{init}} \neq \emptyset$, then this extension condition also holds for $n = 0$, whence $C \to \Delta^0$ is a trivial fibration, and thus C is categorically equivalent to Δ^0 by (20.1).

There are some seemingly obvious facts about initial and terminal objects that we can’t prove just yet.

D. Deferred Proposition.

1. Let $f: x \to y$ be a morphism in a quasicategory C, and let $\bar{f} \in (C_{x/})_0$ be the object of the slice which corresponds to $f \in C_1$. Then \bar{f} is initial in $C_{x/}$ if and only if f is an isomorphism.

2. Let $f: x \to y$ be a morphism in a quasicategory C, and let $\bar{f} \in (C_{y/})_0$ be the object of the slice which corresponds to $f \in C_1$. Then \bar{f} is terminal in $C_{y/}$ if and only if f is an isomorphism.

2. In a quasicategory, every object which is isomorphic to an initial object is initial, and any object isomorphic to a terminal object is terminal.

Proofs will be given in (30.7).

26.7. **Initial and terminal objects in functor categories.** Here is a sample of a property of initial/terminal objects that we can now prove. A functor between ordinary categories whose values are all initial (or terminal) objects is itself initial (or terminal) as an object of the functor category. The same holds with categories replaced by quasicategories.

26.8. **Proposition.** Consider a map $f: X \to C$ from a simplicial set to a quasicategory. Suppose that for every vertex $x \in X_0$ the object $f(x) \in C_0$ is initial (resp. terminal) in C. Then the functor f is initial (resp. terminal) viewed as an object of $\text{Fun}(X,C)$.

As a consequence, if C has an initial (or terminal) object c_0, then the “constant” map (defined as the composite $X \to \{c_0\} \to C$) is an initial object of $\text{Fun}(X,C)$.

26.9. **Remark.** In other words, there is an inclusion $\text{Fun}(X,C^{\text{init}}) \subseteq \text{Fun}(X,C)^{\text{init}}$ of the full subcategories of “objectwise initial functors” and “initial functors” in $\text{Fun}(X,C)$. Using (D)(2) you can also show that when C^{init} is non-empty then $\text{Fun}(X,C^{\text{init}}) = \text{Fun}(X,C)^{\text{init}}$. To see this, pick an initial object $c_0 \in C^{\text{init}}$ and let $f_0: X \to C$ be the constant map with image $\{c_0\} \subseteq C$. Since any two initial objects are isomorphic, every $f \in \text{Fun}(X,C)^{\text{init}}_0$ is naturally isomorphic to f_0, and
then both

Therefore, each composite

\[g \circ \partial \Delta^n \rightarrow \text{Fun}(X, C)^{\text{init}} \]

so \(f \in \text{Fun}(X, C^{\text{init}}) \).

On the other hand, it is possible for \(\text{Fun}(X, C)^{\text{init}} \) to be non-empty when \(C^{\text{init}} \) is empty. (Exercise: give an example. Hint: think small.)

Proof. (26.8) Assume \(f(x) \in C_0 \) is initial in \(C \) for all \(x \in X_0 \). Suppose given \(g: \partial \Delta^n \rightarrow \text{Fun}(X, C) \) with \(n \geq 1 \) and \(g|\{0\} = f \). We want to show that there exists an extension \(g': \Delta^n \rightarrow \text{Fun}(X, C) \) of \(g \). We convert this to the adjoint lifting problem:

\[
\begin{array}{ccc}
\{0\} \times X & \longrightarrow & \partial \Delta^n \times X \\
\downarrow & & \downarrow \\
\Delta^n \times X & \longrightarrow & C
\end{array}
\]

The strategy is to construct the extension by inductively constructing extensions \(\tilde{g}_k: F_k \rightarrow C \) where \(F_k = (\partial \Delta^n \times X) \cup \text{Sk}_k(\Delta^n \times X) \), \(k \geq 0 \) is the skeletal filtration (15.23) of the inclusion \(\partial \Delta^n \times X \rightarrow \Delta^n \times X \). That is, we need to inductively construct lifts \(\tilde{g}_k \) in

\[
\begin{array}{ccc}
\bigcup_{h \in F_{k-1}^\text{nd} \setminus F_{k-1}^\text{sd}} \partial \Delta_k(h|\partial \Delta^k) & \longrightarrow & F_{k-1} \\
\downarrow & & \downarrow \\
\Delta_k & \longrightarrow & F_k
\end{array}
\]

for all \(k \geq 0 \). For \(k = 0 \) we have \(F_{-1} = F_0 \), since \(n \geq 1 \) so \((\partial \Delta^n \times X)_0 = (\Delta^n \times X)_0 \).

For \(k \geq 1 \), note that a \(k \)-dimensional element \(h = (a, b): \Delta^k \rightarrow \Delta^n \times X \) is not contained in in the subcomplex \(\partial \Delta^n \times X \) if and only if \(a \in (\Delta^k)_0 \setminus (\partial \Delta^k)_0 \), i.e., if the corresponding simplicial operator \(a: [k] \rightarrow [n] \) is surjective. Therefore such \(a: \Delta^k \rightarrow \Delta^n \) sends the vertex \(0 \in (\Delta^k)_0 \) to \(0 \in (\Delta^n)_0 \).

Therefore, each composite

\[
\partial \Delta^k \xrightarrow{h|\partial \Delta^k} F_{k-1} = (\partial \Delta^n \times X) \cup \text{Sk}_{k-1}(\Delta^n \times X) \xrightarrow{\tilde{g}_{k-1}} C
\]

sends the vertex 0 to \(\tilde{g}_{k-1}(0, b(0)) = f(0, b(0)) \), which by hypothesis is an initial object of \(C \). Therefore an extension of \((\tilde{g}_{k-1})|\partial \Delta^k\) along \(\partial \Delta^k \subset \Delta^k \) exists as desired. \(\square \)

27. Joins and Slices in Lifting Problems

Recall that for an object \(x \) in a quasicategory \(C \), the slice objects \(C_{/x} \) and \(C_{x/} \) are also quasicategories. It turns out that the conclusion remains true for more general kinds of slices of quasicategories.

27.1. Proposition

Let \(p: S \rightarrow C \) be a map of simplicial sets, and suppose \(C \) is a quasicategory. Then both \(C_{p/} \) and \(C_{/p} \) are quasicategories.

The proof is just like that of (25.1): we will show below (27.15) that \(C_{p/} \rightarrow C \) is a left fibration and \(C_{/p} \rightarrow C \) is a right fibration.

To set this up, we need a little technology about how joins interact with lifting problems.
27.2. **Pushout-joins.** We define an analogue of the pushout-product for the the join. Given maps \(i: A \to B \) and \(j: K \to L \) of simplicial sets, the **pushout-join** (or box-join) \(i \boxplus j \) is the map

\[
i \boxplus j: (A \star L) \amalg_{A \star K} (B \star K) \to B \star L.
\]

27.3. **Warning.** Unlike the pushout-product, the pushout-join is not symmetric, since the join is not symmetric: \(i \boxplus j \not\approx j \boxplus i \).

27.4. **Example.** We have already observed examples of pushout-joins in the proof of (25.1), namely

\[
\left(\Lambda^n_j \subset \Delta^n\right) \boxplus (\emptyset \subset \Delta^0) \approx \left(\Lambda_{n+1}^n \subset \Delta^{n+1}\right),
\]

\[
(\emptyset \subset \Delta^0) \boxplus (\Lambda^n_j \subset \Delta^n) \approx \left(\Lambda_{1+n}^{1+n} \subset \Delta^{1+n}\right),
\]

and also

\[
(\emptyset \subset \Delta^0) \boxplus (\partial \Delta^n \subset \Delta^n) \approx \left(\partial \Delta^{1+n} \subset \Delta^{1+n}\right),
\]

\[
(\varnothing \subset \Delta^n) \boxplus (\partial \Delta^n \subset \Delta^n) \approx \left(\partial \Delta_{n+1} \subset \Delta^{n+1}\right)
\]

in the proof of (26.3). These generalize to arbitrary horns and cells. The pushout-join of a horn with a cell is always a horn:

\[
(\Lambda^n_j \subset \Delta^n) \boxplus (\partial \Delta^k \subset \Delta^k) \approx \left(\Lambda_{n+1+k}^{n+k} \subset \Delta^{n+k}\right),
\]

\[
(\partial \Delta^k \subset \Delta^k) \boxplus (\Lambda^n_j \subset \Delta^n) \approx \left(\Lambda_{k+1+n}^{k+n} \subset \Delta^{k+n}\right).
\]

Also, the pushout-join of a cell with a cell is always a cell:

\[
(\partial \Delta^n \subset \Delta^n) \boxplus (\partial \Delta^k \subset \Delta^k) \approx \left(\partial \Delta_{n+1+k}^{n+k} \subset \Delta^{n+k}\right)
\]

We leave proofs as an exercise for the reader.

27.5. **Exercise.** Prove the isomorphisms asserted in (27.4). **(Hint:** use (23.10).)

27.6. **Remark.** Both pushout-product and pushout-join are special cases of a general construction: given any functor \(F: sSet \times sSet \to sSet \) of two variables, you get a corresponding “pushout-F” functor: \(F_{[\Box]}: \text{Fun}([1], sSet) \times \text{Fun}([1], sSet) \to \text{Fun}([1], sSet) \). We will meet more examples later.

27.7. **Pullback-slices.** Just as the pushout-product is associated to the pullback-hom, so the pushout-join is associated to two kinds of **pullback-slices** (or box-slices). Given a sequence of maps \(T \xrightarrow{i} S \xrightarrow{p} X \xrightarrow{f} Y \), we define the map

\[
f_{\boxplus,p}: X/p \to X/pj \times Y/fpj, Y/fp,
\]

where the maps defining the pullback and the components of \(f_{\boxplus,p} \) are the evident maps induced from the sequence, as described in (24.13). In a similar way, we define the map

\[
f_{\boxplus,p}: X/p \to X/pj \times Y/fpj, Y/fp/p.
\]

27.8. **Remark.** When \(Y = * \), these pullback-slice maps are just the restriction maps \(X/p \to X/pj \) and \(X/p \to X/pj/p \). When \(T = \emptyset \), these pullback-slice maps are just the projection maps \(X/p \to Y/fp \) and \(X/p \to Y/fp/p \). When both \(Y = * \) and \(T = \emptyset \), we get \(X/p \to X \) and \(X/p \to X \).

27.9. **Remark.** Both pullback-hom and pullback-slices are special cases of a general construction: given any functor \(F: sSet^{tw} \to sSet \) from the twisted arrow category (24.14), you get a corresponding “pullback-F” functor \(F_{\Box}: sSet^{tw} \to sSet \). In the case of pullback-hom, the \(F \) in question is a composite functor \(sSet^{tw} \to sSet^{op} \times sSet \xrightarrow{\text{Map}} sSet \).
27.10. **Joins, slices, and lifting problems.** The pushout-join and pullback-slice interact with lifting problems in much the same way that pushout-product and pullback-hom do.

27.11. **Proposition.** Given \(i: A \to B, j: K \to L, \) and \(h: X \to Y, \) the following are equivalent.

1. \((i \boxplus j) \boxplus h.\)
2. \(i \boxplus (h \boxplus q)\) for all \(q: L \to X.\)
3. \(j \boxplus (h \boxplus p)\) for all \(p: B \to X.\)

Proof. A straightforward exercise. The equivalence of (1) and (2) is
\[
\begin{array}{ccc}
A & \xrightarrow{i} & X/q \\
\downarrow & & \downarrow h_{qj} \\
B & \xrightarrow{j} & X_{qj}/Y_{hq} \\
\end{array}
\]
\[
\begin{array}{ccc}
\emptyset \star L & \longrightarrow & (A \star L) \cup_{A \star K} (B \star K) \longrightarrow X \\
\downarrow & & \downarrow h \\
B \star L & \longrightarrow & Y \\
\end{array}
\]

Now we can set up “join/slice analogues” of the “enriched lifting theory” we have seen for products and function complexes.

27.12. **Proposition.** Let \(S \) and \(T \) be sets of maps in \(sSet. \) Then \(S \boxplus T \subseteq S \boxplus T. \)

Proof. This is formal and nearly identical to the proof of the weak saturation result for box-products (16.8). \(\square \)

27.13. **Proposition.** We have
\[
\text{Cell} \boxplus \text{Cell} \subseteq \text{Cell}, \quad \text{RHorn} \boxplus \text{Cell} \subseteq \text{InnHorn}, \quad \text{and} \quad \text{Cell} \boxplus \text{LHorn} \subseteq \text{InnHorn}.
\]

Proof. Immediate from (27.4) and (27.12). \(\square \)

27.14. **Corollary.** Given \(T \xrightarrow{j} S \xrightarrow{p} X \xrightarrow{f} Y, \) consider the pullback-slice maps
\[
\ell: X_p/ \to X_{pj}/ \times_{Y_{pj}/} Y_{fp/}, \quad r: X_p/ \to X_{pj}/ \times_{Y_{pj}/} Y_{fp/}.
\]
We have the following.

1. \(j \in \text{Cell}, f \in \text{TrivFib} \) implies \(\ell, r \in \text{TrivFib}.\)
2. \(j \in \text{Cell}, f \in \text{InnFib} \) implies \(\ell \in \text{LFib}, r \in \text{RFib}.\)
3. \(j \in \text{RHorn}, f \in \text{InnFib} \) implies \(\ell \in \text{TrivFib}.\)
4. \(j \in \text{LHorn}, f \in \text{InnFib} \) implies \(r \in \text{TrivFib}.\)

Proof. Exercise, using (27.13). \(\square \)

We are mostly interested in special cases when \(X = C \) is a quasicategory, and \(Y = \ast. \)

27.15. **Corollary.** Given \(T \xrightarrow{j} S \xrightarrow{p} C \) with \(C \) a quasicategory and \(j \) a monomorphism, the induced map \(C_p/ \to C_{pj}/ \) is a right fibration, and \(C_p/ \to C_{pj}/ \) is a left fibration. In particular, \(C_p/ \to C \) is a right fibration and \(C_{pj}/ \to C \) is a left fibration (case \(T = \emptyset \)).

27.16. **Corollary.** Given \(T \xrightarrow{j} S \xrightarrow{p} C \) with \(C \) a quasicategory, if \(j \) is right anodyne then \(C_p/ \to C_{pj}/ \) is a trivial fibration, while if \(j \) is left anodyne then \(C_p/ \to C_{pj}/ \) is a trivial fibration.

Another case we will need is when \(T = \emptyset. \)

27.17. **Corollary.** Given \(S \xrightarrow{p} X \xrightarrow{j} Y \) where \(f \) is a trivial fibration, all of the maps in
\[
X_p/ \to X \times_Y Y_{fp/} \to Y_{fp/} \quad \text{and} \quad X_p/ \to X \times_Y Y_{fp/} \to Y_{fp/}
\]
are trivial fibrations.
Proof. The two pullback-slice maps are trivial fibrations by (27.14). The projections are each base changes of the trivial fibration \(f \), and so are trivial fibrations. □

We’ll also meet the following consequence now and again: joins preserve monomorphisms.

27.18. Proposition. If \(i: A \to B \) is a monomorphism of simplical sets, then so are \(S \star i: S \star A \to S \star B \) and \(i \star S: A \star S \to B \star S \) for any \(S \).

Proof. The map \(S \star i \) is the composite

\[
S \star A (S \star A) \cup_{\varnothing \star A} (\varnothing \star B) \rightarrow S \star B.
\]

the second map is a monomorphism by \(\text{Cell} \subseteq \text{Cell} \) (27.13), while the first map is a cobase change of the monomorphism \(i \).

□

27.19. Composition functors for slices. Here is a nice consequence of the above. Let \(C \) be a quasicategory and \(f: x \to y \) a morphism in it; we represent \(f \) by a map \(\Delta^1 \to C \) of simplicial sets, which we also call \(f \). We obtain two restriction functors

\[
C / x \leftarrow C / f \rightarrow C / y
\]

associated to the inclusions \(\{0\} \subseteq \Delta^1 \supset \{1\} \). The first inclusion \(\{0\} \subseteq \Delta^1 \) is a left-horn inclusion, and thus by (27.16) the restriction map \(r_0 \) is a trivial fibration, and hence we can choose a section

\[s: C / x \to C / f \]

of \(p \).

The resulting composite \(r_1 s: C / x \to C / y \) can be thought of as a functor realizing the operation which sends an object \((e \rightharpoonup x) \) of \(C / x \) to “the object” \((e \rightharpoonup g \rightharpoonup y) \) of \(C / y \) defined by “composing \(f \) and \(g \)” (but remember that such composition is not uniquely defined in a quasicategory \(C \); the choice of section \(s \) gives a collection of such choices for all \(g \).)

27.20. Exercise. Show that if \(C \) is a category, then \(r_0 \) is an isomorphism, and that \(r_1 s \) is precisely the functor \(C / x \to C / y \) described above.

28. LIMITS AND COLIMITS IN QUASICATEGORIES

28.1. Definition of limits and colimits. Now we can define the notion of a limit and colimit of a functor between quasicategories (and in fact of a map from a simplicial set to a quasicategory). Given a map \(p: K \to C \) where \(C \) is a quasicategory, a colimit of \(p \) is defined to be an initial object of the slice quasicategory \(C / p \). Explicitly, a colimit of \(p: K \to C \) is a map \(\hat{p}: K \star \Delta^0 = K^< \to C \) extending \(p \), such that for \(n \geq 1 \) a lift exists in every diagram of the form

\[
\begin{array}{c}
\Delta^n \\
\downarrow \\
K \star \Delta^n
\end{array} \rightarrow
\begin{array}{c}
K \star \partial \Delta^n \\
\downarrow \\
C
\end{array}
\]

\[
\begin{array}{c}
\Delta^n \\
\downarrow \\
K \star \Delta^n
\end{array} \rightarrow
\begin{array}{c}
K \star \partial \Delta^n \\
\downarrow \\
C
\end{array}
\]

Sometimes it is better to call \(\hat{p} \) a colimit cone for \(p \), in which case the restriction \(\hat{p}\varnothing \star \Delta^0 \) to the cone point is an object in \(C \) which can be called a “colimit of \(p \).”

Similarly, a limit of \(p \) is a terminal object of \(C / p \); explicitly, this is a map \(\hat{p}: \Delta^0 \star K = K^> \to C \) extending \(p \) such that for \(n \geq 1 \) a lift exists in every diagram

\[
\begin{array}{c}
\Delta^n \star K \\
\downarrow \\
K \star \partial \Delta^n \\
\downarrow \\
C
\end{array} \rightarrow
\begin{array}{c}
\Delta^n \star K \\
\downarrow \\
K \star \partial \Delta^n \\
\downarrow \\
C
\end{array}
\]

Sometimes it is better to call \(\hat{p} \) a limit cone for \(p \), in which case the restriction \(\hat{p}\varnothing \star \Delta^0 \) to the cone point is an object in \(C \) which can be called a “limit of \(p \).”
Again, we will also sometimes refer to \(\tilde{p} : \Delta^0 \star K = K^\triangleright \to C \) as a limit cone for \(p \).

28.2. Example. Consider the empty simplicial set \(K = \emptyset \). Then \(C_{\emptyset} = C \), so a colimit of \(p : \emptyset \to C \) is precisely the same as an initial object of \(C \). Likewise, a limit of \(p \) is precisely the same as a terminal object of \(C \).

28.3. Example. Consider \(K = \Delta^n_0 \), which is the nerve of a category which we can draw as the picture \((1 \leftarrow 0 \to 2)\). Then \((\Delta^n_0)^\triangleright \approx \Delta^1 \times \Delta^1 \) is also an ordinary category; explicitly it has the form of a commutative square

\[
\begin{array}{ccc}
0 & \longrightarrow & 1 \\
\downarrow & & \downarrow \\
2 & \longrightarrow & v
\end{array}
\]

where \(v \) is the “cone vertex”. A colimit cone \((\Delta^n_0)^\triangleright \to C \) is called a pushout diagram in \(C \).

Similar considerations give \((\Delta^n_2)^\rhd \approx \Delta^1 \times \Delta^1 \); a limit cone \((\Delta^n_2)^\rhd \to C \) is called a pullback diagram in \(C \).

28.4. Exercise. Let \(C' \subseteq C \) be an inclusion of a full subcategory. Show that if \(p : K \to C' \) has a colimit \(\tilde{p} \) in \(C \), and if the image of \(\tilde{p} \) is contained in \(C' \), then \(\tilde{p} \) is in fact a colimit of \(p \) in \(C' \).

28.5. Uniqueness of limits and colimits. Limits and colimits are unique if they exist.

28.6. Proposition. Let \(p : K \to C \) be a map to a quasicategory, and let \((C_p/)^{\text{colim}} \subseteq C_p/ \) and \((C_p/)^{\text{lim}} \subseteq C_p/ \) denote the full subcategories spanned by colimit cones and limit cones respectively. Then (i) either \((C_p/)^{\text{colim}} \) is empty or is categorically equivalent to \(\Delta^0 \), and (ii) either \((C_p/)^{\text{lim}} \) is empty or is categorically equivalent to \(\Delta^0 \).

Proof. This is just the uniqueness of initial and terminal objects (26.6), since \((C_p/)^{\text{colim}} = (C_p/)^{\text{init}}\) and \((C_p/)^{\text{lim}} = (C_p/)^{\text{termin}}\).

We have noted above (26.3) that an object \(x \) in a quasicategory \(C \) is initial iff \(C_{/x} \to C \) is a trivial fibration, and terminal iff \(C_{/x} \to C \) is a trivial fibration. There is a similar characterization of limit and colimit cones.

28.7. Proposition. Let \(C \) be a quasicategory. Let \(\tilde{p} : K^\triangleright \to C \) be a map, and write \(p := \tilde{p}| K \). Then \(\tilde{p} \) is a colimit diagram if and only if \(C_{/\tilde{p}} \to C_p/ \) is a trivial fibration.

Likewise, let \(\tilde{q} : K^\rhd \to C \) be a map, and write \(q := \tilde{q}| K \). Then \(\tilde{q} \) is a limit diagram if and only if \(C_{/\tilde{q}} \to C_q/ \) is a trivial fibration.

Proof. I’ll just do the case of colimits.

We make an elementary observation about iterated slices (see (28.8) below). There is an isomorphism \((C_p/)^{\tilde{p}} \approx C_{\tilde{p}/}\), where the symbol \(\tilde{p}\) refers to both a morphism \(\tilde{p} : K^\triangleright \to C_p/ \) (on the right-hand side of the isomorphism) and the corresponding object \(\tilde{p} \subseteq (C_p/)_0 \) (on the left-hand side of the isomorphism). The point is that in either simplicial set, a \(k \)-dimensional element corresponds to a map \(K \star \Delta^0 \star \Delta^k \to C \) which restricts to \(\tilde{p} \) on \(K \star \Delta^0 \star \emptyset \).

Using this, the statement amounts to the special case for initial and terminal objects (26.3).

28.8. Exercise (Iterated slices). Let \(f : A \star B \to C \) be a map of simplicial sets. Describe isomorphisms

\[
C_{/f} \approx (C_{/f_A})_{/f_B}, \quad C_{f/} \approx (C_{/f_B})_{/f_A},
\]

where \(f_A : A \to C \) and \(f_B : B \to C \) are the evident restrictions of \(f \) to subcomplexes, and \(\tilde{f_A} : A \to C_{/f_B} \) and \(\tilde{f_B} : B \to C_{f_A/} \) are the adjoints to \(f \).
28.9. **Limits and colimits in slices.** Given a map $p: S \to C$ to a quasicategory, we have “forgetful functors” $\pi: C_p \to C$ and $\pi: C_{p/} \to C$ from the slices to C.

The following proposition says that an initial object of C implies a compatible initial object of C_p, and a terminal object of C implies a compatible terminal object of $C_{p/}$. Note that when C is an ordinary category this is entirely straightforward: e.g., given an initial object c_0 of C, there is a unique cone $\tilde{p}: S^\triangleright \to C$ extending p which sends the cone vertex to c_0, and its an easy exercise to show that \tilde{p} represents an initial object of the slice C_p.

28.10. **Proposition.** Let $p: S \to C$ be a map from a simplicial set to a quasicategory.

1a) If $x \in (C_p)_0$ is an object such that $\pi(x) \in C_0$ is initial in C, then x is initial in C_p.

1b) If C has an initial object then so does C_p.

2a) If $x \in (C_{p/})_0$ is an object such that $\pi(x) \in C_0$ is terminal in C, then x is terminal in $C_{p/}$.

2b) If C has a terminal object then so does $C_{p/}$.

Proof. (See [Lur09, 1.2.13.8,] I’ll only prove (1a) and (1b), as the other parts are analogous.

To prove (1a), let $x \in (C_p)_0$ and $y = \pi(x) \in C_0$; we need to show that if y is initial, then so is x.

To show that x is initial we must show that a lift in any diagram of the form

$$\begin{array}{c}
\Delta^0 \times \varnothing \ar[r] & (\Delta^0 \times \partial \Delta^n) \cup_{\varnothing \times \partial \Delta^n} (\varnothing \times \Delta^n) \ar[r] & C_p \\
\downarrow & & \downarrow \\
\Delta^0 \times \Delta^n \ar[ru] & & C_p
\end{array}$$

for $n \geq 0$, using the identification $(\varnothing \subset \Delta^0) \ast (\partial \Delta^n \subset \Delta^n) \approx (\partial \Delta^{n+1} \subset \Delta^{n+1})$. This lifting problem is equivalent to one of the form

$$\begin{array}{c}
\Delta^0 \times \varnothing \ast S \ar[r] & (\Delta^0 \times \partial \Delta^n \ast S) \cup_{\varnothing \times \partial \Delta^n \ast S} (\varnothing \ast \Delta^n \ast S) \ar[r] & C \\
\downarrow & & \downarrow \\
\Delta^0 \ast \Delta^n \ast S \ar[ru] & & C
\end{array}$$

(because $(-) \ast S$ preserves pushouts (24.8)), which in turn is equivalent to one of the form

$$\begin{array}{c}
S \ar[r] & \partial \Delta^n \ast S \ar[r] & C_{y/} \\
\downarrow & & \downarrow q \\
\Delta^n \ast S \ar[r] & C
\end{array}$$

(Here the maps marked x, x', x'' are all adjoints of each other.) Since y is initial, q is a trivial fibration (26.3), and therefore a lift exists since $\partial \Delta^n \ast S \to \Delta^n \ast S$ is a monomorphism, because joins preserve monomorphisms (27.18). We conclude that x is initial when y is.

Next we prove (1b). Suppose $y \in C_0$ is an initial object. This implies $q: C_{y/} \to C$ is a trivial fibration (26.3). In particular, a lift exists in

$$\begin{array}{c}
S \ar[r] & \partial \Delta^n \ast S \ar[r] & C_{y/} \\
\downarrow & & \downarrow q \\
\Delta^n \ast S \ar[r] & C
\end{array}$$
By an adjunction argument (24.15), x'' corresponds to a map $x : \Delta^0 \to C/p$ such that $\pi(x) = y$. By what we have already proved, x must be initial since $\pi(x) = y$ is initial. □

28.11. Remark. In fact, the converses of (1a) and (2a) in (28.10) are also true, as long as we assume that C has an initial/terminal object. The proof of these converses requires (D), which we have not established yet.

We can now generalize the above to arbitrary limits in colimits.

The following proposition says that colimits in C/p or limits in C/p can be “computed in the underlying quasicategory” C (if the corresponding colimit or limit in C exists).

28.12. Proposition. Let $p : S \to C$ be a map from a simplicial set to a quasicategory.

(1) Let $f : K \to C/p$ be a map such that the composite map $f_0 = \pi f : K \xrightarrow{f} C/p \xrightarrow{\pi} C$ has a colimit cone in C. Then
(a) f admits a colimit cone, and
(b) if $\tilde{f} : K^{\triangleright} \to C/p$ is such that the composite map $K^{\triangleright} \xrightarrow{\tilde{f}} C/p \to C$ is a colimit cone, then \tilde{f} is a colimit cone.

(2) Let $f : K \to C/p$ be a map such that the composite map $f_0 = \pi f : K \xrightarrow{f} C/p \xrightarrow{\pi} C$ has a limit cone in C. Then
(a) f admits a limit cone, and
(b) if $\tilde{f} : K^{\triangleright} \to C/p$ is such that the composite map $K^{\triangleright} \xrightarrow{\tilde{f}} C/p \to C$ is a limit cone, then \tilde{f} is a limit cone.

The proof will make use an observation sketched in the following exercise: any composite of a slice-over followed by a slice-under can be reinterpreted as a slice-under followed by a slice-over.

28.13. Exercise (Two-sided slice). Fix a map $p : A \star B \to X$ of simplicial sets. Describe a simplicial set X/p which admits bijective correspondences

\[
\begin{align*}
\{ & A \star B \quad &\xrightarrow{p} & X \\
& A \star \tilde{K} \star B & \xrightarrow{\tilde{f}} & X/p
\end{align*}
\]

natural in K. Then construct natural isomorphisms

\[
(X/p_A)/\tilde{p}_B \approx X/p/ \approx (X/p_B)\tilde{p}_A/,
\]

where $p_A : A \to X$ and $p_B : B \to X$ are the evident restrictions of p to subcomplexes, and $\tilde{p}_A : A \to X/p_B$ and $\tilde{p}_B : B \to X/p_A$ are adjoints to p.

Proof of (28.12). I prove (1), as (2) is analogous. Note that $f : K \to C/p$ is adjoint to a map $g : K* S \to C$, which in turn is adjoint to a map $q : S \to C_{f_0}$. Colimit cones of f_0 correspond precisely to initial objects of C_{f_0}; in particular, the hypothesis of (1) asserts that C_{f_0} has an initial object. Likewise, colimit cones of f correspond exactly to initial objects of $(C/p)_{f_0}$. As in (28.13) we have isomorphisms

\[
(C/p)_{f_0} \approx C/q_0 \approx (C_{f_0})/q.
\]

To prove (1a) here it suffices to show that $(C_{f_0})/q$ has an initial object, which since C_{f_0} does using (28.10)(1a). To prove (1b) here it suffices to show that the projection $(C_{f_0})/q \to C_{f_0}$ has the property that objects sent to initial objects of C_{f_0} are initial in $(C_{f_0})/q$, which is immediate from (28.10)(1b). □
28.14. **Invariance of limits and colimits.** Here are some seemingly obvious facts about limits and colimits in quasicategories which we cannot prove yet.

E. Deferred Proposition. Let \(f : C \to D \) be a categorical equivalence between quasicategories. Then a map \(p : K^\triangleright \to C \) is a colimit cone in \(C \) if and only if \(fp \) is a colimit cone in \(D \), and a map \(q : K^\blacktriangleleft \to C \) is a limit cone in \(C \) if and only if \(fq \) is a colimit cone in \(D \).

I will prove this in (??).

F. Deferred Proposition. Let \(f_0, f_1 : K \to C \) be maps, and \(\alpha : f_0 \to f_1 \) an isomorphism of objects of \(\text{Fun}(K,C) \).

1. The map \(f_0 \) admits a colimit if and only if \(f_1 \) does, and furthermore, if \(\hat{f}_0 \) and \(\hat{f}_1 \) are colimit cones for \(f_0 \) and \(f_1 \) respectively, there exists an isomorphism \(\hat{\alpha} : \hat{f}_0 \to \hat{f}_1 \) extending \(\alpha \).

2. The map \(f_0 \) admits a limit if and only if \(f_1 \) does, and furthermore, if \(\hat{f}_0 \) and \(\hat{f}_1 \) are limit cones for \(f_0 \) and \(f_1 \) respectively, there exists an isomorphism \(\hat{\alpha} : \hat{f}_0 \to \hat{f}_1 \) extending \(\alpha \).

Hopefully I will prove this one later.

29. The Joyal Extension and Lifting Theorems

We are now at the point where we can state and prove Joyal’s theorems about extending or lifting maps along outer horns. This will allow us to prove many of the results whose proofs we have deferred up to now.

29.1. Joyal extension theorem.** The following gives a condition for extending maps from outer horns into a quasicategory.

29.2. Theorem (Joyal extension). [Joy02, Thm. 1.3] Let \(C \) be a quasicategory, and fix a map \(f : \Delta^1 \to C \). The following are equivalent.

1. The edge represented by \(f \) is an isomorphism in \(C \).
2. Every \(a : \Lambda^n_0 \to C \) with \(n \geq 2 \) such that \(f = a|\Delta^{0,1} : \Delta^1 \to C \) admits an extension to a map \(\Delta^n \to C \).
3. Every \(b : \Lambda^n_0 \to C \) with \(n \geq 2 \) such that \(f = b|\Delta^{n-1,n} : \Delta^1 \to C \) admits an extension to a map \(\Delta^n \to C \).

I’ll call \((01) \in \Delta^n\) the leading edge, and \((n-1,n) \in \Delta^n\) the trailing edge. Thus, the implications \((1) \Rightarrow (2) \) and \((1) \Rightarrow (3) \) say that we can always extend \(\Lambda^n_0 \to C \) to an \(n \)-simplex if the leading edge goes to an isomorphism in \(C \), and extend \(\Lambda^n_0 \to C \) to an \(n \)-simplex if the trailing edge goes to an isomorphism in \(C \).

The implications \((2) \Rightarrow (1) \) and \((3) \Rightarrow (1) \) are easy, and are left as an exercise.

29.3. Exercise (Easy part of Joyal extension). Suppose \(C \) is a quasicategory with edge \(f \in C_1 \), and suppose that every map \(a : \Lambda^n_0 \to C \) with \(n \in \{2,3\} \) and \(f = a|\Delta^{0,1} \) admits an extension along \(\Lambda^n_0 \subset \Delta^n \). Prove that \(f \) is an isomorphism.

The non-trivial implications of Joyal extension will lead to proofs of the deferred propositions (A), (C), and (D).

The proof of the Joyal extension theorem will be an application of the fact that left fibrations and right fibrations are conservative isofibrations.

29.4. Conservative functors.** A functor \(p : C \to D \) between categories is conservative if whenever \(f \) is a morphism in \(C \) such that \(p(f) \) is an isomorphism in \(D \), then \(f \) is an isomorphism in \(C \).

The definition of a conservative functor between quasicategories is precisely the same.

29.5. Proposition. All left fibrations and right fibrations between quasicategories are conservative.
Proof. Consider a right fibration \(p: C \to D \), and a morphism \(f: x \to y \) in \(C \) such that \(p(f) \) is an isomorphism. We first show that \(f \) admits a preinverse.

Let \(a: \Lambda^2_2 \to C \) such that \(a_{12} = f \) and \(a_{02} = 1_y \). Let \(b: \Delta^2 \to C \) be any 2-dimensional element exhibiting a preinverse of \(p(f) \), i.e., such that \(b_{12} = p(f) \) and \(b_{02} = 1_{p(y)} \), so that \(b_0 \) is a preinverse. Now have a diagram with a lift

\[
\begin{array}{ccccc}
\Lambda^2_2 & \xrightarrow{a} & C \\
\downarrow & & \downarrow p \\
\Delta^2 & \xrightarrow{b} & D
\end{array}
\]

which exhibits a preinverse of \(f \), which we will call \(g \).

Because \(p(f) \) was assumed to be an isomorphism in \(D \), its preinverse \(p(g) \) is also an isomorphism, and therefore by the above argument \(g \) admits a preinverse as well. We conclude that \(f \) is invertible by (10.4).

\[\square\]

29.6. Isofibrations. We say that a functor \(p: C \to D \) of quasicategories is an **isofibration**\(^{22}\) if

1. \(p \) is an inner fibration, and
2. we have “isomorphism lifting” along \(p \). That is, for any \(c \in C_0 \) and isomorphism \(g: p(c) \to d' \), there exists a \(c' \in C_0 \) and isomorphism \(f: c \to c' \) such that \(p(f) = g \).

Condition (2) is illustrated by the diagram

\[
\begin{array}{ccc}
\{0\} & \xrightarrow{c} & C_{\text{core}} \xrightarrow{p} C \\
\downarrow & & \downarrow p_{\text{core}} \\
\Delta^1 & \xrightarrow{g} D_{\text{core}} \xrightarrow{p} D
\end{array}
\]

Recall that if \(C \) and \(D \) are nerves of ordinary categories, then any functor \(C \to D \) is an inner fibration. Thus in the case of ordinary categories, being an isofibration amounts to condition (2) only. Also, it is clear that in the case of ordinary categories we can replace (2) with the dual condition

(2') for any \(c \in C_0 \) and isomorphism \(g': d' \to p(c) \), there exists a \(c' \in C_0 \) and isomorphism \(f': c' \to c \) such that \(p(f') = g' \).

To prove (2) from (2') for ordinary categories, just apply condition (2') to the (unique) inverse of \(g \).

The symmetry between (2) and (2') also holds for functors between quasicategories, by the following.

29.7. Proposition. An inner fibration \(p: C \to D \) between quasicategories is an isofibration if and only if \(h(p): h(C) \to h(D) \) is an isofibration of ordinary categories.

\[\text{Proof.} \quad (\Longrightarrow) \text{ Straightforward.} \quad (\Longleftarrow) \] Suppose given an isomorphism \(g: p(c) \to d' \) in \(D \). If \(h(p): h(C) \to h(D) \) is an isofibration, there exists an isomorphism \(f': c \to c' \) in \(C \) such that \(p(f') \sim_r g \). Now choose a lift in

\[
\begin{array}{ccccc}
\Lambda^2_1 & \xrightarrow{a} & C \\
\downarrow & & \downarrow p \\
\Delta^2 & \xrightarrow{b} & D
\end{array}
\]

where \(b \) exhibits \(p(f') \sim_r g \) and \(a((01)) = f' \) and \(a((12)) = 1_{c'} \). The edge \(f = s_{02} \) is a lift of \(g \), and is an isomorphism since \(f' \sim_r f \).

\[\square\]

\(^{22}\)Joyal uses the term “quasifibration” in [Joy02]. Later in [Joy08a] this is called a “pseudofibration”. Lurie uses this notion, but never names it. The term “isofibration” is used by Riehl and Verity [RV15].
29.8. Exercise. (i) Let Group denote the category of groups, whose objects are pairs \(G = (S, \mu) \) consisting of a set \(S \) and a function \(\mu: S \times S \to S \) satisfying a well-known list of axioms. Show that the functor \(U: \text{Group} \to \text{Set} \) which on objects sends \((S, \mu) \mapsto S \) is an isofibration between ordinary categories.

(ii) Consider the functor \(U' : \text{Group} \to \text{Set} \) defined on objects by \(G \mapsto \text{Hom}(\mathbb{Z}, G) \). Explain why, although \(U' \) is naturally isomorphic to \(U \), you don’t know how to show whether \(U' \) is an isofibration without explicit reference to the axioms of your set theory. The moral is that the property of being an isofibration is not “natural isomorphism invariant”.

29.9. Left and right fibrations are isofibrations.

29.10. Proposition. All left fibrations and right fibrations between quasicategories are isofibrations.

Proof. Suppose \(p : C \to D \) is a right fibration (and hence an inner fibration) between quasicategories, and consider

\[
\begin{array}{ccc}
\{1\} & \longrightarrow & C \\
\downarrow f & & \downarrow p \\
\Delta^1 & \longrightarrow & D \\
\end{array}
\]

where \(g \) represents an isomorphism in \(D \). Because \(p \) is a right fibration and \(\{1\} \subset \Delta^1 \in \text{RHorn} \), there exists a lift \(f \). Because right fibrations are conservative, \(f \) represents an isomorphism. \[\square\]

Note that the above proof checked explicitly isofibration condition \((2')\) for right fibrations; thus, by symmetry we conclude that isofibration condition \((2) \) holds for right fibrations. It seems difficult to give an elementary direct proof that right-fibrations satisfy \((2)\).

29.11. Proof of the Joyal extension theorem.

Proof of \((29.2)\). We prove \((1) \Rightarrow (2)\). Suppose given \(a : \Lambda^n_0 \to C \) such that \(f = a|\Delta^{0,1} \) represents an isomorphism. Observe \((27.4)\) that \((\Lambda^n_0 \subset \Delta^n)\) is the pushout-join of a 1-horn with an \((n - 2)\)-cell:

\[
(\Lambda^n_0 \subset \Delta^n) \approx (\Delta^{0} \subset \Delta^{0,1}) \sqcup (\partial \Delta^{2,\ldots,n} \subset \Delta^{2,\ldots,n}),
\]

since \(\Lambda^n_0 \approx (\Delta^{0} \star \Delta^{2,\ldots,n}) \cup (\Delta^{0,1} \star \partial \Delta^{2,\ldots,n}) \) inside \(\Delta^n \approx \Delta^{0,1} \star \Delta^{2,\ldots,n} \). Using this, we get a correspondence of lifting problems

\[
\begin{array}{ccc}
\Delta^{0,1} & \longrightarrow & \Lambda^n_0 & \longrightarrow & C \\
\Delta^n & \downarrow & \downarrow a & \longrightarrow & \uparrow f \\
\end{array}
\quad \Leftrightarrow \quad
\begin{array}{ccc}
\Delta^{0} & \longrightarrow & C_{/a|\Delta^{2,\ldots,n}} \\
\Delta^{0,1} & \longrightarrow & C_{/(a | \partial \Delta^{2,\ldots,n})} \\
\Delta^n & \downarrow & \downarrow f & \longrightarrow & \uparrow p \\
\end{array}
\]

where \(g \) is adjoint to \(a|(\Delta^{0,1} \star \partial \Delta^{2,\ldots,n}) \), and \(h \) is adjoint to \(a|(\Delta^{0} \star \Delta^{2,\ldots,n}) \). Because \(C \) is a quasicategory, and because \(p \) and \(q \) are restrictions along monomorphisms \(\emptyset \subset \partial \Delta^{2,\ldots,n} \subset \Delta^{2,\ldots,n} \), both \(p \) and \(q \) are right fibrations \((27.15)\), and therefore are conservative isofibrations \((29.5), (29.10)\). Thus since \(f \) represents an isomorphism, so does \(g \) since \(p \) is conservative, and therefore a lift exists since \(q \) is an isofibration.

The proof of \((2) \Rightarrow (1)\) is left as an exercise \((29.3)\). The proof of \((1) \Leftrightarrow (3)\) is similar. \[\square\]
29.12. **The Joyal lifting theorem.** There is a relative generalization.

29.13. **Theorem (Joyal lifting).** Let $p: C \to D$ be an inner fibration between quasicategories, and let $f \in C_1$ be an edge such that $p(f)$ is an isomorphism in D. The following are equivalent.

1. The edge f is an isomorphism in C.

2. For all $n \geq 2$, every diagram of the form

 \[
 \begin{array}{c}
 \Delta^{[0,1]} \cong \\
 \Delta^n \\
 \Lambda^n_0 \\
 \Lambda^n_0 \\
 \Delta^0 \\
 \Delta^0 \\
 \end{array}
 \]

 admits a lift.

3. For all $n \geq 2$, every diagram of the form

 \[
 \begin{array}{c}
 \Delta^{[n-1,n]} \cong \\
 \Delta^n \\
 \Lambda^n_0 \\
 \Lambda^n_0 \\
 \Delta^0 \\
 \Delta^0 \\
 \end{array}
 \]

 admits a lift.

Proof. The implications $(2) \Rightarrow (1)$ and $(3) \Rightarrow (1)$ are elementary, as in (29.3).

For $(1) \Rightarrow (2)$, the first step is to prove that

\[
C_{/(a|\Delta^{[2,\ldots,n]})} \rightarrow C_{/(a|\partial\Delta^{[2,\ldots,n]})} \times D_{/(pa|\partial\Delta^{[2,\ldots,n]})} \rightarrow D_{/(pa|\Delta^{[2,\ldots,n]})} \rightarrow C
\]

are both right fibrations. For instance, the map q is the slice-power of the inner fibration p by a monomorphism, so is a right fibration by (27.14). The map p is the composite

\[
C_{/(a|\partial\Delta^{[2,\ldots,n]})} \times D_{/(pa|\partial\Delta^{[2,\ldots,n]})} \rightarrow D_{/(pa|\Delta^{[2,\ldots,n]})} \rightarrow C
\]

where p' is the base change of the right fibration $D_{/(pa|\Delta^{[2,\ldots,n]})} \rightarrow D_{/(pa|\partial\Delta^{[2,\ldots,n]})}$, and p'' is a right fibration (in both cases by (27.15)). Then the proof of $(1) \Rightarrow (2)$ proceeds exactly as in (29.2). \qed

30. **Applications of the Joyal extension theorem**

We can now prove all the statements whose proofs we have deferred until now, as well as some others. I'll prove (A) and (D) in this section, and (C) in the next section.

30.1. **Quasigroupoids are Kan complexes.** First we prove (A), the identification of quasigroupoids with Kan complexes.

30.2. **Proposition.** Every quasigroupoid is a Kan complex.

Proof. In a quasigroupoid, the Joyal extension property (29.2) applies to all maps from Λ^n_0 and Λ^n_0 with $n \geq 2$, since every edge is an isomorphism. (Recall that Kan complexes automatically have extensions for 1-horns (10.10).)

From now on we will use terms “quasigroupoid” and “Kan complex” interchangeably.
30.3. **Invariance of slice categories.** Here is an equivalent reformulation of the Joyal extension theorem in terms of maps between slices.

30.4. **Proposition** (Reformulation of Joyal extension). If \(f: x \to y \) is an edge in a quasicategory \(C \), then the following are equivalent: (1) \(f \) is an isomorphism; (2) \(C_{f/} \to C_{x/} \) is a trivial fibration; (3) \(C_{f/} \to C_{y/} \) is a trivial fibration.

Proof. For all \(n \geq 0 \) we have a correspondence of lifting problems

\[
\begin{array}{ccc}
\partial \Delta^n & \to & C_{f/} \\
\downarrow & & \downarrow \Delta \\
\Delta^n & \to & C_{x/}
\end{array}
\Longleftrightarrow \begin{array}{ccc}
\Delta^1 \times \varnothing & \to & (\Delta^1 \times \partial \Delta^n) \cup \{(0) \star \Delta^n\} \\
\downarrow & & \downarrow \\
\Delta^1 \times \Delta^n & \to & C
\end{array}
\]

and \((\Delta^1 \times \partial \Delta^n) \cup \{(0) \star \Delta^n\} \subseteq \Delta^1 \star \Delta^n \approx (\Lambda_0^{1+n+1} \subseteq \Delta^{1+n+1})\). The lifting problems on the right-hand side are precisely those of statement (2) of the Joyal extension theorem (29.2). \(\square\)

30.5. **Exercise** (Reformulation of Joyal lifting). Let \(p: C \to D \) be an inner fibration, and \(f: x \to y \) an edge in \(C \) such that \(p(f) \in D_1 \) is an isomorphism. Show that the following are equivalent: (1) \(f \) is an isomorphism in \(C \); (2) \(C_{f/} \to C_{x/} \times_{D_{p(x)/}} D_{p(f)/} \) is a trivial fibration; (3) \(C_{f/} \to C_{y/} \times_{D_{p(y)/}} D_{p(f)/} \) is a trivial fibration.

30.6. **Corollary.** If \(f: x \to y \) is an isomorphism in a quasicategory \(C \), then \(C_{x/} \) and \(C_{y/} \) are categorically equivalent, and \(C_{x/} \) and \(C_{y/} \) are categorically equivalent.

Proof. Consider \(C_{x/} \xymatrix@C=25pt{= \ar[r]_{r_0} & \overset{r_1}{C_{f/}} \ar[r] & C_{y/} \ar[l]_{r_0} \} \). We have already observed (27.15) that \(r_0 \in \text{TrivFib} \), since \(\{0\} \subseteq \Delta^0 \) is left anodyne. The reformulation of Joyal extension (30.4) implies that \(r_1 \in \text{TrivFib} \) when \(f \) is an isomorphism. Therefore \(C_{x/} \) and \(C_{y/} \) are connected by a chain of categorical equivalences. The proof for slice-under categories is analogous. \(\square\)

30.7. **Invariance of initial objects.** Now we prove (D) about initial and terminal objects. We will explicitly prove the statements about initial objects, as the case of terminal objects is similar.

30.8. **Proposition.** Let \(f: x \to y \) be a morphism in a quasicategory \(C \), and let \(\bar{f} \in (C_{x/})_0 \) be the object of the slice which corresponds to \(f \in C_1 \). Then \(\bar{\bar{f}} \) is initial in \(C_{x/} \) if and only if \(f \) is an isomorphism.

Proof. For all \(n \geq 1 \) we have a correspondence of lifting problems

\[
\begin{array}{ccc}
\{0\} & \to & \partial \Delta^n \to C_{x/} \\
\downarrow & & \downarrow \\
\Delta^n & \to & \Delta^0 \times \partial \Delta^n \to C
\end{array}
\]

and \((\Delta^0 \times \partial \Delta^n \subseteq \Delta^0 \star \Delta^n) \approx (\Lambda_0^{1+n} \subseteq \Delta^{1+n})\), so a lift exists by the Joyal extension theorem.

(Alternately, we can note that \(\bar{\bar{f}} \) is initial if and only if \(\pi: (C_{x/})_{\bar{\bar{f}}} \to C_{x/} \) is a trivial fibration (26.3), and that \(\pi \) is isomorphic to \(C_{f/} \to C_{x/} \) (28.8), so the claim follows from (30.4)). \(\square\)

Note that (30.8) implies that the slice \(C_{x/} \) necessarily has an initial object, namely the vertex corresponding to the edge \(1_x \in C_1 \).

30.9. **Proposition.** Any object in a quasicategory isomorphic to an initial object is also initial.
Proof. Let x be an initial object in C, and let c be an object isomorphic to x. It is easy to see that x is initial in the homotopy category hC, and therefore c is initial in hC also. This has a useful consequence: any map between x and c (in either direction) must be an isomorphism in C.

We next note another fact: if x is initial, any map $f: S \to C$ extends along $S \subset \Delta^0 \times S$ to a map $f': \Delta^0 \times S \to C$ such that $f'|\Delta^0$ represents x. This is a consequence of the fact (26.3) that $p: C/x \to C$ is a trivial fibration whence, there exists a map $s: C \to C/x$ such that $ps = \text{id}_C$; set f' be the adjoint to $sf: S \to C/x$.

To show c is initial in C, we need to extend any $a: \partial \Delta^n \to C$ with $a_0 = c$ to a map $\bar{a}: \Delta^n : C$. This follows from a succession of two extension problems:

$$
\begin{array}{ccc}
(\Delta^0 \times \varnothing) & \xrightarrow{(\varnothing \times \partial \Delta^n)} & C \\
\downarrow & & \downarrow \varnothing \times \Delta^n \rightarrow \Delta^0 \times \Delta^n
\end{array}
$$

The extension g exists by the remarks of the previous paragraph since x is initial. The extension h exists because the leading edge of g is a map $x \to c$ in C, which is an isomorphism by the remarks of the first paragraph. The desired extension \bar{a} is $h((\varnothing \times \Delta^n))$. \hfill \Box

30.10. Remark (Initial and terminal objects in quasigroupoids). If C is a quasigroupoid with object $x \in C_0$, then (30.8) and its analogue for final final objects implies that every object of $C_{x/}$ is initial, and every object of C/x is terminal. That is, $C_{x/} = (C_x)^{\text{init}}$ and $C/x = (C/x)^{\text{term}}$, and so both $C_{x/}$ and C/x are categorically equivalent to the terminal quasicategory (26.6).

Conversely, suppose C is a quasicategory such that $C_{x/}$ is categorically equivalent to the terminal category for every $x \in C_0$. Then $C_{x/} \to *$ is a trivial fibration by (36.11), and thus it is easy to see that every object of $C_{x/}$ is an initial object. Then (30.8) implies that every morphism of C is an isomorphism. A similar observation holds for slices C/x.

In other words, a quasicategory C is a quasigroupoid if and only if $C_{x/}$ is contractible for every object x, if and only if C/x is contractible for every object x.

31. PROOF OF THE OBJECTWISE CRITERION FOR NATURAL ISOMORPHISMS

Recall that if C is a quasicategory then so is any function complex $\text{Fun}(X, C) = \text{Map}(X, C)$ for an arbitrary simplicial set X. In this setting, say that an edge in $\text{Fun}(X, C)_1$ is an objectwise isomorphism of maps $X \to C$ if for each for each vertex $x \in X_0$, the composite $\Delta^1 \xrightarrow{f} \text{Fun}(X, C) \xrightarrow{\text{res}_x} \text{Fun}(\{x\}, C) \approx C$ represents an isomorphism in C, where f is the representing map of the edge.

Note that any isomorphism in $\text{Fun}(X, C)$ is automatically an objectwise isomorphism. In this section we will prove the following.

31.1. Proposition. Let C be a quasicategory and X a simplicial set. Then an edge of $\text{Fun}(X, C)$ is an isomorphism if and only if it is an objectwise isomorphism.

As a consequence we obtain a proof of (C), which is the special case where X is also a quasicategory, in which case “isomorphisms” in $\text{Fun}(X, C)$ are the same thing as “natural isomorphisms” of functors $X \to C$.

We first reformulate this a bit, using the following easy observation.

31.2. Proposition. Let $\{C_\alpha\}_{\alpha \in A}$ be a collection of quasicategories indexed by a set A, and let $C = \prod_{\alpha \in A} C_\alpha$. Then $f \in C_1$ is an isomorphism if and only if each image $f_\alpha \in (C_\alpha)_1$ under projection is an isomorphism.
Proof. The only if direction is clear. For the if direction, choose for each α a $g_\alpha \in (C_\alpha)_1$ together with $a_\alpha, b_\alpha \in (C_\alpha)_2$ which witness left-homotopies which demonstrate $[g_\alpha][f_\alpha] = \text{id}$ and $[f_\alpha][g_\alpha] = \text{id}$ in hC_α. Then the evident $g = (g_\alpha) \in C_1$ and $a = (a_\alpha), b = (b_\alpha) \in C_2$ witness g as an inverse of f.

(Alternate proof: use Joyal extension (29.2).) □

Since $\text{Map}(\text{Sk}_0 X, C) \approx \prod_{x \in X_0} C$, this means that a map $f \in \text{Map}(X, C)_1$ is an objectwise isomorphism if and only if its image in $\text{Map}(\text{Sk}_0 X, C)_1$ under restriction along $j: \text{Sk}_0 X \to X$ is an isomorphism. So (31.1) is equivalent to the following slightly more general statement.

31.3. Proposition. Let $j: K \to L$ be a monomorphism of simplicial sets such that $j: K_0 \sim \to L_0$ is a bijection. Then for every quasicategory C the restriction map $\text{Fun}(j, C): \text{Fun}(L, C) \to \text{Fun}(K, C)$ is conservative.

We will give the proof of this below (31.8).

31.4. A lifting property for objectwise isomorphisms. We establish a “lifting property” for objectwise isomorphisms, analogous to the definition of isofibration.

31.5. Lemma. Let C be a quasicategory, and let $i: S \to T$ be a monomorphism of simplicial sets such that $i: S_0 \sim \to T_0$ is a bijection. Then for every diagram

$$
\begin{array}{ccc}
\{0\} & \rightarrow & \text{Fun}(T, C) \\
\downarrow & & \downarrow \\
\Delta^1 & \rightarrow & \text{Fun}(S, C)
\end{array}
$$

such that v is an objectwise isomorphism of maps $S \to C$, a lift t exists, and any such lift t is an objectwise isomorphism.

Proof. First note that any lift t is necessarily an objectwise isomorphism, since $S_0 \sim \to T_0$.

Let \mathcal{C} denote the class of monomorphisms $i: S \to T$ such that (i) $i: S_0 \to T_0$ is a bijection, and (ii) such that the conclusion of the lemma applies to i. I claim that \mathcal{C} is a weakly saturated class. To see this, first note that the class of monomorphisms satisfying (i) is a weakly saturated class: by the skeletal filtration (15.23), it is the weak saturation of the set $\text{Cell}_{\geq 1} := \{ \partial \Delta^n \subset \Delta^n \mid n \geq 1 \}$. Thus $\mathcal{C} \subseteq \overline{\text{Cell}_{\geq 1}}$ by hypothesis.

The verification that \mathcal{C} is itself weakly saturated is straightforward. This verification requires (i) to ensure that for any lifting problem we need to consider, the lift t of an objectwise isomorphism v is also an objectwise isomorphism. For instance, to show that \mathcal{C} is closed under composition consider a sequence $S \dashv T \dashv U$ two maps in \mathcal{C}. Then in

$$
\begin{array}{ccc}
\{0\} & \rightarrow & \text{Fun}(U, C) \\
\downarrow & & \downarrow \\
\Delta^1 & \rightarrow & \text{Fun}(S, C)
\end{array}
$$

where v is an objectwise isomorphism, we first have a lift u which is necessarily an objectwise isomorphism because $i \in \mathcal{C}$, and then a lift t because $j \in \mathcal{C}$. A similar argument shows that \mathcal{C} is closed under transfinite composition.

Given this, the proof of the lemma amounts to showing that $\text{Cell}_{\geq 1} \subseteq \mathcal{C}$, which in turn follows from the following proposition (31.6) applied to the case of $D = \ast$ and $(i, j) = (0, 0)$. □
The following is a kind of “pushout-product” version of Joyal lifting, where we replace the horn inclusion \(\Lambda^n_0 \subset \Delta^n \) with the inclusion \(\{0\} \subset \Delta^1 \cap (\partial \Delta^n \subset \Delta^n) \), with the role of the “leading edge” played by \(\Delta^1 \times \{0\} \subset \Delta^1 \times \Delta^n \); or alternately, replace the horn inclusion \(\Lambda^n_0 \subset \Delta^n \) with the inclusion \(\{1\} \subset \Delta^1 \cap (\partial \Delta^n \subset \Delta^n) \), with the role of the “trailing edge” played by \(\Delta^1 \times \{n\} \subset \Delta^1 \times \Delta^n \).

31.6. Proposition (Pushout-product Joyal lifting)
Suppose \(p: C \to D \) is an inner fibration of quasicategories, and suppose \(n \geq 1 \), and either \((i, j) = (0, 0) \) or \((i, j) = (1, n) \). For any diagram

\[
\begin{array}{ccc}
\Delta^1 \times \{j\} & \xrightarrow{f} & (\{i\} \times \Delta^n) \cup_{\{i\} \times \partial \Delta^n} (\Delta^1 \times \partial \Delta^n) \\
\downarrow & & \downarrow p \\
\Delta^1 \times \Delta^n & \xrightarrow{\Delta^1 \times \Delta^1} & D
\end{array}
\]

such that \(f \) represents an isomorphism in \(C \), a lift exists.

Proof. This is a calculation, given in the appendix (60.5), which itself relies on Joyal lifting. \(\square \)

31.7. Example
To give an idea of the proof (31.6), consider the case of \(n = 1 \) and \((i, j) = (0, 0) \), in which case \(K = (\{0\} \times \Delta^1) \cup_{\{0\} \times \partial \Delta^1} (\Delta^1 \times \partial \Delta^1) \) can be pictured the solid-arrow part of the diagram

\[
\begin{array}{ccc}
(0, 1) & \xrightarrow{a} & (1, 1) \\
\downarrow a & & \downarrow \theta \\
(0, 0) & \xrightarrow{e} & (1, 0)
\end{array}
\]

To lift to a map \(\Delta^1 \times \Delta^1 \to C \), we first choose a lift on the 2-simplex \(a \), which is attached along an inner horn \(\Lambda^2_1 \subset \Delta^2 \); then we choose a lift on the 2-simplex \(b \), which is a non-inner horn \(\Lambda^2_0 \subset \Delta^2 \) such that \(K \to C \) sends its leading edge (marked \(e \)) to an isomorphism in \(C \), so Joyal-lifting applies.

31.8. Proof of the objectwise criterion
We now prove (31.3), using ideas from [Lur09, §3.1.1].

Proof of (31.3). Let \(j: K \to L \) be a monomorphism which is a bijection on vertices, and \(C \) a quasicategories. Note that \(p = \text{Fun}(j,C) \) is always an inner fibration between quasicategories (by enriched lifting using \(\text{InnHorn} \supseteq \text{Cell} \supseteq \text{InnHorn} \)). Let \(f: \Delta^1 \to \text{Fun}(L, C) \) be a map representing an edge in \(\text{Fun}(L, C) \), such that the edge in \(\text{Fun}(K, C) \) represented by \(pf \) is an isomorphism. We want to show that \(f \) also represents an isomorphism.

We do this by applying the Joyal lifting theorem (29.13): we will show that under these hypotheses, for every \(n \geq 2 \) and every diagram of the form

\[
\begin{array}{ccc}
\Delta^{0,1} & \xrightarrow{f} & \text{Fun}(L, C) \\
\downarrow a & & \downarrow p = \text{Fun}(j, C) \\
\Delta^n & \xrightarrow{\text{Fun}(K, C)} & \Delta^n
\end{array}
\]

a lift \(a \) exists. The Joyal lifting theorem then tells us that \(f \) represents an isomorphism as desired. Note that since \(p(f) \) is assumed to represent an isomorphism in \(\text{Fun}(K, C) \), it certainly represents an objectwise isomorphism in \(\text{Fun}(K, C) \); this is the only fact about \(p(f) \) we will actually need below.

To do this, we use a strategy which will recur several more times in this book: we “deform” the given lifting problem to one which is easily seen to have a solution. More precisely, for any \(n \geq 2 \) we can define maps

\[
\Delta^n \xrightarrow{x} \Delta^1 \times \Delta^n \xrightarrow{r} \Delta^n
\]
uniquely characterized by their effect on vertices: \(s(x) = (1, x) \), while \(r(x, y) = y \) if \((x, y) \neq (0, 1) \) and \(r(0, 1) = 0 \). That is, \(r \) is the unique natural transformation

\[
r: \langle 0023 \ldots n \rangle \to \langle 0123 \ldots n \rangle = \text{id}_{\Delta^n} \quad \text{of functors} \quad \Delta^n \to \Delta^n.
\]

We calculate that

- \(rs = \text{id} \),
- \(s(\Lambda^n_0) = \{1\} \times \Lambda^n_0 \subseteq (\{0\} \times \Delta^n) \cup (\Delta^1 \times \Lambda^n_0) \),
- \(r(\{0\} \times \Delta^n) = \Delta^n \times 1 \subseteq \Lambda^n_0 \),
- \(r(\Delta^1 \times \Delta^n_{\leq j}) = \Delta^n_{\leq j} \) if \(j \neq 0 \), whence \(r(\Delta^1 \times \Lambda^n_0) = \Lambda^n_0 \), and
- \(r(\Delta^1 \times \{k\}) = \{k\} \) if \(k \neq 1 \), while \(r(\Delta^1 \times \{1\}) = \Delta^{[0,1]} \).

Therefore we can form the solid arrow commutative diagram

\[
\begin{array}{ccc}
\Lambda^n_0 & \xrightarrow{s} & \{0\} \times \Delta^n \cup (\Delta^1 \times \Lambda^n_0) \\
& \downarrow & \downarrow \\
\Delta^n & \xrightarrow{s} & \Delta^1 \times \Delta^n \\
& \downarrow & \downarrow \\
& \Delta^n & \xrightarrow{r} & \Delta^n
\end{array}
\]

and observe that to produce a lift \(a \), it suffices to produce a map \(b \) which is a lift in its rectangle: given \(b \), take \(a = bs \).

Furthermore, producing a lift \(b \) in the above diagram amounts (by adjunction of lifting problems) to showing that a lift exists in a diagram of the form

\[
\begin{array}{ccc}
\{0\} & \to & \text{Fun}(T, C) \\
\downarrow \nabla & & \downarrow \text{Fun}(i, C) \\
\Delta^1 & \xrightarrow{\tilde{v}} & \text{Fun}(S, C)
\end{array}
\]

where \(i: S \to T \) is the monomorphism \((\Lambda^n_0 \times L) \cup (\Delta^n \times K) \to \Delta^n \times L \). I claim that (i) \(i \) induces a bijection \(S_0 \to T_0 \) on vertices, and (ii) that \(\tilde{v} \) represents an objectwise isomorphism of maps \(S \to C \).

Therefore by (31.5) a lift \(\tilde{v} \) exists, whose adjoint \(b \) gives the solution we need.

Claim (i) is immediate, since \(K_0 \to L_0 \) implies that \(\Delta^n \times K \) already contains all the vertices of \(\Delta^n \times L \). For claim (ii), observe for a vertex \((j, x) \in S_0 = (\Delta^n)_0 \times K_0 \), the restriction \(\Delta^1 \xrightarrow{\tilde{v}} \text{Fun}(S, C) \to \text{Fun}\{\{k, x\}, C\} = C \) is adjoint to the composite

\[
\begin{array}{ccc}
\Delta^1 \times \{k\} & \to & \Delta^1 \times \Delta^n \\
\downarrow \tilde{v} & & \downarrow \\
\Delta^1 \times \{k\} & \xrightarrow{r} & \Delta^n \xrightarrow{u} \text{Fun}(K, C) \\
\end{array}
\]

As noted earlier, when \(k \neq 1 \) we have \(r(\Delta^1 \times \{k\}) = \{k\} \), so that the above composite represents an identity map in \(C \). On the other hand when \(k = 1 \) we have \(r(\Delta^1 \times \{k\}) = \Delta^{[0,1]} \), the leading edge of the \(n \)-simplex, and \(\tilde{v}|_{\Delta^{[0,1]}}: \Delta^{[0,1]} \to \text{Fun}(K, C) \) is precisely the edge represented by \(p(f) \), which is an isomorphism in \(\text{Fun}(K, C) \) by hypothesis, hence an objectwise isomorphism.

31.9. Remark. Now that we have proved the objectwise criterion for objectwise isomorphisms (31.3), we can reinterpret the conclusion of (31.5): the restriction functor \(\text{Fun}(i, C): \text{Fun}(T, C) \to \text{Fun}(S, C) \) is an isofibration when \(S_0 \to T_0 \) is a bijection. Later we will prove a far reaching generalization (39.6), in which we generalize the restriction functor \(\text{Fun}(i, C) \) to a pullback power \(p^{[\mathbb{E}_h]} \) where \(p: C \to D \) is an arbitrary isofibration and \(i \) an arbitrary monomorphism of simplicial sets.

31.10. Exercise. Show that if \(f, g: C \to D \) are naturally isomorphic functors between quasicategories, then their restrictions \(f^{\text{core}}, g^{\text{core}}: C^{\text{core}} \to D^{\text{core}} \) to cores are also naturally isomorphic.
Conclude that if \(f : C \to D \) is a categorical equivalence between quasicategories, then the restriction \(f^{\text{core}} : C^{\text{core}} \to D^{\text{core}} \) of \(f \) to cores is a categorical equivalence of quasigroupoids.

Part 4. The fundamental theorem

Recall that a functor \(f : C \to D \) between quasicategories is said to be an *equivalence* there exists a \(g : D \to C \) such that \(gf \) and \(fg \) are naturally isomorphic to the respective identity functors. When \(C \) and \(D \) are ordinary categories, there is a well-known criterion for the existence of such a \(g \), namely: \(f \) is an equivalence if and only if \(f \) is fully faithful and essentially surjective. Here

- *fully faithful* means that \(\text{Hom}_C(x,y) \to \text{Hom}_D(f(x), f(y)) \) is a bijection of sets for every pair of objects \(x, y \in \text{ob} \, C \), and
- *essentially surjective* means that for every object \(d \in \text{ob} \, D \) there exists an object \(c \in \text{ob} \, C \) such that \(f(c) \) is isomorphic to \(d \).

I like to call this fact the **Fundamental Theorem of Category Theory**. This is non-standard and frankly pretentious terminology\(^{23}\) (I am unaware of any standard abbreviated name for this result\(^{24}\)). I want to give this fact a fancy name in order to signpost it, as it is quite nonconstructive: to prove it requires making a choice for each object \(d \) in \(D \) of an object \(c \) of \(C \) and an isomorphism \(f(c) \approx d \) (so it in fact relies on an appropriate form of the axiom of choice).

Example. Fix a field \(k \). Let \(\text{Mat} \) be the category whose objects are non-negative integers \(n \geq 0 \), and whose morphisms \(A : n \to m \) are \((m \times n) \)-matrices with entries in \(k \), so that composition is matrix multiplication. Let \(\text{Vect} \) be the category of finite dimensional \(k \)-vector spaces and linear maps. Every basic class in linear algebra proves that the evident functor \(F : \text{Mat} \to \text{Vect} \) is fully faithful and essentially surjective. Therefore \(F \) is an equivalence of categories. However, there is no canonical choice of an inverse functor, whose construction amounts to making an arbitrary choice of basis for each vector space.

We are going to state and then prove an analogue of this result for functors between quasicategories. This will first require an analogue of hom-sets, namely the *quasigroupoid* of maps between two objects, also called the *mapping space*.

32. Mapping spaces of a quasicategory

Given a quasicategory \(C \) and objects \(x, y \in C_0 \), the **mapping space** (or **mapping quasigroupoid**) from \(x \) to \(y \) is the simplicial set defined by the pullback square

\[
\begin{array}{ccc}
\text{map}_C(x,y) & \longrightarrow & \text{Fun}(\Delta^1, C) \\
\downarrow & & \downarrow \\
\{(x,y)\} & \longrightarrow & C \times C
\end{array}
\]

That is, \(\text{map}_C(x,y) \) is the fiber of the restriction map \(\text{Fun}(\Delta^1, C) \to \text{Fun}(\partial \Delta^1, C) \) over the point \((x,y) \in (C \times C)_0 \), where we the isomorphism \(\text{Fun}(\partial \Delta^1, C) \approx C \times C \) induced by the isomorphism \(\partial \Delta^1 \approx \Delta^0 \amalg \Delta^0 \).

If \(C = N(A) \) is the nerve of a category, then \(\text{map}_C(x,y) \) is a discrete simplicial set \((2.5)\) corresponding to the set \(\text{Hom}_C(x,y) \).

\(^{23}\)E.g., the Fundamental Theorem of Arithmetic, Algebra, Calculus, etc. But if they can have a Fundamental Theorem, why can’t we?

\(^{24}\)I also don’t know when it was first formulated, or who first stated it.
32.1. **Mapping spaces are Kan complexes.** The terminology “space” is justified by the following

32.2. **Proposition.** The simplicial sets $map_C(x,y)$ are quasigroupoids (and hence Kan complexes by (A)).

This is a special case of the following, applied to $Fun(\Delta^1, C) \to Fun(\partial \Delta^1, C)$, the restriction along $j = (\partial \Delta^1 \subset \Delta^1)$.

32.3. **Proposition.** Let C be a quasicategory, and let $j: K \to L$ be a monomorphism which is a bijection on vertices. Then the fibers of the restriction map $p = Fun(j, C): Fun(L, C) \to Fun(K, C)$ over any vertex of $Fun(K, C)$ are quasigroupoids.

Proof. Consider a vertex $g \in Fun(K, C)_0$, and form the pullback

$$
\begin{array}{ccc}
F & \xrightarrow{u} & \text{Fun}(L, C) \\
\downarrow & & \downarrow \text{Fun}(j, C) \\
\{g\} & \xrightarrow{q} & \text{Fun}(K, C)
\end{array}
$$

so that $F = p^{-1}(g)$ is the fiber of p over g. Note that p is an inner fibration, by enriched lifting using $\text{InnHorn } \Box \text{Cell} \subseteq \text{InnHorn}$ (16.7). Therefore $q: F \to \{g\}$, which is a base-change of p, is also an inner fibration, i.e., F is a quasicategory.

It remains to show that every edge $f \in F_1$ is an isomorphism. Note that $q(f) = 1_g$ is obviously an isomorphism, while $u(f)$ is an isomorphism since p is conservative by (31.3). The claim follows from the following (32.4).

Recall that for a quasicategory C, the core $C^{\text{core}} \subseteq C$ is the maximal quasigroupoid in C (10.7). The following says that taking maximal quasigroupoid preserves certain kinds of pullbacks.

32.4. **Proposition.** Let

$$
\begin{array}{ccc}
C' & \xrightarrow{u} & C \\
\downarrow q & & \downarrow p \\
D' & \xrightarrow{v} & D
\end{array}
$$

be a pullback square of quasicategories in which p is an inner fibration. An edge $f \in C'_1$ is an isomorphism if and only if $u(f) \in C_1$ and $q(f) \in D'_1$ are isomorphisms. As a consequence, the induced map $(C')^{\text{core}} \to C^{\text{core}} \times_{D^{\text{core}}} (D')^{\text{core}}$ on cores is an isomorphism.

Proof. This is a straightforward application of Joyal lifting: as q is an inner fibration and $q(f)$ is an isomorphism, to show f is an isomorphism we must produce a lift in every lifting problem described by the left-hand square in

$$
\begin{array}{ccc}
\Delta^{\{0,1\}} & \xrightarrow{f} & C' \xrightarrow{u} C \\
\downarrow \Delta^0 & & \downarrow p \\
\Delta^n & \xrightarrow{u} & D' \xrightarrow{v} D
\end{array}
$$

Because $u(f)$ is an isomorphism, we know a lift exists in the large rectangle by Joyal lifting, and the desired lift exists because the right-hand square is a pullback.

Recall that an n-dimensional element a of a quasicategory is in the core if and only if all of its edges a_{ij} are isomorphisms. Given this, the assertion about pullbacks of cores is clear. □
32.5. Mapping spaces and homotopy classes. The set of morphisms \(x \to y \) in a quasicategory \(C \) is precisely the set of objects of \(\text{map}_C(x,y) \). Two such are isomorphic as objects in \(\text{map}_C(x,y) \) if and only if they are homotopic in \(C \).

32.6. Proposition. Let \(C \) be a quasicategory. For any two maps \(f, g: x \to y \) in \(C \), we have that \(f \approx g \) (equivalence under the relation used to define the homotopy category \(hC \)) if and only if \(f \) and \(g \) are isomorphic as objects of the quasigroupoid \(\text{map}_C(x,y) \). That is,

\[
\text{Hom}_{hC}(x,y) \approx \pi_0 \text{map}_C(x,y)
\]

for every pair \(x, y \) of objects of \(C \).

Proof. Suppose \(f, g \in \text{map}_C(x,y)_0 \) are isomorphic, so that in particular there is a morphism \(f \to g \) in the quasigroupoid \(\text{map}_C(x,y) \). This amounts to a map \(\Delta^1 \times \Delta^1 \to C \) which can be represented by a diagram of elements of \(C \) of the form:

\[
\begin{array}{c}
\text{x} \\
\downarrow^{1_x} \\
\text{x} \\
\end{array} \\
\begin{array}{c}
\text{y} \\
\downarrow^{1_y} \\
\text{y} \\
\end{array}
\]

This explicitly exhibits a chain \(f \sim_r h \sim \ell g \) of homotopies, so \(f \approx g \) as desired.

Conversely, if \(f \approx g \), we can explicitly construct a map \(H: f \to g \) in \(\text{map}_C(x,y) \): in terms of the above picture, let \(h = g \), let \(b \) be an explicit choice of right-homotopy \(f \sim_r g \), and let \(a = g_{001} \). \(\square \)

32.7. Extended mapping spaces and composition. Given a finite list \(x_0, \ldots, x_n \in C_0 \) of objects in a quasicategory, we have an extended mapping space. These are the simplicial sets defined by the pullback squares

\[
\begin{array}{ccc}
\text{map}_C(x_0, \ldots, x_n) & \longrightarrow & \text{Fun}(\Delta^n, C) \\
\downarrow & & \downarrow \\
\{(x_0, \ldots, x_n)\} & \longrightarrow & C^{\times(n+1)}
\end{array}
\]

where the right-hand vertical arrow is induced by restriction along \(\text{Sk}_0 \Delta^n \to \Delta^n \), using the isomorphism \(\text{Sk}_0 \Delta^n \approx \coprod_{n+1} \Delta^0 \), whence \(\text{Fun}(\text{Sk}_0 \Delta^n, C) \approx C^{\times(n+1)} \). By (32.3) the extended mapping spaces are quasigroupoids.

On the other hand, we may consider the fibers of \(\text{Fun}(I^n, C) \to C^{\times(n+1)} \) defined by restriction along \(\text{Sk}_0 \Delta^n = \text{Sk}_0 I^n \to I^n \), where \(I^n \subset \Delta^n \) is the spine. The fibers of this map are isomorphic to \(n \)-fold products of mapping spaces, e.g., \(\text{map}_C(x_{n-1}, x_n) \times \cdots \times \text{map}_C(x_0, x_1) \).

32.8. Lemma. The map

\[
g_n: \text{map}_C(x_0, \ldots, x_n) \to \text{map}_C(x_{n-1}, x_n) \times \cdots \times \text{map}_C(x_0, x_1)
\]

induced by restriction along the spine inclusion \(I^n \subset \Delta^n \) is a trivial fibration. In particular, this map is a categorical equivalence between Kan complexes.

Proof. The map \(g_n \) is a base change of \(p: \text{Fun}(\Delta^n, C) \to \text{Fun}(I^n, C) \). Since \(I^n \subset \Delta^n \) is inner anodyne (12.11), and \(C \) is a quasicategory, the map \(p \) is a trivial fibration by enriched lifting using \(\text{InnHorn} \square \text{Cell} \subset \text{InnHorn} \) (16.7). \(\square \)

The inclusions \(I^2 \subset \Delta^2 \supset \Delta^{(0,2)} \) induce restriction maps

\[
\text{Fun}(I^2, C) \leftarrow \text{Fun}(\Delta^2, C) \to \text{Fun}(\Delta^{(0,2)}, C).
\]

For any triple \((x_0, x_1, x_2) \) of objects of \(C \), the above maps restrict to maps between subcomplexes:

\[
\text{map}_C(x_1, x_2) \times \text{map}_C(x_0, x_1) \overset{g_2}{\sim} \text{map}_C(x_0, x_1, x_2) \to \text{map}_C(x_0, x_2).
\]
As g_2 is a trivial fibration (32.8), we can choose a categorical inverse to g_2 (e.g., a section of g_2 using (20.12)), we obtain a “composition” map

\[(32.9) \quad \text{comp}: \text{map}_C(x_1, x_2) \times \text{map}_C(x_0, x_1) \to \text{map}_C(x_0, x_2).\]

This map is not uniquely determined, since it depends on a choice of categorical inverse to g_2. However, any two categorical inverses to g_2 are naturally isomorphic (19.4), and therefore comp is defined up to natural isomorphism. That is, it is a well-defined map in $h\text{Kan}$, the homotopy category of Kan complexes (22.1).

32.10. Proposition

The two maps obtained by composing the sides of the square

\[
\begin{array}{ccc}
\text{map}_C(x_2, x_3) \times \text{map}_C(x_2, x_1) \times \text{map}_C(x_0, x_1) & \xrightarrow{\text{id} \times \text{comp}} & \text{map}_C(x_2, x_3) \times \text{map}_C(x_0, x_2) \\
\text{comp} \times \text{id} & & \text{comp} \\
\text{map}_C(x_1, x_3) \times \text{map}_C(x_0, x_1) & \xrightarrow{\text{comp}} & \text{map}_C(x_0, x_3)
\end{array}
\]

are naturally isomorphic. That is, the diagram commutes in $h\text{Kan} \subset h\text{qCat}$.

Proof. Here is a diagram of Kan complexes which actually commutes “on the nose”, i.e., not merely in the homotopy category, but actually commutes in $s\text{Set}$. I use “(x, y, z)” as shorthand for “$\text{map}_C(x, y, z)$”, etc.

\[
\begin{array}{c}
\langle x_2, x_3 \rangle \times \langle x_1, x_2 \rangle \times \langle x_0, x_1 \rangle \xrightarrow{\sim} \langle x_2, x_3 \rangle \times \langle x_0, x_1, x_2 \rangle \to \langle x_2, x_3 \rangle \times \langle x_0, x_2 \rangle \\
\uparrow \sim \quad \uparrow \sim \quad \uparrow \sim \\
\langle x_1, x_2, x_3 \rangle \times \langle x_0, x_1 \rangle \leftarrow \sim \langle x_0, x_1, x_2 \rangle \to \langle x_0, x_2 \rangle \\
\downarrow \\
\langle x_1, x_3 \rangle \times \langle x_0, x_1 \rangle \leftarrow \sim \langle x_0, x_1, x_3 \rangle \to \langle x_0, x_3 \rangle
\end{array}
\]

The maps labelled “\sim” are categorical equivalences, and in fact are trivial fibrations. All the maps in the above diagram are obtained via restriction along inclusions in

\[
\begin{array}{c}
\Delta \{2,3\} \cup \Delta \{1,2\} \cup \Delta \{0,1\} \xrightarrow{\sim} \Delta \{2,3\} \cup \Delta \{0,1,2\} \xleftarrow{\sim} \Delta \{2,3\} \cup \Delta \{0,2\} \\
\uparrow \sim \quad \uparrow \sim \quad \uparrow \sim \\
\Delta \{1,2,3\} \cup \Delta \{0,1\} \xrightarrow{\sim} \Delta ^3 \xleftarrow{\sim} \Delta \{0,2,3\} \\
\uparrow \sim \quad \uparrow \sim \\
\Delta \{1,3\} \cup \Delta \{0,1\} \xrightarrow{\sim} \Delta \{0,1,3\} \xleftarrow{\sim} \Delta \{0,3\}
\end{array}
\]

where the maps labelled “\sim” are inner anodyne (being generalized inner horn inclusions (12.9)), and which therefore give rise to trivial fibrations in the previous diagram by the same argument we used to define comp. After passing to $h\text{Kan}$ the categorical equivalences between mapping spaces become isomorphisms, and the result follows. \hfill \Box

32.11. Segal categories

Thus, a quasicategory does not quite give rise to a category “enriched over Kan complexes”. Although we can define a composition law, it is not uniquely determined, and is only associative “up to homotopy”.

What we do get is a Segal category. A **Segal category** is a functor

\[M: \Delta ^{\text{op}} \to s\text{Set}\]

such that

1. the simplicial set $M([0])$ is discrete, i.e., $M([0]) = \text{Sk}_0 M([0])$, and
2. for each $n \geq 1$ the “Segal map”

\[M([n]) \xrightarrow{(n-1,n)^* \ldots, (0,1)^*} M([1]) \times M([0]) \cdots \times M([0]) \times M([1])\]
We thus obtain functors Kan complexes is a weak equivalence if and only if it is a categorical equivalence, and that if each h well-defined as a morphism in h which we will regard as an object of the homotopy category we have the quasigroupoid h were proposed as a model for ∞-categories by Dwyer and Kan25, while Segal categories were proposed as a model for ∞-categories by Hirschowitz and Simpson \cite{HS01}. All of these models are known to be equivalent in a suitable sense; see \cite{Ber10} for more about these models and their comparison.

32.12. The enriched homotopy category of a quasicategory. Given a quasicategory C we can produce a vestigial version of a category enriched over quasigroupoids, called the enriched homotopy category of C and denoted $\mathcal{H}C$.27 This object will be a category enriched over $hKan$, where $hKan$ is the full subcategory of $hqCat$ spanned by Kan complexes. The underlying category of the enriched homotopy $\mathcal{H}C$ will just be the homotopy category hC of C.

We now define $\mathcal{H}C$. The objects of $\mathcal{H}C$ are just the objects of C. For any two objects $x,y \in C_0$, we have the quasigroupoid

$$\mathcal{H}C(x,y) := \text{map}_C(x,y)$$

which we will regard as an object of the homotopy category $hKan$ of Kan complexes. Composition $\mathcal{H}C(x_1,x_2) \times \mathcal{H}C(x_0,x_1) \to \mathcal{H}C(x_0,x_2)$ is the composition map defined above (32.9), which is well-defined as a morphism in $hKan$. Composition is associative as shown above (32.10).

The underlying ordinary category of $\mathcal{H}C$ is just the ordinary homotopy category hC, since

$$\text{Hom}_{hKan}(\Delta^0, \text{map}_C(x,y)) \approx \pi_0\text{map}_C(x,y) \approx \text{Hom}_{hC}(x,y).$$

25They called them “homotopy theories” instead of “∞-categories; see \cite{DS95, §11.6}.

26In fact, they generalize this to “Segal n-categories”, which were the first effective model for (∞, n)-categories.

27Lurie usually calls this “$\mathcal{H}C$”, though he also uses that notation for the ordinary homotopy category of C that we have already discussed. I prefer to have two separate notations.
32.13. **Warning.** A quasicategory C cannot be recovered from its enriched homotopy category $\mathcal{H}C$, not even up to equivalence. In fact, there exist hKan-enriched categories which do not arise as $\mathcal{H}C$ for any quasicategory C. A proof is outside the scope of these notes; counterexamples may be produced (for instance) from examples of associative H-spaces which are not loop spaces.

32.14. **Exercise.** Let C and D be quasicategories. Show that there is an isomorphism $\mathcal{H}(C \times D) \cong \mathcal{H}C \times \mathcal{H}D$ of hKan-enriched categories.

33. **The fundamental theorem of quasicategory theory**

33.1. **Fully faithful and essentially surjective functors between quasicategories.** Note that any functor $f: C \to D$ of quasicategories induces functors $\text{map}_C(x, y) \to \text{map}_D(f(x), f(y))$ for every pair of objects x, y in C. We say that a functor $f: C \to D$ between quasicategories is

- **fully faithful** if for every pair $c, c' \in C_0$, the resulting map $\text{map}_C(c, c') \to \text{map}_D(f(c), f(c'))$ is a categorical equivalence, and
- **essentially surjective** if for every $d \in D_0$ there exists a $c \in C_0$ together with an isomorphism $fc \to d$ in D; that is, if the induced functor $hf: \mathcal{H}C \to \mathcal{H}D$ of ordinary categories is essentially surjective.

Another way to say this: $f: C \to D$ is fully faithful and essentially surjective if the induced hKan-enriched functor $\mathcal{H}f: \mathcal{H}C \to \mathcal{H}D$ is an equivalence of enriched categories.

33.2. **Proposition.** If $f: C \to D$ is a categorical equivalence between quasicategories, then f is fully faithful and essentially surjective.

Proof. To prove essential surjectivity, choose any categorical inverse g to f and natural isomorphism $\alpha: fg \to \text{id}_D$. Then for any $d \in D_0$ we get an object $c := g(d) \in C_0$ and an isomorphism $\alpha(d): f(c) \to d$ in D.

To show that f is fully faithful, choose a categorical inverse g of f. Given $x, y \in C_0$, consider the induced diagram of quasigroupoids

\[
\begin{array}{ccc}
\text{map}_C(x, y) & \xrightarrow{f} & \text{map}_D(fx, fy) \\
\downarrow{g} & & \downarrow{f} \\
\text{map}_C(gfx, gfy) & \xrightarrow{fg} & \text{map}_D(fgfx, fgfy)
\end{array}
\]

By the 2-out-of-6 property for categorical equivalences (22.10), it will suffice to show that the maps marked gf and fg are categorical equivalences between the respective mapping spaces. Since $gf: C \to C$ and $fg: D \to D$ are naturally isomorphic to the identity maps of C and D respectively, the claim follows from (33.3) which we prove below. \square

33.3. **Proposition.** If $f_0, f_1: C \to D$ are functors which are naturally isomorphic, then f_0 is fully faithful if and only if f_1 is.

To prove this, we will need to use the path category construction.

33.4. **Path category.** For the proof of the fact that natural isomorphisms preserve the fully-faithful property, we will need to consider the **path category** of a quasicategory D. This is the full sub(quasi)category

\[\widehat{D} \subseteq \text{Fun}(\Delta^1, D)\]

spanned by the objects which are $\Delta^1 \to D$ which represent isomorphisms in D. (A generalization of this construction will be introduced later (41.1).) The restriction maps along $\{0\} \subset \Delta^1 \supset \{1\}$ induce functors $D \xrightarrow{r_0} \widehat{D} \xrightarrow{r_1} D$. Note that a functor $\widetilde{H}: C \to \widehat{D}$ corresponds exactly to giving a
natural isomorphism \(H: C \times \Delta^1 \to D \) of functors \(f_0, f_1 : C \to D \), where \(f_i = r_i \tilde{H} \) (because natural isomorphisms are the same as objectwise natural isomorphisms \((C)\)).

33.5. **Remark.** If \(D \) is a Kan complex \((i.e., \text{a quasigroupoid})\), then \(\hat{D} = \text{Fun}(\Delta^1, D) \).

33.6. **Warning.** The path category \(\hat{D} \subseteq \text{Fun}(\Delta^1, D) \) is not the same as the core \(\text{Fun}(\Delta^1, D)^{\text{core}} \subseteq \text{Fun}(\Delta^1, D) \), unless \(D \) is a quasigroupoid: the path category is always a full subcategory, whereas the core is generally not a full subcategory.

33.7. **Exercise.** Show that there is a bijective correspondence between (i) morphisms \(H: \Delta^1 \to \text{Fun}(C, D)^{\text{core}} \) \((i.e., \text{natural isomorphisms between functors } C \to D)\) and (ii) morphisms \(\tilde{H}: C \to \hat{D} \) to the path category.

33.8. **Lemma.** Let \(D \) be a quasicategory. Then both restriction functors \(D \leftarrow \hat{D} \to D \) from the path category are trivial fibrations.

Proof. We need to solve the lifting problem
\[
\begin{array}{c}
\partial \Delta^n \\
\downarrow \\
\Delta^n
\end{array}
\begin{array}{c}
\hat{D} \\
\downarrow \scriptstyle{r_i} \\
\text{Fun}(\Delta^1, D)
\end{array}
\begin{array}{c}
\Delta^n \\
\downarrow \scriptstyle{r_i} \\
\text{Fun}(\{i\}, D)
\end{array}
\]
for all \(n \geq 0 \) and \(i = 0, 1 \). When \(n = 0 \) this is easy: any object of \(D \) is the source and target of an isomorphism in \(D \), namely its identity map. For \(n \geq 1 \) it suffices to find a lifting in the adjoint lifting problem
\[
\begin{array}{c}
\Delta^1 \times \{j\} \\
\downarrow
\end{array}
\begin{array}{c}
\hat{D} \\
\downarrow \scriptstyle{r_i} \\
\text{Fun}(\Delta^1, D)
\end{array}
\begin{array}{c}
\Delta^1 \times \{i\} \\
\downarrow \scriptstyle{r_i} \\
\text{Fun}(\Delta^1, D)
\end{array}
\]
where \(j = 0 \) if \(i = 0 \) and \(j = n \) if \(i = 1 \). In either case we know by hypothesis that \(f \) represents an isomorphism in \(D \), so a lift exists by the “pushout-product version” of Joyal lifting (31.6).

33.9. **Lemma.** Any trivial fibration \(p: C \to D \) between quasicategories is fully faithful.

Proof. For \(x, y \in C_0 \) we have a diagram of pullback squares
\[
\begin{array}{c}
\text{map}_C(x, y) \\
\downarrow q \\
\text{map}_D(px, py)
\end{array}
\begin{array}{c}
\text{Fun}(\Delta^1, C) \\
\downarrow p^{\square(\partial \Delta^1 \subset \Delta^1)} \\
\text{Fun}(\partial \Delta^1, C) \times_{\text{Fun}(\partial \Delta^1 \subset \Delta^1)} \text{Fun}(\Delta^1, D)
\end{array}
\begin{array}{c}
\{x, y\} \\
\downarrow \\
\text{Fun}(\partial \Delta^1, C)
\end{array}
\begin{array}{c}
\rightarrow \\
\rightarrow \

The pullback-hom \(p^{\square(\partial \Delta^1 \subset \Delta^1)} \) is a trivial fibration using \(\overline{\text{Cell}} \square \overline{\text{Cell}} \subseteq \overline{\text{Cell}} \), so \(q \) is a trivial fibration and thus a categorical equivalence. \(\square \)

Now we can prove that fully-faithful is natural-isomorphism invariant.
Proof of (33.3). Consider a natural isomorphism \(H: C \times \Delta^1 \to D \) between \(f_0 \) and \(f_1 \), and write \(H: C \to \tilde{D} \subseteq \text{Fun}(\Delta^1, D) \) for its adjoint. The lemma (33.8) implies that in the commutative diagram

\[
\begin{array}{ccc}
C & \xrightarrow{H} & \tilde{D} \\
\downarrow f_0 & & \downarrow f_1 \\
\text{Fun}(\{0\}, D) = D & \xrightarrow{r_0} & \text{Fun}(\{1\}, D) = D \\
\end{array}
\]

both \(r_0 \) and \(r_1 \) are trivial fibrations. Because \(r_0 \) and \(r_1 \) are trivial fibrations, for any \(x, y \in C_0 \) we get a commutative diagram

\[
\begin{array}{ccc}
\text{map}_C(x, y) & \xrightarrow{\sim} & \text{map}_D(\tilde{H}(x), \tilde{H}(y)) \\
\downarrow & & \downarrow \\
\text{map}_D(f_0(x), f_0(y)) & \xrightarrow{\sim} & \text{map}_D(f_1(x), f_1(y)) \\
\end{array}
\]

in which the indicated maps are categorical equivalences by (33.9). Using the 2-out-of-3 property of categorical equivalences (22.10), we see that the map marked \(f_0 \) is a categorical equivalence if and only if the map marked \(f_1 \) is. Thus we have shown that \(f_0: C \to D \) is fully faithful if and only if \(f_1: C \to D \) is fully faithful. \(\square \)

We’ve finished proving the lemma we needed for the proof that categorical equivalences are fully faithful (33.2).

We note a useful fact: to check that a functor is fully faithful, it suffices to check the defining property on representatives of isomorphism classes of objects.

33.10. Proposition. Let \(f: C \to D \) be a functor between quasicategories, and let \(S \subseteq C_0 \) be a subset of objects which includes a representative of every isomorphism class in \(C \). Then \(f \) is fully faithful if and only if \(\text{map}_C(c, c') \to \text{map}_D(fc, fc') \) is a categorical equivalence for all \(c, c' \in S \).

Proof. The only-if direction is immediate from the definition of fully faithful. To prove the if direction, let \(x, x' \in C_0 \) and choose isomorphisms \(\alpha: x \to c \) and \(\alpha': x' \to c' \) where \(c, c' \in S \). We may interpret \(\alpha \) and \(\alpha' \) as objects of \(\tilde{C} \subseteq \text{Fun}(\Delta^1, C) \). We obtain a commutative diagram

\[
\begin{array}{ccc}
\text{map}_C(x, x') & \xrightarrow{r_0} & \text{map}_C(\alpha, \alpha') \\
\downarrow f & & \downarrow \tilde{f} \\
\text{map}_D(fx, fx') & \xrightarrow{r_0} & \text{map}_D(\tilde{f}\alpha, \tilde{f}\alpha') \\
\end{array}
\]

where the vertical arrows are induced by \(f: C \to D \) and \(\tilde{f}: \tilde{C} \to \tilde{D} \), where \(\tilde{f} \) is the restriction of \(\text{Fun}(\Delta^1, f): \text{Fun}(\Delta^1, C) \to \text{Fun}(\Delta^1, D) \) to full subcategories. The maps marked \(r_0 \) and \(r_1 \) are categorical equivalences by (33.8) and (33.9). Therefore the left-hand vertical arrow is a categorical equivalence using the hypothesis on \(f \) and 2-out-of-3 for categorical equivalences (22.10). \(\square \)

33.11. The fundamental theorem for quasicategories. The converse to (33.2) is true, but nowhere near as straightforward to prove.

G. Deferred Proposition (Fundamental Theorem of Quasicategory Theory). A map \(f: C \to D \) between quasicategories is a categorical equivalence if and only if it is fully faithful and essentially surjective.
This is a non-trivial result. It gives a necessary and sufficient condition for $f: C \to D$ to admit a categorical inverse, but it does not spell out how to construct such an inverse. After many preliminaries, we will give the proof in §42.

33.12. **2-out-of-6 for fully faithful essentially surjective functors.** The following result will be useful in the proof of the fundamental theorem. Recall the 2-out-of-6 and 2-out-of-3 properties of a class of morphisms (22.5), and that the class of categorical equivalences has these properties (22.10).

33.13. **Proposition.** The class C of fully faithful and essentially surjective functors between quasi-categories satisfies the 2-out-of-6 property, and thus the 2-out-of-3 property.

Proof. Any identity functor $id: C \to C$ is manifestly fully faithful and essentially surjective.

Next note that if a functor $f: C \to D$ between quasicategories is fully faithful and essentially surjective, then the induced $hf: hC \to hD$ is an equivalence of ordinary categories. Conversely, if hf is an equivalence, then f is essentially surjective.

Suppose $C \overset{f}{\to} D \overset{g}{\to} E \overset{h}{\to} F$ is a sequence of functors between quasicategories such that gf and hg are fully faithful and essentially surjective. The induced sequence $hC \to hD \to hE \to hF$ of functors on homotopy categories has the same property, and thus all the functors between homotopy categories are equivalences. From this we conclude immediately that f, g, h, hgf are essentially surjective.

Given objects $x, y \in C_0$, we have induced maps

$$
\text{map}_C(x, y) \xrightarrow{gf} \text{map}_D(fx, fy) \xrightarrow{g} \text{map}_E(gfx, gfy) \xrightarrow{h} \text{map}_F(hgfx, hgfy)
$$

The hypothesis that gf and hg are fully faithful implies that the indicated arrows are categorical equivalences, and hence all arrows are by (22.10). Because f and gf are essentially surjective, the collections of objects $\{fx \mid x \in C_0\} \subseteq D_0$ and $\{gfx \mid x \in C_0\} \subseteq E_0$ include representatives of every isomorphism class of D and E respectively, and thus (33.10) implies that f, g, h, hgf are fully faithful. \qed

34. **The path factorization**

To prove the fundamental theorem of quasicategories for a general map between quasicategories, we will reduce to the special case of isofibrations. We do this by means of the “path factorization” (or “path fibration”) construction, which provides a factorization of a map into a categorical fibration followed by an isofibration.

34.1. **The path factorization construction.** Let D be a quasicategory. Recall (33.4) the path category $\hat{D} \subseteq \text{Fun}(\Delta^1, D)$ of D, equipped with restriction maps $r_i: \hat{D} \to D$, $i = 0, 1$.

For a functor $f: C \to D$ between quasicategories, we define a factorization $C \overset{j}{\to} P(f) \overset{p}{\to} D$ by means of the commutative diagram

$$
\begin{array}{ccc}
C & \xrightarrow{j} & P(f) & \xrightarrow{p} & \hat{D} & \xrightarrow{r_1} & D \\
& \searrow{s_0} & \downarrow{t} & \downarrow{r_0} & \Downarrow{r_1} & \Downarrow{r_1} & \Downarrow{r_0} & \Downarrow{r_0} \\
& C & \xrightarrow{f} & D & & & & & \\
\end{array}
$$
in which the square is a pullback square. The map \(j \) is the unique one so that \(s_0j = \text{id}_C \), and \(tj = \tilde{\pi}f \) where \(\tilde{\pi} : \tilde{D} \to \text{Fun}(\Delta^1, D) \) is adjoint to the projection \(D \times \Delta^1 \to D \).

The properties of this construction are summarized by the following.

34.2. Proposition. In the path factorization of \(f \), the simplicial set \(P(f) \) is a quasicategory, the map \(j \) is a categorical equivalence, and \(p \) is an isofibration. Furthermore \(s_0 \) is a trivial fibration.

Note that the objects of \(P(f) \) are pairs \((c, \alpha)\) consisting of an object \(c \in C_0 \) and an isomorphism \(\alpha : f(c) \to d \) in \(D \). The map \(j \) sends an object \(c \) to \((c, 1f(c))\), while \(p \) sends \((c, \alpha)\) to \(d \).

34.3. Exercise. Show that if \(f : C \to D \) is a functor between ordinary categories, then \(P(f) \) is also an ordinary category.

Proof. From (33.8) we know that both \(r_0 \) and \(r_1 \) are trivial fibrations. Therefore the base change \(s_0 \) of \(r_0 \) is a trivial fibration, and hence an inner fibration, which implies that \(P(f) \) is a quasicategory.

Since \(s_0 \) is a trivial fibration it is a categorical equivalence (20.10), and thus \(j \) is a categorical equivalence by 2-out-of-3 (22.10).

To show that \(p \) is an isofibration, observe that there is actually a pullback square of the form

\[
\begin{array}{ccc}
P(f) & \xrightarrow{t} & \tilde{D} \\
\downarrow s=(s_0,p) & & \downarrow r=(r_0,r_1) \\
C \times D & \xrightarrow{f \times \text{id}_D} & D \times D
\end{array}
\]

(To see this, use patching of pullback squares where we regard \(C \times D \) as a pullback of \(C \xrightarrow{f} D \leftarrow D \times D \).) We will prove below (34.5) that \(r \) is an isofibration, whence its base-change \(s \) is also an isofibration, and since the projection \(\pi : C \times D \to D \) is an isofibration the composite \(p = \pi s \) is an isofibration as desired. (I have here used several facts about isofibrations which are left as an exercise (34.4).) \(\square \)

34.4. Exercise (Some properties of isofibrations). Prove the following facts about isofibrations.

1. For any quasicategory \(C \), the projection \(C \to \ast \) is an isofibration, and thus for any quasicategory \(D \) the projection \(C \times D \to D \) is an isofibration.
2. The composite of two isofibrations is an isofibration.
3. Any base-change of an isofibration \(p : C \to D \) along a map \(D' \to D \) from a quasicategory is also an isofibration. (Hint: use (32.4).)

34.5. Lemma. If \(D \) is a quasicategory, then the map \(r = (r_0, r_1) : \tilde{D} \subseteq \text{Fun}(\Delta^1, D) \to D \times D \) from the path category induced by restriction along \(\partial \Delta^1 \subset \Delta^1 \) is an isofibration.

Proof. We need to produce a lift in a diagram of the form

\[
\begin{array}{ccc}
\{0\} \xrightarrow{g} \tilde{D} & \xrightarrow{r} & \text{Fun}(\Delta^1, D) \\
\downarrow \Downarrow f=(f_0,f_1) & & \downarrow r \\
\Delta^1 \xrightarrow{\rho} D \times D & \xrightarrow{\text{id}_D \times \text{id}_D} & D \times D
\end{array}
\]

where \(f \) represents an isomorphism in \(D \times D \), or equivalently \(f_0 \) and \(f_1 \) represent isomorphisms in \(D \). By the usual lifting-adjunction arguments, to produce a lifting \(s : \Delta^1 \to \text{Fun}(\Delta^1, D) \) it is
equivalent to produce an extension \tilde{s} in

$$\begin{array}{ccc}
\{0\} \times \Delta^1 \cup_{\{0\} \times \partial \Delta^1} (\Delta^1 \times \partial \Delta^1) & \xrightarrow{(\tilde{g}, \tilde{f})} & D \\
\Delta^1 \times \Delta^1 & \xrightarrow{\tilde{s}} & \Delta^1 \times \Delta^1
\end{array}$$

where \tilde{g} and \tilde{f} are adjoint to g and f. The map (\tilde{g}, \tilde{h}) corresponds to the solid-arrow part of the diagram

$$\begin{array}{ccc}
& \bullet & \\
\bullet & \xrightarrow{a} & \bullet \\
\bullet & \xrightarrow{h} \downarrow & \bullet \\
\bullet & \xrightarrow{f_0} \downarrow & \bullet
\end{array}$$

We can produce an extension \tilde{s} in two steps: first extend to a, which is attached along an inner horn $\Lambda^2_1 \subset \Delta^2$, then extend to b, which is attached to the previous along the horn $\Lambda^2_0 \subset \Delta^2$. This extension exists by Joyal extension since f_0 is an isomorphism. (This argument is just the proof of easiest case of the box-product version of Joyal lifting (31.6).)

Note that g, f_0, and f_1 are isomorphisms in D, and thus h is also an isomorphism in D, since $[f_1][g] = [h][f_0]$ in hD. In particular, $\tilde{s} \{j\} \times \Delta^1 \colon \{j\} \times \Delta^1 \to D$ represent isomorphisms in D for $j = 0, 1$, and therefore s lands in the path subcategory $\hat{D} \subset \text{Fun}(\Delta^1, D)$ as desired. □

34.6. Reduction of the fundamental theorem to the case of isofibrations.

34.7. Lemma. To prove the fundamental theorem (G), it suffices to prove it for isofibrations.

Proof. Let $f : C \to D$ be a functor which is fully faithful and essentially surjective. Consider the path factorization

$$C \xrightarrow{j} P(f) \xrightarrow{p} D$$

of f, with j a categorical equivalence and p an isofibration (34.2). Recall that the class categorical equivalences satisfies 2-out-of-3 (22.10), as does the class of functors which are fully faithful and essentially surjective (33.13). Since every categorical equivalence (such as j) is fully faithful and essentially surjective (33.2), the claim follows. □

We will prove (G) by proving it for the special case of isofibrations, following (34.7), in (42). In fact we will show that an isofibration which is fully faithful and essentially surjective is a trivial fibration.

First, we will consider the special case of quasigroupoids=Kan complexes.

35. Weak equivalence, anodyne maps, and Kan fibrations

In the next few sections, we will develop some properties related to Kan complexes and Kan fibrations. As a byproduct, we’ll obtain the proof of the specialization of (G) to Kan complexes.

35.1. Weak equivalence. Say that a map $f : X \to Y$ is a weak equivalence of simplicial sets if and only if $\text{Map}(f,G) : \text{Map}(Y,G) \to \text{Map}(X,G)$ is a categorical equivalence for every quasigroupoid (i.e., every Kan complex) G.

Every categorical equivalence is a automatically weak equivalence, but the converse does not hold; see (??) below. For maps between Kan complexes however, weak equivalences and categorical equivalences are the same thing.

35.2. Proposition. If $f : X \to Y$ is a map between Kan complexes, then f is a weak equivalence if and only if it is a categorical equivalence.
Proof. As we have observed, every categorical equivalence is a weak equivalence. For the converse the proof is straightforward, using the same ideas as the proof of (19.6). That is, for a weak equivalence \(f : X \rightarrow Y \) between Kan complexes, the induced maps \(\text{Map}(f, X) \) and \(\text{Map}(f, Y) \) are be categorical equivalences between quasicategories. We can then use this information to produce a categorical inverse to \(f \), exactly as in the proof of (19.6): since \(f^* : \text{Fun}(Y, X) \rightarrow \text{Fun}(X, X) \) is essentially surjective, we can choose an object \(g \) of \(\text{Fun}(Y, X) \) such that \(gf \) and \(\text{id}_X \) are isomorphic in \(\text{Fun}(X, X) \), and then observe that \(fg \) and \(\text{id}_Y \) must be isomorphic in \(\text{Fun}(Y, Y) \) since \(f^* : \text{Fun}(Y, Y) \rightarrow \text{Fun}(X, Y) \) is fully faithful and \(fgf \approx f \text{id}_X = \text{id}_Y f \).

35.3. Proposition. Weak equivalences of simplicial sets satisfy the 2-out-of-6 property, and thus the 2-out-of-3 property.

Proof. Proved exactly as for categorical equivalences (22.10). □

35.4. Remark. Given the analogy to categorical equivalence, a more sensible name for weak equivalence is “groupoidal equivalence”. However, the term “weak equivalence” here is historically well-established.

35.5. Simplicial homotopy equivalence. Given maps \(f, f' : X \rightarrow Y \) of simplicial sets, we say they are simplicially homotopic if there exists a chain of edges in the function complex \(\text{Map}(X, Y) \) connecting \(f \) to \(f' \). That is, \(f \) and \(f' \) are simplicially homotopic if they are in the same path component (6.8) of \(\text{Map}(X, Y) \), i.e., they represent the same element of \(\pi_0 \text{Map}(X, Y) \).

Note that if \(\text{Map}(X, Y) \) is a Kan complex, then \(f, f' : X \rightarrow Y \) are simplicially homotopic if and only if they are isomorphic as objects in the quasigroupoid \(\text{Map}(X, Y) \).

A simplicial homotopy inverse to a map \(f : X \rightarrow Y \) of simplicial sets is a map \(g : Y \rightarrow X \) such that \(gf \) is simplicially homotopic to \(\text{id}_X \), and \(fg \) is simplicially homotopic to \(\text{id}_Y \). A map \(f \) which admits a simplicial homotopy inverse is called a simplicial homotopy equivalence, and of course any simplicial homotopy inverse to \(f \) is also a simplicial homotopy equivalence.

35.6. Proposition. Any simplicial homotopy equivalence is a weak equivalence.

Proof. First, if \(f : X \rightarrow Y \) is a simplicial homotopy equivalence between Kan complexes, then it is clearly a categorical equivalence, because \(\text{Map}(X, X) \) and \(\text{Map}(Y, Y) \) are quasigroupoids, and so any simplicial homotopy inverse \(g : Y \rightarrow X \) for \(f \) satisfies \(gf \approx \text{id}_X \) and \(fg \approx \text{id}_Y \) and so is a categorical inverse for \(f \), and therefore \(f \) is a weak equivalence (35.2).

In general, suppose \(G \) is a Kan complex and consider \(f^* : \text{Map}(Y, G) \rightarrow \text{Map}(X, G) \). By the same reasoning as used in the proof of (19.6), we see that \(f^* \) is a simplicial homotopy equivalence between Kan complexes, so a categorical equivalence.

35.7. Exercise. Show that any two maps \(f, f' : \Delta^n \rightarrow \Delta^m \) are simplicially homotopy equivalent. From (35.6) it follows that any map \(f : \Delta^n \rightarrow \Delta^m \) between standard simplicies is a weak equivalence, using the 2-out-of-3 property (35.3). Any such \(f \) which is not an identity map gives an example of a weak equivalence between quasicategories which is not a categorical equivalence.

35.8. Anodyne maps and Kan fibrations. Let

\[\text{Horn} = \{ \Lambda^n_j \subset \Delta^n \mid n \geq 1, 0 \leq j \leq n \} = \text{RHorn} \cup \text{LHorn} \]

denote the set of all horn inclusions. A map is anodyne if it is in \(\overline{\text{Horn}} \), and is a Kan fibration if it is in \(\text{KanFib} := \overline{\text{Horn}}^{[2]} \).

Since Horn is a set, the small object argument (13.11) applies to it: any map can be factored \(f = pj \) with \(j \in \text{Horn} \) and \(p \in \text{KanFib} \).

35.9. Proposition. We have that \(\overline{\text{Horn} \Box \text{Cell}} \subseteq \overline{\text{Horn}} \).

Proof. This amounts to showing \(\overline{\text{Horn} \Box \text{Cell}} \subseteq \overline{\text{Horn}} \), which is proved in [JT08, Theorem 3.2.2], or [GZ67]. We give a proof in the appendix (60). □
This implies the following version of enriched lifting for Kan fibrations.

35.10. **Corollary.** If \(i: K \to L \) is a monomorphism and \(p: X \to Y \) is a Kan fibration, then
\[p^\mathbf{2} : \text{Map}(L, X) \to \text{Map}(K, X) \times_{\text{Map}(K,Y)} \text{Map}(L, Y) \]
is also a Kan fibration. Furthermore, if \(i \) is anodyne then \(p^\mathbf{2} \) is a trivial fibration.

As a special case, we learn that if \(X \) is a Kan complex and \(i: K \to L \) a monomorphism, then
\(\text{Fun}(L, X) \to \text{Fun}(K, X) \) is a Kan fibration, and that it is a trivial fibration if \(i \) is anodyne. Here is
an immediate consequence, reminiscent of the observation that inner anodyne maps are categorical
equivalences.

35.11. **Proposition.** Every anodyne map is a weak equivalence.

Proof. If \(f: A \to B \) is anodyne, then \(\text{Map}(f, X) \) is a trivial fibration for every Kan complex \(X \), and
hence a categorical equivalence (20.10). \(\Box \)

35.12. **Exercise.** Show that the inclusion \(\{ j \} \subseteq \Delta^n \) of any vertex into any standard \(n \)-simplex is
anodyne. (Hint: for \(0 \leq k \leq n \) let \(F_k \subseteq \Delta^n \) be the subcomplex which is the union of all \(\Delta^S \subseteq \Delta^n \)
with \(j \in S \) and \(|S| \leq k + 1 \), and show that each inclusion \(F_{k-1} \to F_k \) is obtained by attaching a
collection of simplices to \(F_{k-1} \) along horns.)

35.13. **Exercise** (Important!) Let \(f: X \to Y \) be any map between Kan complexes. Show that \(f \) is a
k Kan fibration if and only if it is an isofibration. (Hint: Joyal lifting + definition of isofibration.)

35.14. **Exercise.** Give an example of an inner fibration between Kan complexes which is not a Kan
fibration.

35.15. **The walking isomorphism.** Let \(\text{Iso} \) be the “walking isomorphism”, i.e., the category with
two objects 0 and 1, and a unique isomorphism between them. Let \(u: \Delta^1 \to N\text{Iso} \) be the inclusion
representing the unique map \(0 \to 1 \) in \(\text{Iso} \).

35.16. **Proposition.** The map \(u: \Delta^1 \to N\text{Iso} \) is anodyne, and hence a weak equivalence.

Proof. The \(k \)-dimensional elements of \(N(\text{Iso}) \) are in one-to-one correspondence with sequences
\((x_0, x_1, \ldots, x_k) \) with \(x_i \in \{0, 1\} \). For each \(k \geq 0 \) there are exactly two non-degenerate \(k \)-dimensional
elements, corresponding to the alternating sequences \((0101\ldots)\) and \((1010\ldots)\) of length \(k + 1 \).

Let \(u_k, v_k: \Delta^k \to N\text{Iso} \) be the non-degenerate elements \(u_k = (0101\ldots) \) and \(v_k = (1010\ldots) \) in
\((N\text{Iso}_k) \). Let \(F_k \subseteq N\text{Iso} \) be the smallest subcomplex containing \(u_k \). Observe that for a simplicial
operator \(f: [d] \to [k] \) we have \(u_k f = (x_0 x_1 \ldots x_d) \) with \(x_i \equiv f(i) \mod 2 \). In particular,

- \(u_k (1 \ldots k) = v_{k-1} \),
- \(u_k (0 \ldots k-1) = u_{k-1} \),
- \(u_k (01 \ldots \hat{i} \ldots k-1, k) \) is a degenerate element associated to \(u_{k-1} \) if \(i = 1, \ldots, k - 1 \).

From this we can see that the only non-degenerate elements of \(F_k \setminus F_{k-1} \) are \(u_k \) and \(v_{k-1} = u_k (1 \ldots k) \). Therefore \(N\text{Iso} = \bigcup F_k, F_1 = u(\Delta^1) \), and the commutative square

\[
\begin{array}{ccc}
\Lambda^k_0 & \to & F_{k-1} \\
\downarrow & & \downarrow \\
\Delta^k & \to & F_k \\
\end{array}
\]
is a pushout square for all \(k \geq 1 \) by (15.24), since (1) it is a pullback, and (2) any element in the
complement of \(F_{k-1} \subseteq F_k \) is the image of a unique element under the map \(u_k \).

It follows that \(u \) is anodyne. \(\Box \)
As an immediate consequence, any map \(f : \Delta^1 \to C \) can be extended over \(N\text{Iso} \) when \(C \) is a quasigroupoid. We can easily refine this to give a criterion for \(f \) to represent an isomorphism in a general quasicategory.

35.17. Proposition. Let \(C \) be a quasicategory, and \(f : \Delta^1 \to C \) a map. Then there exists \(f' : N(\text{Iso}) \to C \) with \(f'u = f \) if and only if \(f \) represents an isomorphism in \(C \).

Proof. \((\implies)\) Clear: consider induced maps \([1] \to \text{Iso} \to hC\) on homotopy categories. \((\iff)\) If \(f \) represents an isomorphism then it factors through \(\Delta^1 \to C^{\text{core}} \subseteq C \). Since the core is a quasigroupoid, and hence a Kan complex, an extension along the anodyne map \(u \) to a map \(N\text{Iso} \to C^{\text{core}} \subseteq C \) exists.

35.18. Remark. Let \(X \subset N\text{Iso} \) be the subcomplex which is the union of the images of 2-dimensional elements 010 and 101.\(^{28}\) The inclusion \(\imath : \Delta^1 \to X \) representing the edge 01 has the same property described in (35.17): \(f : \Delta^1 \to C \) represents an isomorphism if and only if it extends along \(\imath \). The proof is easy: an extension of \(f \) to a map \(f' : X \to C \) exactly encodes a choice of morphism \(g \) in \(C \) (i.e., \(f'(\langle 01 \rangle) \)) together with explicit homotopies \(gf \sim_1 1 \) and \(fg \sim_1 1 \), (i.e., \(f'(\langle 010 \rangle) \) and \(f'(\langle 101 \rangle) \)).

However, it turns out that \(\Delta^1 \to X \) is not a weak equivalence (and therefore that \(X \to N\text{Iso} \) is not a categorical equivalence). In particular, a map \(X \to C \) to a quasicategory can fail to extend along \(X \subset N\text{Iso} \).

35.19. Exercise. Show that the inclusion \(X \to N\text{Iso} \) of the previous remark (35.18) is not anodyne, by constructing a map \(X \to K(Z,2) \) which does not extend over \(N\text{Iso} \). (See (8.12).)

35.20. Exercise. Let \(Z \) be the complex of (20.6), and let \(F : \Delta^1 = \Delta^{1,2} \to Z \) be the map representing the edge \(f \in Z_1 \). Show that \(F \) is anodyne, and state and prove an analogue of (35.17) with \(Z \) in place of \(N\text{Iso} \).

35.21. Covering homotopy extension property. Here is a very handy consequence of the enriched lifting properties of anodyne maps (35.10). Let \(i : A \to B \) and \(p : X \to Y \) be maps of simplicial sets, and recall the pullback-product map

\[
p^\Box i : \text{Map}(B,X) \to \text{Map}(A,X) \times_{\text{Map}(A,Y)} \text{Map}(B,Y).
\]

A vertex \((u,v)\) in the target of \(p^\Box i \) corresponds to a lifting problem of type \(i \square p \), and this lifting problem has a solution if and only if the vertex \((u,v)\) is in the image of a vertex \(s \) in \(\text{Map}(B,X) \).

An edge \(e \) in \(\text{Map}(A,X) \times_{\text{Map}(A,Y)} \text{Map}(B,Y) \) from vertex \((u_0,v_0)\) to vertex \((u_1,v_1)\) corresponds to a commutative square

\[
\begin{array}{ccc}
A \times \Delta^1 & \xrightarrow{\bar{u}} & X \\
n \times \text{id} & & p \\
B \times \Delta^1 & \xrightarrow{\bar{v}} & Y
\end{array}
\]

such that \(\bar{u}|A \times \{k\} = u_k \) and \(\bar{v}|B \times \{k\} = v_k \) for \(k = 0,1 \). We think of such an edge as a “deformation” relating the two lifting problems. The covering homotopy extension property says that in certain circumstances you can solve a lifting problem by deforming it to another one which you know you can solve.

35.22. Proposition (Covering homotopy extension). Let \(i : A \to B \) be a monomorphism and \(p : X \to Y \) a Kan fibration. If two lifting problems \((u_0,v_0)\) and \((u_1,v_1)\) of type \(i \square p \) are connected by an edge in \(\text{Map}(A,X) \times_{\text{Map}(A,Y)} \text{Map}(B,X) \), then \((u_0,v_0)\) admits a lift if and only if \((u_1,v_1)\) admits a lift.

\(^{28}\)This is isomorphic to the complex \(Z' \) of (20.7).
Proof. Let e be such an edge. I’ll show that if (u_0, v_0) admits a lift $s: B \to X$, then (u_1, v_1) also admits a lift. The hypotheses on i and p, together with enriched lifting associated to $\text{Horn Cell} \subseteq \text{Horn}$ (35.10) imply that $p^\Box i$ is a Kan fibration, and thus in particular $(\{0\} \subset \Delta^1) \Box p^\Box i$ holds, and therefore a lift t exists in the commutative square

$$
\begin{array}{ccc}
\{0\} & \xrightarrow{s} & \text{Map}(B, X) \\
\downarrow & & \downarrow p^\Box i \\
\Delta^1 & \xrightarrow{e} & \text{Map}(A, X) \times_{\text{Map}(A,Y)} \text{Map}(B, Y)
\end{array}
$$

Then the vertex $t(1) \in \text{Map}(B, X)_0$ gives the desired lift for (u_1, v_1). The proof of the reverse direction is similar, using $(\{1\} \subset \Delta^1)$ instead of $(\{0\} \subset \Delta^1)$. □

35.23. **Fundamental theorem for Kan complexes: reduction to Kan fibrations.** We are going to show the following

35.24. **Theorem.** A map $f: X \to Y$ between Kan complexes is a weak equivalence if and only if it is fully faithful and essentially surjective.

Since weak equivalences between Kan complexes are the same as categorical equivalences (35.2), this is precisely the specialization of the fundamental theorem (G) to functors between Kan complexes.

35.25. **Lemma.** To prove (35.24), it suffices to prove it when f is a Kan fibration.

Proof. We consider the path factorization for f (34.2), which takes the form $f = pj$ with $P(f)$ a quasicategory, $j: X \to P(f)$ a categorical equivalence, and p an isofibration. Since j is a categorical equivalence, $P(f)$ is a quasigroupoid. By a straightforward argument (35.13), any isofibration between Kan complexes is a Kan fibration, and so p is a Kan fibration. The claim follows by the same 2-out-of-3 argument used in (34.7).

(Alternate proof: since Y is a quasigroupoid, its path category satisfies $\bar{Y} = \text{Fun}(\Delta^1, Y)$. Use (35.9) to show directly that p is a Kan fibration.) □

We will prove the needed special case (that for Kan fibrations between Kan complexes, fully faithful and essentially surjective implies weak equivalence) in the next couple of sections, after analyzing Kan fibrations in more detail.

36. **Kan fibrations between Kan complexes**

In the next few sections, we are going to be considering various properties of Kan fibrations, with particular interest in Kan fibrations between Kan complexes.

In particular, we are going to show that for a Kan fibration $p: X \to Y$ where X and Y are Kan complexes, all of the following are equivalent ((36.6), (36.9), (37.2), (38.1)):

1. p is a trivial fibration;
2. p is a fiberwise deformation retraction;
3. p is a weak equivalence;
4. p has contractible fibers;
5. p is fully faithful and essentially surjective.

The equivalence of (3) and (5) will complete the proof of the fundamental theorem for Kan complexes (35.24). (It turns out that (1)–(4) are equivalent without the hypothesis that the objects are Kan complexes, though we will not prove this in all cases.)
36.1. **Fiberwise deformation retraction.** A map \(p : X \to Y \) is said to be a **fiberwise deformation retraction** if there exists

- \(s : Y \to X \) such that \(ps = \text{id}_Y \), and
- \(k : X \times \Delta^1 \to X \) such that \(k|X \times \{0\} = \text{id}_X \), \(k|X \times \{1\} = sp \), and \(pk = p\pi_X \), where \(\pi_X : X \times \Delta^1 \to X \) is projection; that is, the diagram

\[
\begin{array}{ccc}
X \times \{0,1\} & \xrightarrow{(id_X,sp)} & X \\
\downarrow & & \downarrow p \\
X \times \Delta^1 & \xrightarrow{\pi_X} & X \\
\end{array}
\]

commutes.

Any fiberwise deformation retraction is a weak equivalence: \(s \) is a simplicial homotopy inverse to \(p \) by construction (35.6).

36.2. **Remark.** Here is one way to think about the identity \(pk = p\pi_X \): it says that the map \(p^* = \text{Map}(X,p) : \text{Map}(X,X) \to \text{Map}(X,Y) \) sends the edge in \(\text{Map}(X,X)_1 \) representing \(k \) to the degenerate edge associated to the vertex \(p \in \text{Map}(X,Y)_0 \).

36.3. **Exercise.** Show that fiberwise deformation retraction can be reformulated in terms of the relative function complex of (20.9): a map \(p : X \to Y \) is a fiberwise deformation retraction if there exists (i) a vertex \(s \in \text{Map}_Y(Y,X)_0 \) and (ii) an edge \(k \in \text{Map}_Y(X,X)_1 \) with associated vertices \(k_0 = \text{id}_X \) and \(k_1 = sp \) in \(\text{Map}_Y(X,X)_0 \).

36.4. **Exercise.** Show that the term “fiberwise” is justified: for each \(y \in Y_0 \), the projection \(p^{-1}(y) \to \{y\} \) of a fiber to its image is a simplicial homotopy equivalence.

36.5. **Exercise.** Show that if \(p : X \to Y \) is a fiberwise deformation retraction as above, then any base change of \(p \) is also a fiberwise deformation retraction.

Fiberwise deformation retractions of Kan fibrations are always trivial fibrations, as can be shown with the covering homotopy extension property.

36.6. **Lemma.** Let \(p : X \to Y \) be a Kan fibration between simplicial sets. Then \(p \) is a fiberwise deformation retraction if and only \(p \) is a trivial fibration.

Proof. [JT08, Prop. 3.2.5]. (\(\Rightarrow \)) Consider a lifting problem

\[
\begin{array}{ccc}
A & \xrightarrow{a} & X \\
\downarrow i & & \downarrow p \\
B & \xrightarrow{b} & Y \\
\end{array}
\]

with \(i \) a monomorphism. Since \(p \) is a Kan fibration, covering homotopy extension (35.22), it suffices to deform it to a lifting problem we can solve. In fact, the data \((s : Y \to X, k : X \times \Delta^1 \to X)\) provides us such a deformation, via the commutative rectangle:

\[
\begin{array}{ccc}
A \times \Delta^1 & \xrightarrow{a \times \text{id}} & X \times \Delta^1 \\
\downarrow & & \downarrow k \\
B \times \Delta^1 & \xrightarrow{b \times \text{id}} & Y \times \Delta^1 \\
\end{array}
\]

(Note that \(\pi_Y(p \times \text{id}) = p\pi_X = pk \).) Over \(\{0\} \subseteq \Delta^1 \) this is the original lifting problem \((a,b)\), while over \(\{1\} \) we get a lifting problem \((spa,b)\) since \(sp = k|X \times \{1\} \) and \(pspa = pa = bi \). We know a lift for \((spa,b)\), namely \(sb : B \to X \) (since \(sbi = spa \) and \(psb = b \)).
36.7. Exercise. Show that any trivial fibration is a fiberwise deformation retraction. (Hint: use the lifting property \(\text{Cell} \vdash p \) to produce \(s \) and \(k \) with the desired properties.)

\[(\Leftarrow) \text{Left as an exercise (36.7).} \]

36.8. Trivial fibrations between Kan complexes and weak equivalences. We know that trivial fibrations are always categorical equivalences. We now show that any Kan fibration between Kan complexes which is also a categorical equivalence (and hence a weak equivalence) is a trivial fibration.

36.9. Proposition. A map \(p: X \to Y \) between Kan complexes is a trivial fibration if and only if it is a Kan fibration and a weak equivalence.

Proof. [JT08, Prop. 3.2.6] \((\Rightarrow)\) Clearly trivial fibrations are Kan fibrations since \(\text{Horn} \subseteq \text{Cell} \). We have already shown that trivial fibrations between quasicategories are always categorical equivalences (20.10), which implies that they are weak equivalences if between Kan complexes (35.2).

\((\Leftarrow)\) On the other hand, suppose \(p \) is a Kan fibration and a weak equivalence. Being a weak equivalence between Kan complexes and hence a categorical equivalence, \(p \) admits a categorical inverse: there exists a functor \(g: Y \to X \) for which there are natural isomorphisms \(\text{id}_X \approx gp \approx sp \) and \(\text{id}_Y \approx pg \approx kp \). We will “deform” \(g \) to a map \(s: Y \to X \) equipped with natural isomorphisms \(\alpha: ps \approx \text{id}_Y \) and \(k: sp \approx \text{id}_X \) which exhibit \(p \) as a fiberwise deformation retraction. Given this, we can conclude that \(p \) is a trivial fibration by (36.6).

Step 1. Choose \(v: Y \times \Delta^1 \to Y \) representing a natural isomorphism \(\alpha: g \approx \text{id}_Y \). Since \(Y \times \{0\} \subset Y \times \Delta^1 \) is anodyne by (35.9), a lift \(\alpha \) exists in \(\begin{array}{ccc} Y \times \{0\} & \xrightarrow{g} & X \\ & \searrow \alpha & \downarrow p \\ & Y \times \Delta^1 & \xrightarrow{v} Y \end{array} \)

Let \(s := \alpha|Y \times \{1\} \), so \(ps = \text{id}_Y \). The map \(\alpha \) exhibits a natural isomorphism \(\alpha: g \approx s \) of functors \(Y \to X \). Since \(gp \) is naturally isomorphic to \(\text{id}_X \), we have natural isomorphisms \(\text{id}_X \approx gp \approx sp \) of functors \(X \to X \), i.e., there exists a natural isomorphism \(w: sp \approx \text{id}_X \), represented by an edge \(w \in \text{Map}(X,X)_1 \).

Step 2. We have functors \(\text{Fun}(X,X) \xrightarrow{p_\ast} \text{Fun}(X,Y) \xrightarrow{s_\ast} \text{Fun}(X,X) \) induced by postcomposition with \(p \) and \(s \). We can apply various iterations of these functors to the natural isomorphism \(w: sp \approx \text{id}_X \), some of which are pictured in the following solid arrow diagram of objects and morphisms in \(\text{Fun}(X,X) \) and \(\text{Fun}(X,Y) \):

\[
\begin{array}{ccc}
sp & \xrightarrow{(sp)_\ast} \text{id}_X & \xrightarrow{p_\ast} \text{Fun}(X,X) \\
\downarrow & & \downarrow p \\
(sp)_\ast(sp) & \xrightarrow{(psp)_\ast} \text{id}_X & \xrightarrow{1_p} \text{Fun}(X,Y) \\
\downarrow & & \downarrow p \\
p \approx ps & & \approx p \\
\end{array}
\]

Note that \(ps = \text{id}_Y \) implies that \(p_\ast(sp) = p \) and \((sp)_\ast(sp) = sp \), and that \((psp)_\ast(w) = p_\ast(w) \). The right hand diagram “commutes” in \(\text{Fun}(X,Y) \), i.e., it represents the boundary of an element \(b \in \text{Fun}(X,Y)_2 \), namely the degenerate element \(b = (p_\ast(w))_{011} \) associated to the edge \(p_\ast(w): ps = p \to p \).
The above picture is represented by a commutative square

\[
\begin{array}{ccc}
\Lambda^2_0 & \xrightarrow{a} & \text{Fun}(X,X) \\
\downarrow^t & & \downarrow^\text{Map}(X,p)=p_* \\
\Delta^2 & \xrightarrow{b} & \text{Fun}(X,Y)
\end{array}
\]

in simplicial sets. Since \(p\) is a Kan fibration so is \(p_*\) by \(\text{Horn} \sqcap \text{Cell} \subseteq \text{Horn}\) (35.9), and therefore a lift \(t\) exists. Then \(k := t|\Delta^{(1,2)}: \Delta^1 \rightarrow \text{Fun}(X,X)\) is a natural isomorphism \(k: \text{id}_Y \rightarrow sp\) such that \(p_*(k) = 1_p\), i.e., \(pk = p \pi_X\). We have thus produced \(s: Y \rightarrow X\) and \(k: X \times \Delta^1 \rightarrow X\) exhibiting \(p\) as a fiberwise deformation retraction.

\[\square\]

36.10. **Contractible Kan complexes.** The special case of (36.9) applied to \(p: X \rightarrow \ast\) is already interesting.

36.11. **Corollary.** Let \(X\) be a simplicial set. The following are equivalent.

1. \(X\) is a quasicategory which is categorically equivalent to \(\Delta^0\).
2. \(X \rightarrow \Delta^0\) is a trivial fibration.
3. Every \(\partial \Delta^n \rightarrow X\) extends over \(\partial \Delta^n \subset \Delta^n\).

Such an \(X\) is necessarily a Kan complex.

Proof. We have (2) \(\iff\) (3) by definition, and we know that (2) \(\Rightarrow\) (1). Given (1), we have that \(X\) is a quasigroupoid, and hence a Kan complex (30.2), and (2) follows by the previous proposition (36.9). \(\square\)

We say that an \(X\) satisfying these conditions is a **contractible Kan complex.**

36.12. **Monomorphisms which are weak equivalences.** The identification (36.9) of the classes (Kan fibrations between Kan complexes which are weak equivalences) and (trivial fibrations between Kan complexes) has many important consequences. For instance, it directly implies the following characterization of the class (monomorphisms which are weak equivalences).

36.13. **Proposition.** Let \(j: A \rightarrow B\) be a monomorphism of simplicial sets. Then \(j\) is a weak equivalence if and only if \(\text{Map}(j,X) : \text{Map}(B,X) \rightarrow \text{Map}(A,X)\) is a trivial fibration for all Kan complexes \(X\).

Proof. Assume \(X\) is an arbitrary Kan complex. We know that \(\text{Map}(j,X)\) is always a Kan fibration between Kan complexes using \(\text{Horn} \sqcap \text{Cell} \subseteq \text{Horn}\) (35.9). So \(j\) is a weak equivalence iff all \(\text{Map}(j,X)\) are weak equivalences, iff all \(\text{Map}(j,X)\) are trivial fibrations by (36.9). \(\square\)

36.14. **Remark.** The class \(\text{WkEq} \cap \text{Cell}\) of monomorphisms which are weak equivalences is a weakly saturated class: (36.13) says it is the left complement of \(\{p \sqcap \text{Cell} \mid p: X \rightarrow \ast, X \in \text{Kan}\}\). Clearly \(\text{Horn} \subseteq \text{WkEq} \cap \text{Cell}\) by (35.11).

It turns out that \(\text{Horn} = \text{WkEq} \cap \text{Cell}\), i.e., the injective weak equivalences are precisely the same as the anodyne maps. This is a fairly non-trivial fact, which we will not prove here. (See later discussion (??).) A consequence of this is that (36.9) and (36.17) still hold when we remove the condition that the objects be Kan complexes.

36.15. **More enriched lifting for Kan fibrations between Kan complexes.** Although we haven’t proved that all monomorphisms which are weak equivalences are anodyne, we can show that they share some of the enriched lifting properties satisfied by anodyne maps as in (35.10).
36.16. **Proposition.** If \(j: A \to B \) is a monomorphism and a weak equivalence of simplicial sets, and \(p: X \to Y \) is a Kan fibration between Kan complexes, then the pullback-hom map

\[
p^\square j: \text{Map}(B, X) \to \text{Map}(A, X) \times_{\text{Map}(A, Y)} \text{Map}(B, Y)
\]

is a trivial fibration. In particular, \(i \cong p \).

Proof. The pullback-hom map \(p^\square j \) is a Kan fibration between Kan complexes, using \(\text{Horn} \subseteq \text{Horn} (35.9) \). Consider the diagram

\[
\begin{array}{ccc}
\text{Fun}(B, X) & \xrightarrow{p^\square j} & \text{Fun}(A, X) \\
\downarrow & & \downarrow \\
\text{Fun}(B, Y) & \xrightarrow{\text{Fun}(j, Y)} & \text{Fun}(A, Y)
\end{array}
\]

in which the square is a pullback. By (36.13) the maps \(\text{Fun}(j, Y) \) and \(q'(p^\square j) = \text{Fun}(j, X) \) are trivial fibrations. The pullback \(q' \) of \(\text{Fun}(j, Y) \) is also a trivial fibration, and so \(p^\square j \) is a weak equivalence by 2-out-of-3 (35.3), and therefore a trivial fibration since it is a Kan fibration between Kan complexes (36.9).

We also obtain another characterization of Kan fibrations between Kan complexes.

36.17. **Corollary.** A map \(p: X \to Y \) between Kan complexes is a Kan fibration if and only if \(j \cong p \) for all \(j \) which are monomorphisms and weak equivalences.

Proof. \((\Leftarrow) \) Straightforward, since inner horn inclusions are monomorphisms and weak equivalences. \((\Rightarrow) \) Immediate from the previous proposition (36.16), since \(p^\square j \in \text{TrivFib} \) implies \(j \cong p \).

37. The fiberwise criterion for trivial fibrations

We now give yet another criterion for Kan fibration to be a trivial fibration. This criterion is in terms of its fibers. The fiber of a map \(p: X \to Y \) over a vertex \(y \in Y_0 \) is defined to be the pullback of \(p \) along \(\{y\} \to Y \). We will write \(p^{-1}(y) = \{y\} \times_Y X \) for the fiber of \(p \) over \(y \).

37.1. **Fiberwise criterion for trivial fibrations.** If \(p: X \to Y \) is a trivial fibration, then since \(\text{TrivFib} = \text{Horn} \) we see immediately that every projection \(p^{-1}(y) \to * \) from a fiber is a trivial fibration; i.e., the fibers of a trivial fibration are necessarily contractible Kan complexes. The “fiberwise criterion” asserts the converse for arbitrary Kan fibrations.

37.2. **Proposition.** Let \(p: X \to Y \) be a Kan fibration. Then \(p \) is a trivial fibration if and only if every fiber of \(p \) is a contractible Kan complex.

Proof. We have just observed \((\Rightarrow) \), so we prove \((\Leftarrow) \). So suppose \(p \) is a Kan fibration whose fibers are contractible Kan complexes, and consider a lifting problem

\[
\begin{array}{ccc}
\partial \Delta^n & \xrightarrow{a} & X \\
\downarrow & & \downarrow p \\
\Delta^n & \xrightarrow{b} & Y
\end{array}
\]

We will “deform” the lifting problem \((a, b)\) to one of the same type which lives inside a single fiber of \(p \). As such lifting problems have solutions by the hypothesis that the fibers of \(p \) are contractible Kan complexes, the covering homotopy extension property (35.22) implies that the original lifting problem has a solution.
Let $\gamma: \Delta^n \times \Delta^1 \to \Delta^n$ be the unique map which on vertices is given by $\gamma(k, 0) = k$ and $\gamma(k, 1) = n$, i.e., the unique natural transformation $\gamma: \text{id}_{\Delta^n} \to \langle n \ldots n \rangle$. Using that $(\partial \Delta^n \times \{0\} \subset \partial \Delta^n \times \Delta^1)$ is anodyne by $\text{Horn} \subseteq \text{Horn}$ and that p is a Kan fibration, we obtain a lift u in

$$
\begin{array}{c}
\partial \Delta^n \times \{0\} \ar@{-->}[rr]^a \ar[d] & & X \\
\partial \Delta^n \times \Delta^1 \ar@{-->}[rr]_u & & \Delta^n \times \Delta^1 \\
\Delta^n \times \Delta^1 \ar[u] & & b \ar[u] \Delta^n \ar[r]^\gamma & Y
\end{array}
$$

The resulting commutative square

$$
\begin{array}{c}
\partial \Delta^n \times \Delta^1 \ar[r]^u \ar[d] & X \\
\Delta^n \times \Delta^1 \ar[r]_{b\gamma} & Y
\end{array}
$$

represents an edge $e \in \text{Map}(\partial \Delta^n, X) \times \text{Map}(\partial \Delta^n, Y) \to \text{Map}(\Delta^n, X)$ with $e_0 = (a, b)$ the original lifting problem, and $e_1 = (a', b')$ where $b' = b\gamma|\Delta^n \times \{1\}$ factors as $\Delta^n \to \{b(n)\} \hookrightarrow Y$. By the covering homotopy extension property it suffices to produce a lift in the rectangle

$$
\begin{array}{c}
\partial \Delta^n \ar[r] & \Delta^n \\
\Delta^n \ar[u] & \{b(n)\} \ar[u] \ar[r] & Y \\
\{b(n)\} \ar[u] \ar[r]_{p^{-1}(b(n))} & X \\
\Delta^n \ar[u] & \{b(n)\} \ar[u] \ar[r] & Y
\end{array}
$$

which amounts to producing a lift in the left-hand square, which exists because $p^{-1}(b(n))$ is a contractible Kan complex.

We often apply the fiberwise criterion in the following way.

37.3. Corollary. Suppose we have a pullback square of the form

$$
\begin{array}{c}
\prod_{\alpha \in I} X'_\alpha \ar[r] \ar[d] & X \\
\prod_{\alpha \in I} Y'_\alpha \ar[r]_g & Y
\end{array}
$$

such that (1) p is a Kan fibration and (2) the map g is surjective on vertices. Then p is a trivial fibration if and only if every $p'_\alpha: X'_\alpha \to Y'_\alpha$ is a trivial fibration. Furthermore, if all objects in the diagram are Kan complexes, then p is a weak equivalence if and only if every p'_α is a weak equivalence.

Proof. The fibers of p all appear as fibers of the p'_α by (2). Use the fiberwise criterion (37.2) for the first claim, and that together with (36.9) for the second.

37.4. Remark. The proof of (37.2) actually shows something a little stronger: If $p: X \to Y$ is a Kan fibration, then for any fixed $n \geq 0$ we have that $(\partial \Delta^n \subset \Delta^n) \sqcup p$ if and only if $(\partial \Delta^n \subset \Delta^n) \sqcup p^{-1}(y)$ for all $y \in Y_0$.

As we have seen and will see, isofibrations between quasicategories have many properties analogous to Kan fibrations between Kan complexes. However, not every property has an analogue: there is no “fiberwise criterion” for an isofibration between quasicategories to be a trivial fibration.
37.5. Exercise. Give an example of an isofibration between quasicategories whose fibers are all categorically equivalent to Δ^0, but is not a categorical equivalence, and hence not a trivial fibration. (Hint: think small.)

38. Fundamental theorem for Kan complexes

In this section, we will prove quasigroupoid version of the fundamental theorem (35.24), i.e., that fully faithful and essentially surjective maps between quasigroupoids (=Kan complexes) are weak equivalences. We note that we have already reduced (35.25) to the case of Kan fibrations, which follows from the following, which implies that any Kan fibration between Kan complexes which is fully faithful and essentially surjective is a trivial fibration.

38.1. Proposition. Let $p: X \to Y$ be a Kan fibration between Kan complexes. Then

1. p is essentially surjective if and only if $(\partial \Delta^0 \subseteq \Delta^0) \sqcup p$, and
2. p is fully faithful if and only if $(\partial \Delta^n \subseteq \Delta^n) \sqcup p$ for all $n \geq 1$.

Thus, p is both essentially surjective and fully faithful if and only if it is a trivial fibration.

Proof of (38.1) part (1). The property $(\partial \Delta^0 \subseteq \Delta^0) \sqcup p$ means exactly that $X_0 \to Y_0$ is surjective. If this holds then clearly p is essentially surjective.

Conversely, if p is essentially surjective and $y \in Y_0$, we may choose $x \in X_0$ and an isomorphism $f: p(x) \to y$ in Y. Then (x, f) is the data of a lifting problem of $(\{0\} \subseteq \Delta^1)$ against p, which has a solution $s: \Delta^1 \to X$ since p is a Kan fibration. The vertex $s_1 \in X_0$ satisfies $p(s_1) = y$, so we have proved that p is surjective on objects.

To prove the second part of (38.1), we first reformulate the condition for a Kan fibration between Kan complexes to be fully faithful.

38.2. Lemma. Let $p: X \to Y$ be a Kan fibration between Kan complexes. Then p is fully faithful if and only if $p^\sqcup(\partial \Delta^1 \subseteq \Delta^1): \text{Map}(\Delta^1, X) \to (X \times X) \times_{Y \times Y} \text{Map}(\Delta^1, Y)$ is a trivial fibration.

Proof. Fix $p: X \to Y$ a Kan fibration between Kan complexes. We can form the commutative diagram

$$
\begin{array}{ccc}
\coprod_{(x,y) \in X_0 \times X_0} \text{map}_X(x,y) & \xrightarrow{q_{x,y}} & \text{Map}(\Delta^1, X) \\
\downarrow q_{x,y} & & \downarrow q \\
\coprod_{(x,y) \in X_0 \times X_0} \text{map}_Y(px,py) & \xrightarrow{j} & (X \times X) \times_{Y \times Y} \text{Map}(\Delta^1, Y) \\
\downarrow & & \downarrow \\
(Sk_0 X) \times (Sk_0 X) & \xrightarrow{i} & X \times X & \xrightarrow{p \times p} & Y \times Y
\end{array}
$$

in which each square is a pullback. Observe that

- the map q is the pullback-hom $p^\sqcup(\partial \Delta^1 \subseteq \Delta^1)$, so
- q is a Kan fibration between Kan complexes (36.16), so
- $q_{x,y}$ is a Kan fibration between Kan complexes for all $(x,y) \in X_0 \times X_0$, and
- j is surjective on vertices since i is so.

Note that p is fully faithful if and only if every $q_{x,y}$ is a weak equivalence. Using the fiberwise criterion for trivial fibrations (37.3) we see that this is equivalent to $q = p^\sqcup(\partial \Delta^1 \subseteq \Delta^1) \in \text{TrivFib}$, as desired.
38.3. **Transitivity triangle for pullback-homs.** We will need the following result which relates the pullback-homs and composition of maps. You can think of it as an “enriched” version of the fact that \(i \sqcup p \) and \(j \sqcup p \) imply \(ji \sqcup p \).

38.4. **Proposition** (Transitivity triangle for pullback-homs). Let \(A \xrightarrow{i} B \xrightarrow{j} C \) and \(p: X \to Y \) be maps. Then there is a factorization
\[
p^\square(joi) = q \circ p^\square j
\]
where \(q \) is a base-change of \(p^\square i \).

Proof. I use “[A, X]” as a shorthand for “Map(A, X)”. We can form the commutative diagram

\[
\begin{array}{ccc}
[C, X] & \xrightarrow{p^\square j} & [B, X] \times_{[B,Y]} [C, Y] \xrightarrow{[i,X]} [B, X] \\
\downarrow{p^\square ji} & & \downarrow{p^\square i} \\
\end{array}
\]

in which all three squares are pullbacks, whence in particular \(q \) is a base-change of \(p^\square i \). \(\square \)

38.5. **Remark.** I used a special case of (38.4) in the proofs of (33.9) and (36.16).

38.6. **Exercise.** Prove the following transitivity-triangles:
\begin{enumerate}
\item \((i \circ j)^\square f = k \circ (i \square f)\) where \(k \) is a cobase-change of \(j \square f \).
\item \((q \circ p)^\square i = r \circ p^\square i\) where \(r \) is a base-change of \(q^\square i \).
\end{enumerate}
(Note: the large diagram in the proof of (38.2) is an example of a transitivity triangle of type (2).)

38.7. **Proof of the theorem.** Given \(p: X \to Y \), define a class \(\mathcal{C}_p \) of morphisms of simplicial sets by
\[
\mathcal{C}_p := \{ i \in \text{Cell} \mid p^\square i \in \text{TrivFib} \} = \text{Cell} \cap (p^\square \text{Cell}).
\]
The equality is because \(p^\square i \in \text{TrivFib} \iff \text{Cell} \cap p^\square i \iff i \sqcup p \sqcup \text{Cell} \). It is clear that \(\mathcal{C}_p \) is a weakly saturated class, and if \(p \) is a Kan fibration then \(\text{Tort} \subseteq \mathcal{C}_p \) since \(\text{Tort} \sqcup \text{Cell} \subseteq \text{Tort} \).

38.8. **Remark.** Any \(i \in \mathcal{C}_p \) automatically satisfies \(i \sqcup p \), since \(p^\square i \in \text{TrivFib} \) implies that \(p^\square i \) is surjective on vertices. That is, \(\mathcal{C}_p \subseteq \sqcup \{ p \} \). Elements of \(\mathcal{C}_p \) can be thought of as monomorphisms \(i \) which satisfy an “enriched” refinement of the lifting property \(i \sqcup p \).

Thus, the strategy for proving the \((\implies)\) direction of (38.1)(2) is to show \(\text{Cell} \sqsupseteq \sqcup p \) by proving \(\text{Cell} \sqsupseteq \mathcal{C}_p \). Note that we have already proved (for fully faithful Kan fibrations between Kan complexes) that \((\partial \Delta^1 \subset \Delta^1) \in \mathcal{C}_p \) (38.2).

We have the following “precancellation” (or “right cancellation”) property of \(\mathcal{C}_p \), which is ultimately a consequence of (38.9).

38.9. **Lemma.** Let \(p: X \to Y \) be a Kan fibration between Kan complexes. Suppose \(A \xrightarrow{i} B \xrightarrow{j} C \) are monomorphisms such that \(i, ji \in \mathcal{C}_p \). Then \(j \in \mathcal{C}_p \).

Proof. If \(i: A \to B \) is any monomorphism, then \(p^\square i: \text{Fun}(B, X) \to \text{Fun}(A, X) \times_{\text{Fun}(A,Y)} \text{Fun}(B, Y) \) is a Kan fibration between Kan complexes, using (35.9). Thus \(p^\square i \), \(p^\square j \), and \(p^\square ji \) are Kan fibrations between Kan complexes.
If $i, ji \in C_p$ then $p^{\sqcap i}$ and $p^{\sqcap ji}$ are trivial fibrations. The transitivity triangle (38.4) gives $p^{\sqcap ji} = q \circ p^{\sqcap j}$, where q is a base change of $p^{\sqcap i}$ whence q is a trivial fibration. Since trivial fibrations are weak equivalences we have that q and $p^{\sqcap ji}$ are weak equivalences, whence $p^{\sqcap j}$ is a weak equivalence by the 2-out-of-3 property (35.3). Therefore $p^{\sqcap j}$ is also a trivial fibration since it is a map between Kan complexes which is a Kan fibration and weak equivalence (36.9). Thus we have proved that $j \in C_p$. \[\square \]

Proof of (38.1) part (2). (\Leftarrow) The pushout-product of $(\partial \Delta^1 \subseteq \Delta^1)$ with any monomorphism gives a monomorphism which is bijective on vertices, and therefore $(\partial \Delta^1 \subseteq \Delta^1) \Box_C C \subseteq C_{\Box \geq 1}$.

Therefore if $p: X \to Y$ is a Kan fibration between Kan complexes such that $C_{\geq 1} \subseteq C_p$, then $(\partial \Delta^1 \subseteq \Delta^1) \Box_C C \subseteq p$, whence $C \subseteq p^{\Box (\partial \Delta^1 \subseteq \Delta^1)}$. That is, $p^{\Box (\partial \Delta^1 \subseteq \Delta^1)}$ is a trivial fibration, and therefore p is fully faithful by (38.2).

(\Rightarrow) Suppose $p: X \to Y$ is a Kan fibration between Kan complexes which is fully faithful. The reformulation of fully faithful (38.2) implies that $(\partial \Delta^1 \subseteq \Delta^1) \in C_p$, where $C_p = \{ i \in C_{\text{Cell}} \mid p^{\sqcap i} \in C_{\text{TrivFib}} \}$ is the weakly saturated class we defined above. To prove the proposition, it will suffice to show that $C_{\geq 1} \subseteq C_p$, as this certainly would imply $C_{\geq 1} \subseteq p$.

We will argue by induction on $n \geq 1$ that $(\partial \Delta^n \subseteq \Delta^n) \in C_p$. The base case $n = 1$ is the hypothesis. Consider $n \geq 2$, and suppose we know that $(\partial \Delta^{n-1} \subseteq \Delta^{n-1}) \in C_p$. We have a commutative diagram

\[
\begin{array}{ccc}
\partial \Delta^{n-1} & \longrightarrow & \Lambda^n_1 \\
\downarrow i & & \downarrow j \\
\Delta^{n-1} & \longrightarrow & \partial \Delta^n \\
\end{array}
\]

in which the left-hand square is a pushout. By induction we have that $i' \in C_p$, whence $i \in C_p$ since C_p is weakly saturated. We observed that C_p contains all horn inclusions\(^{29}\) since p is a Kan fibration and $\text{Horn} \subseteq \text{Cell} \subseteq \text{Horn}$, and thus $ji \in C_p$. Therefore $j \in C_p$ as desired by “precancellation” (38.9). \[\square \]

38.10. Homotopy groups. I briefly note another criterion for weak equivalence of Kan complexes, which is essentially a form of Whitehead’s theorem in homotopy theory.

Let (X, x) be a pointed Kan complex, i.e., a Kan complex X together with a choice of vertex $x \in X$. We define for all $n \geq 0$ a set $\pi_n(X, x)$ by the inductive formula

\[
\begin{align*}
\pi_0(X, x) & := \pi_0 X, \\
\pi_n(X, x) & := \pi_{n-1} (\text{map}_X (x, x), 1_x), \quad \text{for } n \geq 1.
\end{align*}
\]

Note that $\pi_1(X, x) \approx \text{hom}_{hX} (x, x)$ is equipped with a group structure via composition in hX, and thus $\pi_n(X, x)$ is a group for $n \geq 1$. (In fact, $\pi_n(X, x)$ is an abelian group for $n \geq 2$.)

38.11. Example (Homotopy groups of spaces). Given a topological space T, let $X = \text{Sing} T$ be its singular complex, which is a Kan complex. Given a vertex $x \in X$ (which corresponds exactly to a point of T), we have bijections

\[
\pi_n(X, x) \approx \pi_n (T, x),
\]

where the right-hand side is the usual nth homotopy group of the space T at the point x. . . .

38.12. Proposition. Let $f: X \to Y$ be a functor between Kan complexes. Then f is a weak equivalence if and only if, for all $k \geq 0$ and all $x \in X_0$, the induced map

\[
\pi_k(X, x) \to \pi_k (Y, f(x))
\]

is a bijection.

\(^{29}\) In fact, it contains $\text{WkEq} \cap \text{Cell}$ since p is a Kan fibration between Kan complexes (36.17).
Maybe I’ll give a proof in the appendix.

39. Properties of isofibrations

In this section, we return to isofibrations, which were defined in (29.6). The moral is that isofibrations between quasicategories play a role analogous to Kan fibrations between Kan complexes.

39.1. Characterizations of isofibrations. Recall that a functor $f : C \to D$ between quasicategories is an isofibration if (1) it is an inner fibration, and (2) every diagram

$$\begin{array}{ccc}
\{j\} & \to & C \\
\downarrow^g & & \downarrow^p \\
\Delta^1 & \to & D
\end{array}$$

with $j = 0$ admits a lift g. Furthermore, it is equivalent to require $(2')$ instead of (2), where $(2')$ is the same statement with $j = 1$.

Note that $C \to \ast$ is an isofibration for any quasicategory C (because identity maps are isomorphisms).

We can replace condition (2) for an isofibration with one involving the restriction of the map to cores cores (=maximal sub-quasigroupoids, defined in (10.7)).

39.2. Proposition. A map $p : C \to D$ between quasicategories is an isofibration if and only if (1) it is an inner fibration, and (2') the restriction $p_{\text{core}} : C_{\text{core}} \to D_{\text{core}}$ of p to cores is a Kan fibration.

Proof. (\Rightarrow) Let p be an isofibration. Then p_{core} is seen to be an inner fibration by an elementary argument (13.9). It is also easy to see that condition (2) for an isofibration also holds for p_{core}. Thus p_{core} is an isofibration between Kan complexes, and hence a Kan fibration by a straightforward exercise using Joyal lifting (35.13).

(\Leftarrow) If p_{core} is a Kan fibration, then it is immediate that property (2) of an isofibration holds. □

In particular, isofibrations between Kan complexes are precisely Kan fibrations. (This can be proved directly using Joyal lifting, as in (35.13).)

We have another “lifting criterion” for isofibrations.

39.3. Proposition. An map p between quasicategories is an isofibration iff (1) it is an inner fibration, and (2'') $(\{0\} \subset N(\text{Iso}) \sqsubset p)$.

Proof. (\Leftarrow) Straightforward, using the fact (35.17) that every $f : \Delta^1 \to D$ representing an isomorphism factors through a map $N(\text{Iso}) \to D$.

(\Rightarrow) Solve a lifting problem $(a : \{0\} \to C, b : N\text{Iso} \to D)$ of type $(\{0\} \subset N\text{Iso}) \sqsubset p$ by solving two lifting problems in sequence

$$\begin{array}{ccc}
\{0\} & \to & C \\
\downarrow^a & & \downarrow^p \\
\Delta^1 & \to & D
\end{array} \quad \ quad
In other words, the isofibrations are precisely the maps between quasicategories which are contained in \((\text{InnHorn} \cup \{ \{0\} \subset N(\text{Iso}) \})^{\square} \).

39.4. Remark. We have deliberately excluded maps between non-quasicategories from the definition of isofibration. The correct generalization of isofibration to arbitrary simplicial sets is called “categorical fibration”, and will be discussed later (43).

39.5. Enriched lifting for isofibrations. We are now ready to prove the following proposition, which will be the key tool in what follows. It is analogous to the first statement of (35.10), except that Kan fibrations between Kan complexes are replaced by isofibrations between quasicategories.

39.6. Proposition. Let \(p: C \rightarrow D \) be an isofibration between quasicategories, and \(i: K \rightarrow L \) any monomorphism of simplicial sets. Then the induced pullback-hom map

\[
p^{\square i}: \text{Fun}(L, C) \rightarrow \text{Fun}(K, C) \times_{\text{Fun}(K,D)} \text{Fun}(L, D)
\]

is an isofibration.

We pause to note an important special, namely when \(D = * \): for any monomorphism \(i \) and quasicategory \(C \), the restriction map \(\text{Fun}(L, C) \rightarrow \text{Fun}(K, C) \) is an isofibration.

Proof. Fix an isofibration \(p: C \rightarrow D \) between quasicategories. First note that since \(p \) is an inner fibration, any map \(p^{\square i} \) with \(i \) a monomorphism is also an inner fibration by \(\text{Horn} \subseteq \text{Cell} \subseteq \text{InnHorn} \) (17.2). For the same reason, the target of \(p^{\square i} \) is a quasicategory when \(i \) is a monomorphism.

Let

\[
C_p := \{ i \in \text{Cell} \mid p^{\square i} \in \text{IsoFib} \},
\]

the class of monomorphisms such that \(p^{\square i} \) is an isofibration. First note that \(C_p \) is weakly saturated. To see this, let \(S := \text{InnHorn} \cup \{ \{0\} \subset N(\text{Iso}) \} \), so that \(p^{\square i} \in \text{IsoFib} \) if and only if \(S \sqcup p^{\square i} \) by (39.3). We have that \(S \sqcup p^{\square i} \) if and only if \(i \sqcup p^{\square} \) by an adjunction of lifting problems (16.4), and therefore \(C_p \) is equal to the left complement of the set \(p^{\square S} \), and so is weakly saturated.

Therefore, to show that \(C \) contains all monomorphisms, it suffices show that it contains \((\partial \Delta^n \subset \Delta^n)\) for \(n \geq 0 \).

First note that when \(n = 0 \) we have that \(p^{\square (\partial \Delta^n \cap \Delta^n)} = p \), which is an isofibration by hypothesis\(^{30}\).

Now consider \(p^{\square (\partial \Delta^{n-1} \cap \Delta^n)} \) for \(n \geq 1 \). As this is an inner fibration between quasicategories, to show that it is an isofibration it suffices to solve the lifting problem

\[
\begin{array}{ccc}
\{0\} & \xrightarrow{f} & \text{Fun}(\Delta^n, C) \\
\downarrow & & \downarrow \quad p^{\square i} \\
\Delta^1 & \xrightarrow{g} & (\{0\} \times \Delta^n) \cup (\Delta^1 \times \partial \Delta^n) \xrightarrow{p} D
\end{array}
\]

where \(f \) represents an isomorphism in the target.

The edge \(f' := (g|\Delta^1 \times \{0\}) \) is the same as the composite

\[
\begin{array}{c}
\Delta^1 \xrightarrow{f} \text{Fun}(\partial \Delta^n, C) \times_{\text{Fun}(\partial \Delta^n, D)} \text{Fun}(\Delta^n, D) \\
\end{array}
\]

Since \(f \) represents an isomorphism in the fiber product, it follows that \(f' \) represents an isomorphism in \(C \). Therefore a lift exists by the pushout-product version of Joyal lifting (31.6), since \(n \geq 1 \). \(\square \)

We are especially interested in the restriction of \(p^{\square i} \) to cores.

\(^{30}\)This step is the only place in the proof where we actually use the fact that \(p \) is an isofibration, and not merely an inner fibration! In fact, if \(p \) is merely an inner fibration, but \(K_0 = L_0 \), then \(p^{\square i} \) is an isofibration. This proof is closely related to that of (31.3).
39.7. Corollary. Let \(p : C \to D \) be an isofibration between quasicategories, and \(i : K \to L \) any monomorphism of simplicial sets. Then the restriction of the pullback-hom map \(p^{\square i} \) to cores, which has the form
\[
(p^{\square i})_{\text{core}} : \text{Fun}(L,C)_{\text{core}} \to \text{Fun}(K,C)_{\text{core}} \times_{\text{Fun}(K,D)_{\text{core}}} \text{Fun}(L,D)_{\text{core}},
\]
is a Kan fibration between Kan complexes.

Proof. For the statement about the form of the target of the map \((p^{\square i})_{\text{core}}\), note that because \(p \) is an inner fibration, we have that \(\text{Fun}(i,D)_{\text{core}} : \text{Fun}(L,D)_{\text{core}} \to \text{Fun}(K,D)_{\text{core}} \) is an inner fibration by enriched lifting for \(\text{InnHorn} \subseteq \text{Cell} \subseteq \text{InnHorn} \), and thus the core of the pullback is the pullback of cores by \((32.4)\).

The claim follows from \((39.6)\) and the fact that an isofibration induces a Kan fibration on cores \((39.2)\). \(\Box\)

40. Trivial fibrations between quasicategories

Now we can prove a generalization of \((36.9)\), which identified trivial fibrations between Kan complexes as the Kan fibrations which are weak equivalences. In the generalization, the role of Kan fibrations is replaced with isofibrations. The proof of the generalization will make essential use of the Kan fibration case.

40.1. Proposition. Let \(p : C \to D \) be a map between quasicategories. Then \(p \) is a trivial fibration if and only if it is an isofibration and a categorical equivalence.

Proof. \([\text{Joy08a, Theorem 5.15}].\) \((\implies)\) If \(p \) is a trivial fibration, it is an inner fibration and \((\{0\} \subset N(\text{Iso})) \sqcap p\), so it is an isofibration \((39.3)\). We have already shown that \(p \) is a categorical equivalence \((20.10)\).

\((\impliedby)\) Conversely, suppose \(p \) is isofibration and categorical equivalence, and that \(i : K \to L \) is a monomorphism. To show \(i \sqcap p \) we show that the pullback-hom map \(p^{\square i} \) is surjective on vertices. In fact, it is enough to show that its restriction \((p^{\square i})_{\text{core}}\) is a trivial fibration for any monomorphism \(i \).

By \((39.7)\) the map \((p^{\square i})_{\text{core}}\) is a Kan fibration between Kan complexes, since \(p \) is an isofibration and \(i \) is a monomorphism. The same reasoning applies that \(\text{Fun}(L,p)_{\text{core}} \) and \(\text{Fun}(K,p)_{\text{core}} \), the restriction of the maps
\[
\text{Fun}(L,p) : \text{Fun}(L,C) \to \text{Fun}(L,D) \quad \text{and} \quad \text{Fun}(K,p) : \text{Fun}(K,C) \to \text{Fun}(K,D)
\]
to cores. We also know that \(\text{Fun}(L,p) \) and \(\text{Fun}(K,p) \) are categorical equivalences since \(p \) is \((19.8)\), and therefore so are \(\text{Fun}(L,p)_{\text{core}} \) and \(\text{Fun}(K,p)_{\text{core}} \) \((31.10)\). Therefore \(\text{Fun}(L,p)_{\text{core}} \) and \(\text{Fun}(K,p)_{\text{core}} \) are trivial fibrations, being Kan fibrations and weak equivalences between Kan complexes \((36.9)\). We have a commutative diagram\(^31\)

\[
\begin{array}{ccc}
\text{Fun}(L,C)_{\text{core}} & \xrightarrow{p^{\square i}} & \text{Fun}(K,C)_{\text{core}} \\
\downarrow q & & \downarrow \text{Fun}(K,p)_{\text{core}} \\
\text{Fun}(L,D)_{\text{core}} & \longrightarrow & \text{Fun}(K,D)_{\text{core}}
\end{array}
\]
in which the map \(q \) is a base-change of \(\text{Fun}(K,p)_{\text{core}} \) and hence is a trivial fibration, as in \(\text{Fun}(L,p)_{\text{core}} \).

Now use that trivial fibrations are categorical equivalences \((20.10)\) and 2-out-of-3 for categorical equivalence.\(^31\)

\(^{31}\)This is an example of a transitivity triangle of type \((38.6)(2)\), or rather the restriction of such a triangle to cores.
equivaleces (22.10) to conclude that $p^{\square i}$ is a categorical equivalence. As $p^{\square i}$ is also a Kan fibration between Kan complexes, we conclude that it is a trivial fibration by (36.9).

40.2. Exercise. Let C be a quasicategory and let $\pi: C \to hC$ be the tautological map to its homotopy category. Show that

1. π is an isofibration, and
2. $(\partial \Delta^n \subset \Delta^n) \sqcup \pi$ for $n = 0, 1, 2$.

Conclude that π is a categorical equivalence if and only if $(\partial \Delta^n \subset \Delta^n) \sqcup \pi$ for all $n \geq 3$.

40.3. Invariance of slice categories under categorical equivalence. That isofibrations which are categorical equivalences are trivial fibrations has a number of useful consequences. For instance, we can now show that a categorical equivalence between quasicategories induces equivalences of its slice categories.

40.4. Proposition. Let $f: C \to D$ be a categorical equivalence of quasicategories. For any map $q: K \to C$ of simplicial sets, the induced maps $C_{q/} \to D_{f_{q/}}$ and $C'_{q/} \to D'_{f_{q/}}$ on slice categories are also categorical equivalences.

Proof. I’ll prove the slice-under case; the slice-over case is exactly the same. Consider the path factorization (34.2) of f, which gives a commutative diagram

$$
\begin{array}{c}
\text{C} \\
\downarrow j \\
\text{P}(f) \\
\downarrow s_0 \\
\text{C}
\end{array} \xrightarrow{\tilde{f}}
\begin{array}{c}
\text{D} \\
\downarrow p \\
\text{C}
\end{array}
$$

where j is a categorical equivalence, p is an isofibration, and s_0 a trivial fibration. The hypothesis that f is a categorical equivalence implies that p is a categorical equivalence by 2-out-of-3 (22.10), and therefore that p is a trivial fibration by (40.1).

Recall that if f is a trivial fibration, then so is the induced map $C_{q/} \to D_{f_{q/}}$ by $\text{Cell} \subseteq \text{Cell} \subseteq \text{Cell}$ (27.13). Taking slices in the above diagram gives

$$
\begin{array}{c}
\text{C}_{q/} \\
\downarrow \tilde{j} \\
\text{P}(f)_{q/} \\
\downarrow \tilde{s}_0 \\
\text{C}_{q/}
\end{array} \xrightarrow{\tilde{f}}
\begin{array}{c}
\text{D}_{f_{q/}} \\
\downarrow \tilde{p} \\
\text{C}_{q/}
\end{array}
$$

in which both \tilde{p} and \tilde{s}_0 are trivial fibrations and thus categorical equivalences (20.10). Applying the 2-out-of-3 property shows that \tilde{f} is a categorical equivalence as desired.

40.5. Invariance of colimits and limits under categorical equivalence. We can now now prove (E). First we can now prove the following criterion for a cone to be a limit or colimit, which relaxes the condition “trivial fibration” to “categorical equivalence”.

40.6. Proposition. Let C be a quasicategory. A map $\tilde{p}: K^\triangleright \to C$ is a colimit cone in C if and only if the restriction map $C_{\tilde{p}/} \to C_{p/}$ is a categorical equivalence. Likewise, a map $\tilde{p}: K^\triangleleft \to C$ is a limit cone in C if and only if the restriction map $C_{/\tilde{p}} \to C_{/p}$ is a categorical equivalence.
Proof. We prove the case of colimits. Consider \(\hat{p} : K^\circ \to C \), and write \(p := \hat{p}|_K \). Let \(\pi : C_{\hat{p}/} \to C_p/ \) be the evident restriction map on slices. We know that \(\pi \) is a left fibration between quasicategories (27.15) because \(\text{Cell} \boxplus \text{Horn} \subseteq \text{InnHorn} \), and thus is an isofibration (29.10).

We also know that \(\hat{p} \) is a colimit cone if and only if \(\pi \) is a trivial fibration (28.7). So the claim is immediate from (40.1). □

40.7. Proposition. Let \(f : C \to D \) be a categorical equivalence between quasicategories. A map \(\hat{p} : K^\circ \to C \) is a colimit cone in \(C \) if and only if \(f\hat{p} \) is a colimit cone in \(D \), and a map \(\hat{q} : K^\triangleleft \to C \) is a limit cone in \(C \) if and only if \(f\hat{q} \) is a colimit cone in \(D \).

Proof. We prove the case of colimits. Consider the commutative diagram

\[
\begin{array}{ccc}
C_{\hat{p}/} & \xrightarrow{f''} & D_{f\hat{p}/} \\
\pi \downarrow & & \downarrow \pi' \\
C_p/ & \xrightarrow{f'} & D_{fp/}
\end{array}
\]

Since \(f \) is a categorical equivalence, \(f' \) and \(f'' \) are also categorical equivalences by (40.4). Therefore by 2-out-of-3 for categorical equivalences (22.10) \(\pi \) is a categorical equivalence if and only if \(\pi' \) is, and the claim follows from (40.6). □

40.8. Monomorphisms which are categorical equivalences. We can now prove a generalization of (36.13), which characterized the injective weak equivalences.

40.9. Proposition. Let \(j : K \to L \) be a monomorphism of simplicial sets. Then \(j \) is a categorical equivalence if and only if \(\text{Map}(j, C) : \text{Map}(L, C) \to \text{Map}(K, C) \) is a trivial fibration for all quasicategories \(C \).

Proof. Straightforward using the fact that \(\text{Map}(j, C) \) is an isofibration for any inclusion (39.6), and that isofibrations which are categorical equivalences are trivial fibrations (40.1). □

40.10. Remark. The class \(\text{CatEq} \cap \text{Cell} \) of monomorphisms which are categorical equivalences is a weakly saturated class: (40.9) says it is the left complement of \(\{ p\subseteq\text{Cell} \mid p : C \to *, \ C \in \text{qCat} \} \).

Clearly \(\text{InnHorn} \subseteq \text{CatEq} \cap \text{Cell} \) by (20.14).

However, \(\text{InnHorn} \neq \text{CatEq} \cap \text{Cell} \). For instance, every inner anodyne map is a bijection on vertices, but \(\{ \} \to \text{NIso} \) which is not bijective on vertices is an injective categorical equivalence. This is a significant way in which the theory of quasicategories is not entirely parallel with the theory of Kan complexes; compare (36.14). More on this later (??).

40.11. Monomorphisms which are categorical equivalences lift against isofibrations. Now we can identify those elements of the right complement of \(\overline{\text{Cell}} \cap \text{CatEq} \) which are maps between quasicategories.

40.12. Proposition. A map \(p : C \to D \) with \(D \) a quasicategory is an isofibration if and only if \(j \triangleright p \) for every \(j : K \to L \) which is both a monomorphism and a categorical equivalence.

Proof. (\(\Leftarrow \)) Immediate from the characterization of isofibrations as maps between quasicategories in the right complement of \(\text{InnHorn} \cup \{ \{ \} \cap \text{NIso} \} \) (39.3).
(\Longrightarrow) Suppose \(p \) is an isofibration. We have a commutative diagram

\[
\begin{array}{ccc}
\text{Fun}(j,C) & \xrightarrow{p^{ij}} & \text{Fun}(K, C) \\
\downarrow & & \downarrow \\
\text{Fun}(L, D) & \xrightarrow{q} & \text{Fun}(K, D)
\end{array}
\]

in which \(p^{ij} \), \(\text{Fun}(j,C) \), and \(\text{Fun}(j,D) \) are isofibrations by (39.6), and \(\text{Fun}(j,C) \) and \(\text{Fun}(j,D) \) are categorical equivalences since \(i \) and \(j \) are. Therefore \(\text{Fun}(j,C) \) and \(\text{Fun}(j,D) \), and hence the base-change \(q \), are trivial fibrations by (40.1), whence \(p^{ij} \) is a categorical equivalence by 2-out-of-3 (22.10) and so a trivial fibration by (40.1). It follows that \(p^{ij} \) is surjective on vertices, i.e., \(j \not\equiv p \) as desired. \(\square \)

41. Localization of Quasicategories

41.1. Functors into the core of a quasicategory. Let \(C \) be a quasicategory, and \(X \) a simplicial set. Let

\[
\text{Fun}^{(X)}(X,C) \subseteq \text{Fun}(X,C)
\]

denote the full subcategory spanned by objects which are functors \(f : X \to C \) with the property that \(f(X) \subseteq C^{\text{core}} \).

41.2. Example. When \(X = \Delta^1 \), then \(\text{Fun}^{(\Delta^1)}(\Delta^1,C) = \tilde{C} \subseteq \text{Fun}(\Delta^1,C) \), the path category used in (33.4).

Note that \(\text{Fun}^{(X)}(X,C) \) is a quasicategory, but not necessarily a quasigroupoid: for instance, morphisms in \(\text{Fun}^{(X)}(X,C) \) correspond to \(f : X \times \Delta^1 \to C \) such that \(f(X \times \{0\}) \subseteq C^{\text{core}} \) and \(f(X \times \{1\}) \subseteq C^{\text{core}} \), but need not satisfy \(f(X \times \Delta^1) \subseteq C^{\text{core}} \) (i.e., they are not required to be natural isomorphisms of functors). So \(\text{Fun}(X,C^{\text{core}}) \subseteq \text{Fun}^{(X)}(X,C) \), but they are not generally equal (unless \(X \) is already a quasigroupoid).

We have a convenient characterization of maps into \(\text{Fun}^{(X)}(X,C) \).

41.3. Proposition. For any quasicategory \(C \) and simplicial sets \(X \), the evident bijection \(\text{Hom}(S,\text{Fun}(X,C)) \approx \text{Hom}(S,\text{Fun}(X,C)^{\text{core}}) \) restricts to a bijection

\[
\left\{ S \to \text{Fun}^{(X)}(X,C) \right\} \leftrightarrow \left\{ X \to \text{Fun}(S,C)^{\text{core}} \right\}.
\]

Proof. Consider \(f : S \to \text{Fun}(X,C) \), and write \(f' : X \to \text{Fun}(S,C) \) and \(f'' : S \times X \to C \) for its adjoints. Observe the following.

1. The map \(f \) factors through \(\text{Fun}^{(X)}(X,C) \subseteq \text{Fun}(X,C) \) if and only if for each vertex \(s \in S_0 \) the induced map \(f(s) : X \to C \) factors through \(C^{\text{core}} \subseteq C \). This amounts to saying that for each edge \(g \in X_1 \), each map \(f(s) \) sends \(g \) to an isomorphism in \(C \).

2. The map \(f' \) factors through \(\text{Fun}(S,C)^{\text{core}} \subseteq \text{Fun}(S,C) \) if and only if for each edge \(g \in X_1 \) the image \(f'(g) \in \text{Fun}(S,C)_1 \) represents an isomorphism in \(\text{Fun}(S,C) \). By the objectwise criterion (31.1), this amounts to saying that \(f'(g) \) sends each vertex \(s \in S_0 \) to an isomorphism in \(C \).

It is thus apparent that conditions (1) and (2) are equivalent: both are amount to the requirement that \(\Delta^0 \times \Delta^1 \xrightarrow{s \times g} S \times X \xrightarrow{f''} C \) represent an isomorphism in \(C \) for every \(s \in S_0 \) and \(g \in X_1 \). \(\square \)

For any map \(i : X \to Y \) of simplicial sets, the induced map \(\text{Fun}(i,C) \) restricts to a map \(\text{Fun}^{(Y)}(Y,C) \to \text{Fun}^{(X)}(X,C) \) between full subcategories.
41.4. Proposition. Let \(i: X \to Y \) be any map of simplicial sets which is a monomorphism and a weak equivalence (e.g., an anodyne map). Then for any quasicategory \(C \), the restriction map
\[
i^*: \text{Fun}(Y, C) \to \text{Fun}(X, C)
\]
is a trivial fibration, and thus in particular a categorical equivalence between quasicategories.

Proof. We need to solve lifting problems
\[
\begin{array}{ccc}
\partial \Delta^n & \xrightarrow{u} & \text{Fun}(Y, C) \\
\Delta^n & \xrightarrow{v} & \text{Fun}(X, C)
\end{array}
\]
for all \(n \geq 0 \). Using (41.3) we can replace this with the adjoint lifting problem

\[
\begin{array}{ccc}
X & \xrightarrow{\tilde{v}} & \text{Fun}(\Delta^n, C)_{\text{core}} \\
Y & \xrightarrow{\tilde{u}} & \text{Fun}(\partial \Delta^n, C)_{\text{core}}
\end{array}
\]

where \(p_{\text{core}} \) is induced by the restriction map \(p: \text{Fun}(\Delta^n, C) \to \text{Fun}(\partial \Delta^n, C) \). By (39.6) the map \(p \) is an isofibration, and thus \(p_{\text{core}} \) is a Kan fibration (39.2). The hypothesis that \(i \in \text{Cell} \cap \text{WkEq} \) implies that a lift must exist, by (36.16). \(\square \)

41.5. **Groupoid completion.** Given any simplicial set \(X \), there exists a quasigroupoid \(X_{\text{Kan}} \) together with a map \(X \to X_{\text{Kan}} \) which is a monomorphism and a weak equivalence, e.g., an anodyne map constructed using the small object argument applied to the set \(\text{Horn} \) (13.11). We will call any such choice a groupoid completion of \(X \). This terminology is justified by the following.

41.6. Proposition. Let \(i: X \to X_{\text{Kan}} \) be any groupoid completion as above. Then for any quasicategory \(C \), restriction along \(i \) induces to a trivial fibration
\[
p: \text{Fun}(X_{\text{Kan}}, C) \to \text{Fun}(X, C).
\]
In particular, any map \(f: X \to C_{\text{core}} \subseteq C \) extends to a functor \(g: X_{\text{Kan}} \to C \), and any two such extensions are naturally isomorphic.

Proof. To show that \(p \) is a trivial fibration, apply (41.4), together with the easy observation that
\[
\text{Fun}(X, C) = \text{Fun}(X, C)_{\text{core}} \quad \text{when} \quad X \text{ is a Kan complex}
\]
Although the groupoid completion isn’t unique, it is unique up to categorical equivalence.

41.7. Exercise. Let \(f_i: X \to X_i \) be groupoid completions of \(X \), for \(i = 1, 2 \). Show that there exists a categorical equivalence \(g: X_1 \to X_2 \) such that \(gf_1 = f_2 \), and that any two such are naturally isomorphic. (Hint: proof of (20.16) and (40.9).)

We can apply this construction when \(X \) is a quasicategory, or even when \(X \) is the nerve of an ordinary category, and obtain interesting new quasigroupoids.

41.8. Example. It turns out that every simplicial set is weakly equivalent to the nerve of some ordinary category, and in fact to the nerve of some poset [Tho80]. Thus, for every Kan complex \(K \), there exists an ordinary category \(A \) and a weak equivalence \(NA \to K \), where therefore induces categorical equivalences
\[
\text{Fun}(K, C) \approx \text{Fun}^{(NA)}(NA, C) \quad \text{for every quasicategory} \ C.
\]

We note that there is also a classical groupoid completion construction, which given an ordinary category \(A \) produces an ordinary groupoid \(A_{\text{Gpd}} \) by “formally inverting all maps”. We have that
\[
h((NA)_{\text{Kan}}) \approx N(A_{\text{Gpd}}), \quad \text{but in general} \quad (NA)_{\text{Kan}} \text{ is not weakly equivalent to } N(A_{\text{Gpd}}).
41.9. Exercise. Let A be the poset of proper and non-empty subsets of $\{0, 1, 2, 3\}$. Show that A_{Gpd} is equivalent to the one-object category, but that $(NA)_{\text{Kan}}$ is not equivalent to the one-object category. (In the second case, you can prove non-equivalence by showing $\pi_0 \text{Fun}(NA, K(\mathbb{Z}, 2)) \approx \mathbb{Z}$, using the Eilenberg-MacLane object of §8.9.)

41.10. Localization of quasicategories. There is a more general construction, which applies to a simplicial set X equipped with a subcomplex $W \subseteq X$. Let

$$\text{Fun}^{(W)}(X, C) \subseteq \text{Fun}(X, C)$$

denote the full subcategory spanned by objects $f: X \to C$ such that $f(W) \subseteq C^{\text{core}}$. (Note that this condition only depends on knowing the edges in W.) Clearly $\text{Fun}^{(W)}(X, C)$ is the primage of $\text{Fun}^{(W)}(W, C)$ along the restriction map $\text{Fun}(X, C) \to \text{Fun}(W, C)$.

Given a subcomplex $W \subseteq X$, we may define a localization of C with respect to W. This is any map $X \to X_{(W)}$ constructed as follows.

1. Choose a groupoid completion $i: W \to W_{\text{Kan}}$ of W.
2. Choose an inner anodyne map $j: X \cup W W_{\text{Kan}} \to X_{(W)}$ to a quasicategory $X_{(W)}$.

If $W = X$ then $X \to X_{(X)}$ is an example of a groupoid completion of X as discussed above.

41.11. Proposition. For any localization $X \to X_{(W)}$ as defined above, and any quasicategory C, the restriction map $\text{Fun}(X_{(W)}, C) \to \text{Fun}(X, C)$ induces a trivial fibration

$$\text{Fun}(X_{(W)}, C) \to \text{Fun}^{(W)}(X, C).$$

In particular, any map $f: X \to C$ such that $f(W) \subseteq C^{\text{core}}$ extends to a functor $g: X_{(W)}$, and any two such extensions are naturally isomorphic.

Proof. Consider

$$\begin{align*}
\text{Fun}(X_{(W)}, C) & \xrightarrow{j^*} \text{Fun}(X \cup W W_{\text{Kan}}, C) \xrightarrow{p} \text{Fun}^{(W)}(X, C) \longrightarrow \text{Fun}(X, C) \\
\text{Fun}(W_{\text{Kan}}, C) & \xrightarrow{i^*} \text{Fun}^{(W)}(W, C) \longrightarrow \text{Fun}(W, C)
\end{align*}$$

in which both squares are pullbacks. The map j^* is a trivial fibration since g is inner anodyne, using $\text{InnHorn} \subseteq \text{Cell}$, while i^* is a trivial fibration as we have shown (41.6), whence p is a trivial fibration. \qed

41.12. Quasicategories from relative categories. A relative category is a pair $W \subseteq C$ consisting of an ordinary category C and a subcategory W containing all the objects of C. The above construction gives, for any relative category, a map

$$C \to C_{(W)},$$

unique up to categorical equivalence. We may call $C_{(W)}$ the localization of C with respect to W.

It turns out that many quasicategories of interest arise as such localizations. All quasicategories, up to categorical equivalence, right? Give references.

42. Proof of the fundamental theorem

We are ready to finish the proof of (G), The Fundamental Theorem of Quasicategories.

42.1. Proposition. If $f: C \to D$ is a fully faithful and essentially surjective functor between quasicategories, then f is a categorical equivalence.

We will prove this below. As we have noted (??), it suffices to prove the proposition for functors f which are isofibrations.
42.2. Restricting fully faithful functors to cores. Our proof will involve considering the restriction of functors like \(f : C \to D \) to cores, which we write as \(f^{\text{core}} : C \to D \).

Given a quasicategory \(C \) and a full subcategory \(C' \subseteq C \), we say that \(C' \) is replete if for every isomorphism \(x \to y \) in \(C \), we have that \(x \in C'_0 \) implies \(y \in C'_0 \).

42.3. Lemma. Let \(C \) be a quasicategory and let \(x, y \in C_0 \) be a pair of objects. Then the evident inclusion \(\text{map}^{C_{\text{core}}}_{C_{\text{core}}}(x, y) \subseteq \text{map}_C(x, y) \) exhibits \(\text{map}^{C_{\text{core}}}_{C_{\text{core}}}(x, y) \) as the full subcategory of \(\text{map}_C(x, y) \) spanned by the objects which correspond to isomorphisms in \(C \). Furthermore, this subcategory is replete.

Proof. Consider \(f \in \text{map}_C(x_0, x_1)_n \), which corresponds to a map \(\tilde{f} : \Delta^n \times \Delta^1 \to C \) such that \(\tilde{f}(\Delta^n \times \{j\}) \subseteq \{x_j\} \) for \(j = 0, 1 \); so in particular, \(\tilde{f} \) sends all morphisms \(((i,0) \to (j,0)) \) and \(((i,1) \to (j,1)) \) to identity maps in \(C \). It is an element of \(\text{map}^{C_{\text{core}}}_{C_{\text{core}}}(x_0, x_1) \) if and only if \(\tilde{f} \) sends all morphisms to isomorphisms in \(C \), so by the above remarks it is enough for it to send each of the morphisms \(((i,0) \to (i,1)) \) to isomorphisms in \(C \). This exactly translates to: \(f \in \text{map}^{C_{\text{core}}}_{C_{\text{core}}}(x_0, x_1)_n \) if and only if each \(f(i) \) represents an isomorphism in \(C \), i.e., \(\text{map}^{C_{\text{core}}}_{C_{\text{core}}}(x_0, x_1) \) is the indicated full subcategory. It is clear that the property of a vertex of \(\text{map}_C(x_0, x_1) \) representing an isomorphism in \(C \) is itself isomorphism invariant, so the subcategory is replete. \(\square \)

We have already proved a quasigroupoid version of the fundamental theorem, which implies the following.

42.4. Lemma. If \(f : C \to D \) is a fully faithful and essentially surjective functor between quasicategories, then \(f^{\text{core}} : C^{\text{core}} \to D^{\text{core}} \) is a categorical equivalence (in fact, a weak equivalence).

Proof. In view of (35.24), it suffices to show that \(f^{\text{core}} \) is fully faithful and essentially surjective. To show essential surjectivity is entirely straightforward, as \(C^{\text{core}} \) has all the objects and isomorphisms of \(C \).

Note that \(f \) induces an equivalence of homotopy categories \(hC \to hD \), and therefore is conservative.

For any pair \(x, x' \in C_0 \) of objects, consider the induced map \(f : \text{map}_C(x, x') \to \text{map}_D(fx, fx') \) and choose a categorical inverse \(g : \text{map}_D(fx, fx') \to \text{map}_C(x, x') \). If \(v \in \text{map}_D(fx, fx') \) represents an isomorphism in \(D \) then so does \(fg(v) \) since \(fg \approx \text{id} \). Since \(f \) is conservative, we conclude that \(g(v) \) represents an isomorphism in \(C \). Thus, since \(\text{map}^{C_{\text{core}}}_{C_{\text{core}}}(x, x') \subseteq \text{map}_C(x, x') \) is a full subcategory, we conclude that \(g \) carries \(\text{map}^{D_{\text{core}}}_{D_{\text{core}}}(fx, fx') \) into \(\text{map}^{C_{\text{core}}}_{C_{\text{core}}}(x, x') \), and is a categorical inverse to the map induced by \(f \). \(\square \)

To prove the isofibration case of (42.1), we will deduce it from the following.

42.5. Proposition. If \(p : C \to D \) is an isofibration which is fully faithful and essentially surjective, then \((p_{\triangledown})^{\text{core}} : \text{Fun}(L, C)^{\text{core}} \to \text{Fun}(K, C)^{\text{core}} \times_{\text{Fun}(K, D)^{\text{core}}} \text{Fun}(L, D)^{\text{core}} \) is a trivial fibration for every monomorphism \(i : K \to L \).

Proof that (42.5) implies (42.1). As noted above, it is enough to consider isofibrations \(p : C \to D \) which are fully faithful and essentially surjective. In that case, (42.5) implies that for any monomorphism \(i \) the map \((p_{\triangledown})^{\text{core}} \) is surjective on vertices, and thus \(i \not\equiv p \) as desired. \(\square \)

42.6. Recognizing isofibrations which induce trivial fibration on cores. We start with the following proposition, which characterizes the isofibrations which induce trivial fibrations on cores in terms of a lifting property.

42.7. Proposition. There exists a set of maps \(S \) such that for any isofibration \(q : C \to D \) between quasicategories, we have \(S \sqcup q \) if \(q^{\text{core}} \in \text{TrivFib} \).

Proof. For each cell inclusion \(i_n : \partial \Delta^n \to \Delta^n \), form \(i'_n : (\partial \Delta^n)_{\text{Kan}} \to (\Delta^n)_{\text{Kan}} \) as in (42.8) below. Then we can take \(S = \{ i'_n \mid n \geq 0 \} \). \(\square \)
42.8. Lemma. Let \(i: K \to L \) be a monomorphism of simplicial sets. Then there exists a monomorphism \(i' \) such that, for any isofibration \(p: C \to D \), we have that \(i \sqcup p^{\text{core}} \) if and only if \(i' \sqcup p \).

Proof. Given a monomorphism \(i \), use the small object argument (13.11) to construct a diagram

\[
\begin{array}{ccc}
K & \longrightarrow & \overline{K}_\text{Kan} \\
\downarrow & & \downarrow \iota' \\
L & \longrightarrow & P & \longrightarrow & L_{\text{Kan}} \\
\end{array}
\]

in which the square is pushout, the horizontal maps are anodyne, and the objects \(\overline{K}_\text{Kan} \) and \(L_{\text{Kan}} \) are Kan complexes. (So \(K \to \overline{K}_\text{Kan} \) and \(L \to L_{\text{Kan}} \) are examples of groupoid completions as in (41.5).) Then \(\iota' \) is also a monomorphism, and we show that \(i \sqcup p^{\text{core}} \) if and only if \(\iota' \sqcup p \).

\((\Rightarrow)\) Suppose \(i \sqcup p^{\text{core}} \). Since \(K_{\text{Kan}} \) and \(L_{\text{Kan}} \) are Kan complexes, any maps from them to quasicategories must factor through cores. Thus it suffices to find a lift in the right-hand square of

\[
\begin{array}{ccc}
K & \longrightarrow & K_{\text{Kan}} & \longrightarrow & \overline{K}_\text{Kan} \\
\downarrow & & \downarrow s & & \downarrow s' \\
L & \longrightarrow & P & \longrightarrow & \overline{L}_\text{Kan} \\
\end{array}
\]

\(\overline{K}_\text{Kan} \) is anodyne and \(s \) is a Kan complex it factors through a unique lift \(s'' \). Thus we have extended the original square to

\[
\begin{array}{ccc}
K & \longrightarrow & \overline{K}_\text{Kan} & \longrightarrow & \overline{C}_\text{core} \\
\downarrow & & \downarrow s' & & \downarrow \overline{p}^{\text{core}} \\
L & \longrightarrow & P & \longrightarrow & \overline{L}_\text{Kan} & \longrightarrow & \overline{D}_\text{core} \\
\end{array}
\]

\((\Leftarrow)\) Suppose \(\iota' \sqcup p \). Consider a lifting problem

\[
\begin{array}{ccc}
K & \longrightarrow & \overline{C}_\text{core} \\
\downarrow & & \downarrow \overline{p}^{\text{core}} \\
L & \longrightarrow & \overline{D}_\text{core} \\
\end{array}
\]

Because \(\overline{C}_\text{core} \subseteq C \) is a Kan complex and \(K \to \overline{K}_\text{Kan} \) is anodyne, the map \(a \) factors through some \(a': \overline{K}_\text{Kan} \to \overline{C}_\text{core} \), and there is a unique compatible map \(b': P \to \overline{D}_\text{core} \) from the pushout along \(K \subseteq L \). Again, \(b' \) factors through \(b'': \overline{L}_\text{Kan} \to \overline{D}_\text{core} \). Thus we have extended the original square to a diagram

\[
\begin{array}{ccc}
K & \longrightarrow & \overline{K}_\text{Kan} & \longrightarrow & \overline{K}_\text{Kan} & \longrightarrow & C \\
\downarrow & & \downarrow & & \downarrow & & \downarrow p \\
L & \longrightarrow & P & \longrightarrow & \overline{L}_\text{Kan} & \longrightarrow & \overline{D}_\text{core} \\
\end{array}
\]

A lift \(t \) exists by hypothesis, and since \(\overline{L}_\text{Kan} \) is a Kan complex it factors through a unique lift \(t' \) (using that \(\overline{C}_\text{core} \to C \) and \(\overline{D}_\text{core} \to D \) are monomorphisms). The composite \(L \to \overline{L}_\text{Kan} \to \overline{C}_\text{core} \) is the desired lift.

\[\square \]

42.9. Proof of (42.5). Fix an isofibration \(p: C \to D \) between quasicategories which is fully faithful and essentially surjective. Consider the class

\[C_p := \{ i \in \text{Cell} \mid (p^{\sqcup i})^{\text{core}} \in \text{TrivFib} \} \]

The statement of (42.5) amounts to showing that \(C_p \) contains every monomorphism.

42.10. Lemma. The class \(C_p \) is weakly saturated.

Proof. First note that for any monomorphism \(i \), the map \(p^{\sqcup i} \) is an isofibration since \(p \) is (39.6). Using the set of maps \(S \) provided by (42.7), for a monomorphism \(i \) we have that \((p^{\sqcup i})^{\text{core}} \subseteq \text{TrivFib} \) iff \(S \sqcup (p^{\sqcup i}) \) iff \(i \sqcup (p^{\sqcup S}) \). Thus \(C_p \) is the intersection of \(\sqcup (p^{\sqcup S}) \) with \(\text{Cell} \), and so is weakly saturated. \[\square \]
Next we observe that \mathcal{C}_p has a “precancellation” property.

42.11. Lemma. Let $p: C \to D$ be an isofibration between quasicategories. If $i: K \to K'$ and $j: K' \to K''$ are monomorphisms, then $i, ji \in \mathcal{C}_p$ implies $j \in \mathcal{C}_p$.

Proof. We use the transitivity triangle (38.4) for i, j and p, which asserts that $p^{ji} = q \circ p^j$ where q is a base-change of p^j. Restricting to cores gives a factorization $(p^{ji})_{\text{core}} = q_{\text{core}} \circ (p^j)_{\text{core}}$. Furthermore q_{core} is a base-change of $(p^j)_{\text{core}}$ as (32.4) applies since p^j is an inner fibration between quasicategories (16.7).

We have that $(p^{ji})_{\text{core}}, (p^j)_{\text{core}}, (p^j)_{\text{core}}$, and hence q_{core} are Kan fibrations (39.2). Since $ji, i \in \mathcal{C}_p$, we have that $(p^{ji})_{\text{core}}, (p^j)_{\text{core}}$ and hence q are trivial fibrations and thus weak equivalences between Kan complexes, whence p^{j} is also a weak equivalence by 2-out-of-3, and therefore p^{ji} is a trivial fibration since it is a Kan fibration between Kan complexes (36.9).

42.12. Lemma. If $p: C \to D$ is an isofibration which is fully faithful and essentially surjective, then $(\partial \Delta^0 \subset \Delta^0) \in \mathcal{C}_p$ and $(\partial \Delta^1 \subset \Delta^1) \in \mathcal{C}_p$.

Proof. First we show $(\partial \Delta^0 \subset \Delta^0) \in \mathcal{C}_p$, which amounts to the claim that $p^{\text{core}} \in \text{TrivFib}$. Recall that since p is fully faithful and essentially surjective, p_{core} is a weak equivalence (42.4). Since p is an isofibration, p_{core} is a Kan fibration (39.2) between Kan complexes, and therefore p_{core} is a trivial fibration (36.9).

Now we show $(\partial \Delta^1 \subset \Delta^1) \in \mathcal{C}_p$. We form a diagram as in the proof of (??), except that we restrict to cores. This has the form

\[
\begin{array}{ccc}
\prod_{(c,c') \in C \times C_0} \text{map}_C(c, c') & \longrightarrow & \text{Fun}(\Delta^1, C)_{\text{core}} \\
\downarrow q_{c,c'} & & \downarrow q \\
\prod_{(c,c') \in C \times C_0} \text{map}_D(p_c, p_{c'}) & \longrightarrow & (C \times C)_{\text{core}} \times (D \times D)_{\text{core}} \text{Fun}(\Delta^1, D)_{\text{core}} \\
\downarrow & & \downarrow \\
(\text{Sk}_0 C) \times (\text{Sk}_0 C) & \longrightarrow & (C \times C)_{\text{core}} \longrightarrow (D \times D)_{\text{core}}
\end{array}
\]

in which the squares are all pullbacks (since we are pulling back quasicategories along inner fibrations, so (32.4) applies). The mapping spaces are already quasigroupoids, and so are equal to their cores already. The functors q and $q_{c,c'}$ are Kan fibrations between Kan complexes (39.2), and j is surjective on vertices. If p is fully faithful, then the $q_{c,c'}$ are weak equivalences, and an argument much as in the proof of (38.1) implies that $q = (p^{\partial(\partial \Delta^1 \subset \Delta^1)})$ is a trivial fibration as desired, i.e., using the fiberwise criterion (37.3). □

Proof of (42.5). Given an isofibration p which is fully faithful and essentially surjective, we need to show that $\text{Cell} \subseteq \mathcal{C}_p$. As \mathcal{C}_p is weakly saturated (42.10) it suffices to show $(\partial \Delta^n \subset \Delta^n) \in \mathcal{C}_p$ for all $n \geq 0$.

We have that $p^{\text{InnHorn}} \subseteq \text{TrivFib}$ since p is an inner fibration by $\text{InnHorn} \subseteq \text{Cell} \subseteq \text{InnHorn}$ (16.7). Therefore $(p^{\text{InnHorn}})_{\text{core}} \subseteq \text{TrivFib}$, by an elementary argument (??). Thus we have shown $\text{InnHorn} \subseteq \mathcal{C}_p$.

We have already proved $(\partial \Delta^n \subset \Delta^n) \in \mathcal{C}_p$ for $n = 0$ and $n = 1$ (42.12). To prove $(\partial \Delta^n \subset \Delta^n) \in \mathcal{C}_p$ for $n \geq 2$ assuming $(\partial \Delta^{n-1} \subset \Delta^n) \in \mathcal{C}_p$, we use the factorization

$\Lambda^n_i \xrightarrow{i} \partial \Delta^n \xrightarrow{j} \Delta^n$,

where the horn inclusion i is a cobase-change of $\partial \Delta^{n-1} \subset \Delta^n$. Thus $i \in \mathcal{C}_p$ and $ji \in \mathcal{C}_p$, whence $j \in \mathcal{C}_p$ by the precancellation property of \mathcal{C}_p (42.11).
Part 5. Model categories

43. Categorical fibrations

A map $p: X \to Y$ of simplicial sets is a **categorical fibration** if and only if $j \Box p$ for all j which are monomorphisms and categorical equivalences. I'll write CatFib for the class of categorical fibrations.

Categorical fibrations generalize isofibrations. In fact, a map $p: C \to D$ with D a quasicategory is a categorical fibration if and only if it is an isofibration, as we proved in (40.12).

43.1. **Proposition.** A map $p: X \to Y$ of simplicial sets is a trivial fibration if and only if it is a categorical fibration and a categorical equivalence.

Proof. (\Longrightarrow) We have already proved this: (?) and (?). (\Longleftarrow) If p is a categorical fibration and a categorical equivalence, factor p as $X \overset{j}{\to} Z \overset{q}{\to} Y$ with j a monomorphism and q a trivial fibration. Then the usual argument shows that p is a retract of q, using the fact that $j \Box p$ since j is a categorical equivalence by 2-of-3. □

43.2. **Proposition.** If $p: X \to Y$ is a categorical fibration and $j: K \to L$ is a monomorphism, then $q: \text{Map}(L,X) \to \text{Map}(K,X) \times_{\text{Map}(K,Y)} \text{Map}(L,Y)$ is a categorical fibration. Furthermore, if either j or p is also a categorical equivalence, then so is q.

Proof. For the first, let $i: A \to B$ be a monomorphism which is a categorical equivalence. We have $i \Box q$ iff $(i \Box j) \Box p$. By definition of categorical fibration, it suffices to show that $i \Box j$ is a categorical equivalence, i.e., to show $\text{Map}(i \Box j, C)$ is a categorical equivalence for every quasicategory C. In fact, $\text{Map}(i, C)$ is an isofibration and a categorical equivalence, hence a trivial fibration, and therefore $j \Box \text{Map}(i, C)$.

If p is also a categorical equivalence, then it is a trivial fibration, and the result follows.

If j is also a categorical equivalence, then for any monomorphism i, we have $i \Box q$ iff $(i \Box j) \Box p$ iff $j \Box (p \Box i)$. But $p \Box i$ is a categorical fibration by what we have just proved, so the result holds. □

43.3. **Categorical fibrations and the small object argument.** Clearly, $\text{CatFib} = \overline{\text{Cell}} \cap \text{CatEq}$ is a right complement to a class of maps. We would like to know that CatFib is the right complement to a set of maps; then we could use the small object argument to factor any map into an injective categorical equivalence followed by a categorical fibration.

Unfortunately, it’s apparently not known how to write down an explicit set of maps S so that $S\overline{=} \text{CatFib}$. What is known is that such a set exists.

43.4. **Proposition.** There exists a set S of maps of simplicial sets such that $\overline{S} = \overline{\text{Cell}} \cap \text{CatEq}$, whence $S\overline{=} = \text{CatFib}$.

In the rest of this section we will sketch a proof. The idea is to show that CatFib is the right complement of the class of all injective categorical equivalences $K \to L$ for which the number of elements in K and L is bounded by some explicit cardinal κ. We obtain S by choosing one representative for each isomorphism class in this class; then S is a set because of the cardinality bound.

Move construction of detection functor to appendix. Or even move the proof that $\overline{S} = \overline{\text{Cell}} \cap \text{CatEq}$ there.

We will define a **detection functor** F: $\text{Fun}([1], sSet) \to \text{Fun}([1], \text{Set})$ on categories of morphisms. This will have the following properties:

- For each map $f: X \to Y$, the map $F(f)$ is a monomorphism of sets.
• A map \(f : X \to Y \) is a categorical equivalence if and only if \(F(f) \) is a bijection.
• The functor \(F \) commutes with \(\kappa \)-filtered colimits for some regular cardinal \(\kappa \).
• The functor \(F \) takes \(\kappa \)-small simplicial sets to \(\kappa \)-small sets.

We define \(F \) as the composite of several intermediate steps.

Step 1: Recall that the small object argument gives a functorial way to factor a map \(f = p_i \) with \(i \in S \) and \(p \in S^{[2]} \). “Functorial factorization” means that we get a section of the functor
\[\text{Fun}([2], s\text{Set}) \to \text{Fun}([1], s\text{Set}) \]
defining composition.

We can apply this using \(S = \text{InnHorn} \). Thus, given any simplicial set, we functorially obtain an inner anodyne map \(X \to X_{q\text{Cat}} \) to a quasicategory \(X_{q\text{Cat}} \). As a result, we have a functor \(f \mapsto f_{q\text{Cat}} : \text{Fun}([1], s\text{Set}) \to \text{Fun}([1], s\text{Set}) \), with the property that \(f \) is a categorical equivalence if and only if \(f_{q\text{Cat}} \) is, and both source and target of \(f_{q\text{Cat}} \) are quasicategories.

Step 2: Form the path fibration \(Q(f) : P(f_{q\text{Cat}}) \to Y_{q\text{Cat}} \) of \(f_{q\text{Cat}} \). The map \(Q(f) \) is thus an isofibration between quasicategories, and is a trivial fibration if and only if \(f \) is a categorical equivalence.

Step 3: Write \(Q(f) : X' \to Y' \). Define \(E(f) \) to be the map of sets
\[E(f) : \coprod_n \text{Hom}(\Delta^n, X') \to \coprod_n \text{Hom}(\partial \Delta^n, X') \times \text{Hom}(\partial \Delta^n, Y') \times \text{Hom}(\Delta^n, Y'). \]
Thus, \(f \) is a categorical equivalence if and only if \(E(f) \) is surjective.

Step 4: Write \(E(f) : E_0(f) \to E_1(f) \), and define \(F(f) \) by
\[F(f) : \text{colim}[E_0(f) \times E_1(f)] E_0(f) \Rightarrow E_0(f) \to E_1(f). \]
In other words, \(F(f) \) is the map from the image of \(E(f) \) to \(E_1(f) \). Thus, \(F(f) \) is always a monomorphism, and \(f \) is a categorical equivalence if and only if \(F(f) \) is a bijection.

There exists a regular cardinal \(\kappa \) such that \(F \) commutes with \(\kappa \)-filtered colimits, and takes \(\kappa \)-small simplicial sets to \(\kappa \)-small sets. (In fact, we can take \(\kappa = \omega^+ \), the successor to the countable cardinal).

Using the detection functor, we can prove the following key lemma.

43.5. Lemma. Let \(f : X \subseteq Y \) be an inclusion which is a categorical equivalence. Every \(\kappa \)-small subcomplex \(A \subseteq Y \) is contained in a \(\kappa \)-small subcomplex \(B \subseteq Y \) with the property that \(B \cap X \subseteq B \) is a categorical equivalence.

Proof. For a subcomplex \(A \subseteq Y \) let \(f_A \) denote the inclusion \(A \cap X \subseteq A \). The collection of all \(\kappa \)-small subcomplexes of \(Y \) is \(\kappa \)-filtered. Thus
\[\text{colim}_{\kappa \text{-small}} A \subseteq Y \]
\[F(f_A) = F(f), \]
which we have assumed is an isomorphism. Thus for any \(\kappa \)-small \(A \subseteq Y \) there must exist a \(\kappa \)-small \(A' \supset A \) such that a lift exists in
\[F_0(f_A) \xrightarrow{F_0(f_A')} F_0(f_A') \]
\[F_1(f_A') \xrightarrow{F_1(f_A')} F_1(f_A') \]
This is because \(F_1(f_A) \) is a \(\kappa \)-small set, so any lift \(F_1(f_A) \to F_0(F) \) factors through some stage of the \(\kappa \)-filtered colimit.

We use transfinite induction to obtain a sequence \(\{ A_i \} \) indexed by \(i < \kappa \), where at limit ordinals we take a colimit. Set \(B := \text{colim} A_i \). Because \(\kappa \) is regular \(|B| < \kappa \), and we have that \(F(f_B) \) is an isomorphism by construction. \(\square \)

Consider the collection of monomorphisms \(i : A \to B \) such that \(i \) is a categorical equivalence and \(|B| < \kappa \). Choose a set \(S \) of such spanning all isomorphism classes of such maps; this is a set because of the cardinality bound. Clearly \(S \subseteq \text{Cell} \cap \text{CatEq} \).
43.6. **Proposition.** We have \(S = \text{Cell} \cap \text{CatEq} \).

Proof. [Joy08a, D.2.16]. Given an injective categorical equivalence \(X \subseteq Y \), we consider the following poset \(\mathcal{P} \). The objects of \(\mathcal{P} \) are subobjects \(P \subseteq Y \) such that \(X \subseteq P \) so that the inclusion \(X \to P \) is contained in \(S \). The morphisms of \(\mathcal{P} \) are inclusions \(P \to Q \) of subobjects of \(Y \) which are contained in \(S \). Because \(S \) is weakly saturated, the hypotheses of Zorn’s lemma apply to give a maximal element \(M \) of \(\mathcal{P} \). Since \(X \subseteq Y \) is assumed to be a categorical equivalence, 2-out-of-3 gives that \(M \subseteq Y \) is a categorical equivalence.

If \(M = Y \) we are done, so suppose \(M \neq Y \). Then there exists a \(\kappa \)-small \(A \subseteq Y \) not contained in \(M \), which by the above lemma can be chosen so that \(A \cap M \subseteq A \) is a categorical equivalence, and thus an element of \(S \). The pushout \(M \subseteq A \cup M \) of this map is thus in \(S \) contradicting the maximality of \(M \). \(\square \)

In particular, we learn that every map can be factored into an injective categorical equivalence followed by a categorical fibration.

44. **The Joyal model structure on simplicial sets**

44.1. **Model categories.** A model category (in the sense of Quillen) is a category \(\mathcal{M} \) with three classes of maps: \(W, \text{Cof}, \text{Fib} \), which I will call weak equivalences, cofibrations, and fibrations respectively, satisfying the following axioms.

- \(\mathcal{M} \) has all small limits and colimits.
- \(W \) satisfies the 2-out-of-3 property.
- \((\text{Cof} \cap W, \text{Fib}) \) and \((\text{Cof}, \text{Fib} \cap W) \) are weak factorization systems (13.13).

An object \(X \) is cofibrant if the map from the initial object is a cofibration, and fibrant if the map to the terminal object is a fibration. A map in \(\text{Cof} \cap W \) is called a trivial cofibration, and a map in \(\text{Fib} \cap W \) is called a trivial fibration.

44.2. **Warning.** Do not confuse the general notion of “weak equivalence” in an arbitrary model category with the specific notion of “weak equivalence of simplicial sets” defined in (35.1). **I should call just call the model category ones “equivalences”**.

44.3. **Remark.** The third axiom implies that \(\text{Cof}, \text{Cof} \cap W, \text{Fib}, \) and \(\text{Fib} \cap W \) are closed under retracts.

44.4. **Exercise.** Show that in a model category (as defined above), the class of weak equivalences is closed under retracts. **Hint:** if \(f \) is a retract of a weak equivalence \(g \), construct a factorization of \(f \) which is itself a retract of a factorization of \(g \).\[32\]

44.5. **Exercise (Slice model categories).** Let \(\mathcal{M} \) be a model category, and let \(X \) be an object of \(\mathcal{M} \). Show that the slice categories \(\mathcal{M}_{/X} \) and \(\mathcal{M}_{/X} \) admit model category structures, in which the weak equivalences, cofibrations, and fibrations are precisely the maps whose images under \(\mathcal{M}_{/X} \to \mathcal{M} \) or \(\mathcal{M}_{/X} \to \mathcal{M} \) are weak equivalences, cofibrations, and fibrations in \(\mathcal{M} \).

44.6. **The Joyal model category.**

44.7. **Theorem (Joyal).** The category of simplicial sets admits a model structure, in which

- \(W = \) categorical equivalences (CatEq),
- \(\text{Cof} = \) monomorphims (Cell),
- \(\text{Fib} = \) categorical fibrations (CatFib).

\[32\]In many formulations of model categories, closure of weak equivalences under retracts is taken as one of the axioms. The formulation we use is described in Riehl, “A concise definition of a model category” [Rie09], which gives a solution to this exercise.
Furthermore, the fibrant objects are precisely the quasicategories, and the fibrations with target a fibrant object are precisely the isofibrations.

Proof. Categorical equivalences satisfy 2-out-of-3 by (22.10). We have that

- \(\text{Cof} = \text{Cell} \) by definition,
- \(\text{Fib} \cap W = \text{T} \text{Fib} = \text{Cell}^{\geq 2} \) by (43.1),
- \(\text{Cof} \cap W = S \) for some set \(S \) (43.4),
- \(\text{Fib} = \text{CatFib} = (\text{Cof} \cap W)^{\geq 2} = S^{\geq 2} \) by definition,

so both \((\text{Cof} \cap W, \text{Fib})\) and \((\text{Cof}, \text{Fib} \cap W)\) are weak factorization systems via the small object argument (13.11). Thus, we get a model category.

We have shown (40.12) that the categorical fibrations \(p: C \to D \) with \(D \) a quasicategory are precisely the isofibrations. Applied when \(D = * \), this implies that quasicategories are exactly the fibrant objects, and thus that fibrations with fibrant target are precisely the isofibrations. \(\square \)

44.8. Remark. It is a standard fact that a model category structure is uniquely determined by its cofibrations and fibrant objects. Thus, the Joyal model structure is the unique model structure on simplicial sets with \(\text{Cof} = \text{monomorphisms} \) and with fibrant objects the quasicategories.

44.9. Cartesian model categories. Recall that the category of simplicial sets is cartesian closed. A cartesian model category is a model category which is cartesian closed, with the following properties. Suppose \(i: A \to B \) and \(j: K \to L \) are cofibrations and \(p: X \to Y \) is a fibration. Then

- \(i \Box j: (A \times L) \cup_{A \times K} (B \times K) \to B \times L \)
 is a cofibration, and is in addition a weak equivalence if either \(i \) or \(j \) is also a weak equivalence, and

- \(p \Box j: \text{Map}(L, X) \to \text{Map}(K, X) \times_{\text{Map}(K,Y)} \text{Map}(L,Y) \)
 is a fibration, and is in addition a weak equivalence if either \(j \) or \(p \) is also a weak equivalence.

In fact, we only need to specify one of the above two properties, as they imply each other.

44.10. Proposition. The Joyal model structure is cartesian.

Proof. This is just (43.2). \(\square \)

45. The Kan-Quillen model structure on simplicial sets

A map \(p: X \to Y \) is a groupoidal fibration if and only if \(j \Box p \) for all \(j \) which are monomorphisms and weak equivalences. I write GpdFib for the class of categorical fibrations.

45.1. The Kan-Quillen model structure.

45.2. Theorem (Cisinski). The category of simplicial sets admits a model structure, in which

- \(W = \text{weak equivalences} \ (\text{W} \text{K} \text{E} \text{Q}) \),
- \(\text{Cof} = \text{monomorphisms} \ (\text{C} \text{E} \text{L}) \),
- \(\text{Fib} = \text{groupoidal fibrations} \ (\text{G} \text{p} \text{d} \text{F} \text{i} \text{b}) \).

Furthermore, the fibrant objects are precisely the Kan complexes, and the fibrations with target a fibrant object are precisely the Kan fibrations.

Proof. This goes very much the same way as the Joyal model structure, and I won’t spell it out in detail. First build a detecting functor \(F \) so that a map \(f \) is a weak equivalence iff \(F(f) \) is a bijection; this is just as in the categorical equivalence case, except that we make use of functorial replacement \(X \mapsto X_{\text{Kan}} \) by Kan complexes, rather than by quasicategories. Using this, we can
show that $\text{Cell} \cap \text{WkEq} = S$ and $\text{GpdFib} = S^{\square}$ for some set S, giving the factorization system $(\text{Cof} \cap W, \text{Fib})$.

We know that trivial fibrations are weak equivalences and are certainly groupoidal fibrations. The converse is proved just as in the categorical fibration case (43.1). This gives the other factorization system $(\text{Cof}, \text{Fib} \cap W)$.

We have already proved that Kan fibrations between Kan complexes have the lifting property of groupoidal fibrations (36.17), so the statements about fibrant objects and fibrations to fibrant objects follow just as in the categorical case. □

45.3. Proposition. The Quillen model structure is cartesian.

Proof. We must show that p^j is a groupoidal fibration if j is a monomorphism and p a groupoidal fibration, and also that it is a weak equivalence if either j or p is. This is proved by an argument nearly identical to the proof of (43.2). □

45.4. Kan fibrations are groupoidal fibrations. The above model structure was actually first produced by Quillen. In Quillen’s formulation, the fibrations were taken to be the Kan fibrations. In fact, this is the same model structure, by

45.5. Proposition (Quillen). $\text{KanFib} = \text{GpdFib}$.

We will not give a proof of this here. The non-trivial part is to show that $\text{KanFib} \subseteq \text{GpdFib}$; note that we already know that a Kan fibration between Kan complexes is a groupoidal fibration by (36.17). This proposition is usually proved via an argument (due to Quillen) based on the theory of minimal fibrations. See for instance Quillen’s original argument [Qui67, §II.3] or [GJ09, Ch. 1].

These arguments work by showing that KanFib is the weak co-saturation of the class of Kan fibrations between Kan complexes. In fact one can even show that every Kan fibration is a base change of a Kan fibration between Kan complexes, see [KLV12].

46. Model categories and homotopy colimits

We are going to exploit these model category structures now. The main purpose of model categories is to give tools for showing that a given construction preserves certain kinds of equivalence.

46.1. Creating new model categories. Given a model category \mathcal{M}, many other categories related to it can also be equipped with model category structures, such as functor categories $\text{Fun}(C, \mathcal{M})$ where C is a small category. We won’t consider general formulations of this here, but rather will set up some special cases.

As an example, we consider the case of $C = [1] = \{0 \to 1\}$.

46.2. Proposition. There exists a model structure on $\mathcal{N} := \text{Fun}([1], \mathcal{M})$ in which a map $\alpha : X \to X'$ is

- a weak equivalence if $\alpha(i) : X(i) \to X'(i)$ is a weak equivalence in \mathcal{M} for $i = 0, 1$
- a cofibration if both $\alpha(0)$ and the map $(\alpha(1), X(01)) : X(1) \cup_{X(0)} X'(0) \to X'(1)$ are cofibrations in \mathcal{M}, and
- a fibration if $\alpha(i)$ is a fibration in \mathcal{M} for $i = 0, 1$.

Proof. It is clear that \mathcal{N} has small limits and colimits, and that weak equivalences in it have the 2-out-of-3 property. It remains to show that $(\text{Cof} \cap W, \text{Fib})$ and $(\text{Cof}, \text{Fib} \cap W)$ are weak factorization systems, where W, Cof, Fib are the of maps in \mathcal{N} defined in the statement of the proposition.

We start with the following observation about lifting in $\mathcal{N} = \text{Fun}([1], \mathcal{M})$: given maps $j : A \to B$ and $p : X \to Y$ in \mathcal{N}, we can solve a lifting problem (u, v) of type $j \otimes p$ in \mathcal{N} by solving a sequence
of two lifting problems in \(\mathcal{M} \), namely
\[
\begin{align*}
A(0) & \xrightarrow{u(0)} X(0) \\
j(0) \downarrow & \quad s(0) \downarrow \quad p(0) \\
B(0) & \xrightarrow{v(0)} Y(0)
\end{align*}
\]
and
\[
\begin{align*}
A(1) \cup A(0) & \xrightarrow{(u(1), X(01) \circ s(0))} X(1) \\
(j(1), B(01)) \downarrow & \quad s(1)^{-} \quad p(1) \\
B(1) & \xrightarrow{v(1)} Y(1)
\end{align*}
\]
where the second problem depends on the solution \(s(0) \) to the first problem. Then the maps \(s(0) \) and \(s(1) \) fit together to give a map \(s: B \to X \) in \(\mathcal{N} \) which solve the original lifting problem.

Given this, it is not hard to prove that \(\text{Cof} \cap W \varsubsetneq \text{Fib} \) and \(\text{Cof} \varsubsetneq \text{Fib} \cap W \), using the definitions and the fact that \(\mathcal{M} \) is a model category. The trickiest point is to observe that if \(j: A \to B \) is both a cofibration and a weak equivalence in \(\mathcal{N} \), then \((j(1), B(01)) \) is a trivial cofibration in \(\mathcal{M} \): this uses 2-out-of-3 for weak equivalences in \(\mathcal{M} \) and the fact that \(A(1) \to A(1) \cup A(0) \) \(B(0) \) must be a trivial cofibration in \(\mathcal{M} \).

Next, observe that to describe a factorization of a map \(f: X \to Y \) in \(\mathcal{N} \) into \(f = pi \) with \(i: X \to U \) and \(p: U \to Y \), it suffices to describe a sequence of two factorizations in \(\mathcal{M} \), namely \(f(0) = p(0) \circ j(0) \) and \(h = p(1) \circ g \), as in
\[
\begin{align*}
X(0) & \xrightarrow{j(0)} U(0) \xrightarrow{p(0)} Y(0) \\
X(01) & \downarrow \quad \eta' \\
X(1) & \xrightarrow{\eta} X(1) \cup X(0) \xrightarrow{g} U(1) \xrightarrow{p(1)} Y(1)
\end{align*}
\]
where \(h = (f(1), Y(01) \circ p(0)) \), so that \(j(1) = g \circ \eta \) and \(U(01) = g \circ \eta' \).

To factor \(f = pj \) in \(\mathcal{N} \) with \(j \in \text{Cof} \cap W \) and \(p \in \text{Fib} \), it suffices to successively choose factorizations of \(f(0) \) and \(h \) of this type. Likewise, to factor \(f = pj \) in \(\mathcal{N} \) with \(j \in \text{Cof} \) and \(p \in \text{Fib} \cap W \), it suffices to successively choose factorizations of \(f(0) \) and \(h \) of this type.

It remains to show that \(\text{Cof} \cap W = \varsubsetneq \text{Fib} \), \(\text{Fib} = \text{Cof} \cap W^{\varsubsetneq} \), \(\text{Cof} = \varsubsetneq \text{Fib} \cap W \), and \(\text{Cof}^{\varsubsetneq} = \text{Fib} \cap W \). This is an immediate consequence of the “retract trick” (13.12), together with the easily checked fact that \(\text{Cof} \), \(\text{Cof} \cap W \), \(\text{Fib} \), and \(\text{Fib} \cap W \) are closed under retracts, which can be proved directly using the definition and the fact that the analogous classes in \(\mathcal{M} \) are closed under retracts (44.3).

The opposite of a model category is also a model category, by switching the roles of fibrations and cofibrations. Therefore, there is another model structure on \(\text{Fun}(\mathcal{I}, \mathcal{M}) = (\text{Fun}(\mathcal{I}, \mathcal{M}^{\text{op}}))^{\text{op}} \).

46.3. **Reedy lemma.** The Reedy lemma gives an explicit criterion for a functor to preserve weak equivalences between large classes of objects.

46.4. **Proposition (Reedy lemma).** Let \(F: \mathcal{M} \to \mathcal{N} \) be a functor between model categories.

1. If \(F \) takes trivial cofibrations to weak equivalences, then \(F \) takes weak equivalences between cofibrant objects to weak equivalences.

2. If \(F \) takes trivial fibrations to weak equivalences, then \(F \) takes weak equivalences between fibrant objects to weak equivalences.

Proof. I prove (1); the proof of (2) is formally dual.
Let $f: X \to Y$ be a weak equivalence between cofibrant objects in \mathcal{M}. Form the commutative diagram

$$
\begin{array}{ccc}
\emptyset & \to & Y \\
\downarrow & & \downarrow \text{id}_Y \\
X & \to & \coprod X \amalg Y \\
\downarrow & & \downarrow C \\
\downarrow f & \Rightarrow & \downarrow \text{id} \\
\Rightarrow & \Rightarrow & \Rightarrow \\
\coprod X & \to & \coprod C \\
\downarrow & & \downarrow \text{id} \\
\coprod X' & \to & \coprod Y \\
\Rightarrow & \Rightarrow & \Rightarrow \\
f \Rightarrow & \Rightarrow & \Rightarrow \\
\end{array}
$$

where the square is a pushout, and we have chosen a factorization of $(f, \text{id}_Y): X \amalg Y \to Y$ as pi, a cofibration followed by a weak equivalence (e.g., a trivial fibration). Because X and Y are cofibrant, the maps $X \to X \amalg Y \leftarrow Y$ are cofibrations. Using this and the 2-of-3 property for weak equivalences, we see that a and b are trivial cofibrations. Applying F gives

$$
\begin{array}{c}
F(Y) \\
\downarrow \text{id} \\
F(X) \to F(C) \to F(Y) \\
\Rightarrow \Rightarrow \Rightarrow \\
F(b) \Rightarrow \Rightarrow \Rightarrow \\
\Rightarrow \Rightarrow \Rightarrow \\
F(a) \Rightarrow \Rightarrow \Rightarrow \\
\Rightarrow \Rightarrow \Rightarrow \\
F(p) \Rightarrow \Rightarrow \Rightarrow \\
\Rightarrow \Rightarrow \Rightarrow \\
F(Y) \\
\Rightarrow \Rightarrow \Rightarrow \\
\end{array}
$$

in which $F(b)$ and $F(a)$ are weak equivalences by hypothesis, whence $F(b)$ is a weak equivalence by 2-of-3, and therefore $F(f) = F(p)F(b)$ is a weak equivalence, as desired. □

46.5. Quillen pairs. Given an adjoint pair of functors $F: \mathcal{M} \dashv \mathcal{N}: G$ between model categories, we see from the properties of weak factorization systems that

- F preserves cofibrations if and only if G preserves trivial fibrations, and
- F preserves trivial cofibrations if and only if G preserves fibrations.

If both of these are true, we say that (F, G) is a Quillen pair.

Note that if (F, G) is a Quillen pair, then the Reedy lemma (46.4)(1) applies to F, while (46.4)(2) applies to G.

46.6. Good colimits. We can apply the above to certain examples of colimit functors, which we will refer to generically as “good colimits”. There are three types of these: arbitrary coproducts of cofibrant objects, countable sequential colimits of cofibrant objects along cofibrations, and pushouts of cofibrant objects along a cofibration. We will show that “good colimits are weak equivalence invariant”.

46.7. Exercise. Let S be a small discrete category (i.e., all maps are identities). Show that if \mathcal{M} is a model category, then $\text{Fun}(S, \mathcal{M})$ is a model category in which $\alpha: X \to X'$ is

- a weak equivalence, cofibration, or fibration if and only if $\alpha_s: X_s \to X'_s$ is one in \mathcal{M}.

Then show that colim: $\text{Fun}(S, \mathcal{M}) \Rightarrow \mathcal{M}: \text{const}$ is a Quillen pair, and use this to prove the next proposition.

46.8. Proposition (Good coproducts). Given a collection $f_s: X_s \to X'_s$ of weak equivalences between cofibrant objects in \mathcal{M}, the induced map $\amalg f_s: \amalg X_s \to \amalg X'_s$ is a weak equivalence.

46.9. Exercise. Let ω be the category

$$
0 \to 1 \to 2 \to \cdots
$$

with objects indexed by natural numbers. Show that if \mathcal{M} is a model category, then $\text{Fun}(\omega, \mathcal{M})$ is a model category in which $\alpha: X \to X'$ is

- a weak equivalence if each $\alpha(i)$ is a weak equivalence in \mathcal{M},
- a cofibration if (i) $\alpha(0)$ is a cofibration in \mathcal{M}, and $X'(i) \cup_{X(i)} X(i+1) \to X'(i+1)$ is a cofibration in \mathcal{M} for all $i \geq 0$, and
• a fibration if each \(\alpha(i) \) is a fibration in \(\mathcal{M} \).

Then show that \(\text{colim}: \text{Fun}(\omega, \mathcal{M}) \Rightarrow \mathcal{M}: \text{const} \) is a Quillen pair, and use this to prove the next proposition.

46.10. **Proposition** (Good sequential colimits). *Give a natural transformation \(\alpha: X \to X' \) of functors \(\omega \to \mathcal{M} \) such that all maps \(\alpha(i): X(i) \to X'(i) \) are weak equivalences, all objects \(X(i) \) and \(X'(i) \) are cofibrant, and the maps \(X(i) \to X(i + 1) \) and \(X'(i) \to X'(i + 1) \) are cofibrations, the induced map \(\text{colim}_\omega X \to \text{colim}_\omega X' \) is a weak equivalence.*

46.11. **Exercise.** Recall that \(\Lambda_2^0 \) is a category:

\[
\begin{array}{ccc}
1 & \xleftarrow{0} & 0 \\
\downarrow & & \downarrow \\
0 & \xrightarrow{1} & 2
\end{array}
\]

Show that if \(\mathcal{M} \) is a model category, then \(\text{Fun}(\Lambda_2^0, \mathcal{M}) \) is a model category in which:

• a weak equivalence if \(\alpha(i): X(i) \to X'(i) \) is a weak equivalence in \(\mathcal{M} \) for \(i = 0, 1, 2 \) (i.e., an **objectwise weak equivalence**),

• a cofibration if \(\alpha(0), \alpha(1), \) and the evident map \(X(2) \cup_{X(0)} X'(0) \to X'(2) \) are cofibrations in \(\mathcal{M} \), and

• a fibration if \(\alpha(1), \alpha(2), \) and the evident map \(X(1) \to X'(1) \times_{X'(0)} X(0) \) are fibrations in \(\mathcal{M} \).

Then show that \(\text{colim}: \text{Fun}(\Lambda_2^0, \mathcal{M}) \Rightarrow \mathcal{M}: \text{const} \) is a Quillen pair, and use this to prove the next proposition.

46.12. **Proposition** (Good pushouts). *Given a natural transformation \(\alpha: X \to X' \) of functors \(\Lambda_2^0 \to \mathcal{M} \), i.e., a diagram

\[
\begin{array}{ccc}
X(1) & \xleftarrow{0} & X(0) \\
\downarrow & & \downarrow \\
X'(1) & \xrightarrow{1} & X'(0)
\end{array}
\]

\[
\begin{array}{ccc}
& & X(2) \\
\downarrow & \sim & \downarrow \\
& & X'(2)
\end{array}
\]

in which the vertical maps are weak equivalences, all objects \(X(i) \) and \(X'(i) \) are cofibrant, and the maps \(X(02) \) and \(X'(02) \) are cofibrations, the induced map \(\text{colim}_{\Lambda_2^0} X \to \text{colim}_{\Lambda_2^0} X' \) is a weak equivalence.*

In the Joyal and Quillen model structures on \(s\text{Set} \), all objects are automatically cofibrant, which makes the above propositions especially handy.

We will call any colimit diagram in a model category, satisfying the hypotheses of one of (46.8), (46.12), (46.10) a **good colimit**. Thus, we see that good colimits are homotopy invariant. These “good colimits” are examples of what are called **homotopy colimits**.

Since the opposite of a model category is also a model category, all of the results of this section admit dual formulations, leading to the observation that **good limits** are homotopy invariant.

46.13. **Exercise.** State and prove the dual versions of all the results in this section.

47. **Every quasigroupoid is equivalent to its opposite**

Hard hat area.

Recall that any ordinary groupoid \(G \) is isomorphic to its own opposite: define a functor \(G \to G^{op} \) which is the identity on objects, and which sends any morphism \(f \) to its inverse. Such a straightforward functor is not possible for quasigroupoids. However, we will show that every quasigroupoid is categorically equivalent to its opposite, via a zig-zag of categorical equivalences. In particular, we will prove the following.
47.1. **Proposition.** There exists a functor $\mathcal{G} : \text{sSet} \to \text{sSet}$ together with maps

$$X \xleftarrow{\alpha^*} \mathcal{G}X \xrightarrow{\beta^*} X^{\text{op}},$$

natural in the simplicial set X, with the following properties.

1. If C is a quasicategory, then $\mathcal{G}C$ is a quasigroupoid.
2. If C is a quasicategory, then the evident maps

 $$C^{\text{core}} \leftarrow \mathcal{G}C \rightarrow (C^{\text{op}})^{\text{core}}$$

induced by α^* and β^* are trivial fibrations.

In particular, if C is a quasigroupoid, then both maps $C^{\alpha^*} \leftarrow \mathcal{G}C^{\beta^*} \rightarrow C^{\text{op}}$ are trivial fibrations and thus categorical equivalences.

We can also connect any simplicial set to its opposite by a zig-zag of weak equivalences.

47.2. **Proposition.** There exists a functor $\mathcal{G}' : \text{sSet} \to \text{sSet}$ together with maps

$$X \xrightarrow{\alpha^*} \mathcal{G}'X \xleftarrow{\beta^*} X^{\text{op}},$$

natural in the simplicial set X, such that for every X both α^* and β^* are weak equivalences.

47.3. **Singular and realization functors.** Given a category A, a cosimplicial object in A is a functor $C : \Delta \to A$, where Δ is the category of simplicial operators. Often I will write C^n instead of $C([n])$ for the values of this functor, and so write C^\bullet for the whole functor. In many of our examples, $A = \text{sSet}$, in which case C^\bullet is a “cosimplicial simplicial set”.

Given any cosimplicial object C^\bullet in a category A with all small colimits, we have induced functors

$$\text{Re}_C : \text{sSet} \rightleftarrows A : \text{Si}_C.$$

The singular functor Si_C is defined on an object $A \in A$ by $\text{Si}_C(A) = \text{Hom}_A(C(-), A)$, i.e.,

$$(\text{Si}_C A)_n = \text{Hom}_A(C^n, A),$$

with simplicial operators induced by the fact that C is a functor on Δ.

47.4. **Exercise.** Show that for $X \in \text{sSet}$ we must have

$$\text{Re}_C X \approx \text{colim} \left[\coprod_{f : [m] \to [n]} \coprod_{x \in X_n} C^m \Rightarrow \coprod_{[p]} \coprod_{x \in X_p} C^p \right].$$

(Part of the exercise is to figure out what the two maps are.)

47.5. **Example.** Let $\Delta^\bullet_{\text{top}} : \Delta \to \text{Top}$ be the functor taking $[n]$ to the topological n-simplex. Then $\text{Re}_{\Delta^\bullet_{\text{top}}}$ and $\text{Si}_{\Delta^\bullet_{\text{top}}}$ are geometric realization and singular complex respectively.

47.6. **Example.** Let $(*^\bullet) : \Delta \to \text{Set}$ be the functor which sends each $[n]$ to the one-element set. Then $\text{Re}_* : \text{sSet} \to \text{Set}$ is naturally isomorphic to π_0, and $\text{Si}_* : \text{Set} \to \text{sSet}$ sends each set S to the discrete simplicial set S^{disc}.

47.7. **Example.** Let $\Delta^\bullet : \Delta \to \text{sSet}$ be the Yoneda embedding, sending $[n] \mapsto \Delta^n$. Then Re_Δ and Si_Δ are both naturally isomorphic to the identity functor on sSet.

47.8. **Example.** Let $(\Delta^\bullet)^{\text{op}} : \Delta \to \text{sSet}$ be the composite functor $\Delta^\bullet \circ \text{op}$, using $\text{op} : \Delta \to \Delta$. Then both $\text{Re}_{\Delta^\bullet_{\text{op}}}$ and $\text{Si}_{\Delta^\bullet_{\text{op}}}$ are both naturally isomorphic to the functor $(-)^{\text{op}} : \text{sSet} \to \text{sSet}$ sending a simplicial set to its opposite.
A map \(\eta: C^\bullet \to D^\bullet \) of cosimplicial objects \(\Delta \to \mathcal{A} \) induces a natural transformation

\[
\text{Re}_\eta: \text{Re}_C \to \text{Re}_D \quad \text{and} \quad \text{Si}_\eta: \text{Si}_D \to \text{Si}_C.
\]

The map \(\text{Si}_\eta: \text{Si}_D \to \text{Si}_C \) is given by \(\text{Hom}_\mathcal{A}(D^n, A) \to \text{Hom}_\mathcal{A}(C^n, A) \) in each dimension.

We construct the promised functor \(\mathcal{G}: \text{sSet} \to \text{sSet} \) and natural transformations \((-)\leftarrow \mathcal{G}(-) \to (-)^{\text{op}}\) via singular functors.

For an object \([n]\) of \(\Delta \), let \(\text{Iso}^n \) denote the ordinary category whose set of objects is \([n]\), and such that \(\text{Hom}_{\text{Iso}}(x, y) \approx \{\ast\} \) for all pairs \(x, y \in [n] \). For instance, \(\text{Iso}^1 \) is exactly the “walking isomorphism” \(\text{Iso} \) discussed earlier (??). For brevity I will also write \(\text{Iso}^n \) for the simplicial set which is its nerve. For all \(n \geq 0 \) we have functors

\[
\Delta^n \xrightarrow{\alpha_n} \text{Iso}^n \xleftarrow{\beta_n} (\Delta^n)^{\text{op}},
\]

which are uniquely determined by what they do on objects: \(\alpha_n(x) = x = \beta_n(x) \) for \(x \in [n] \). These fit together to define maps

\[
\Delta^\bullet \xrightarrow{\alpha} \text{Iso}^\bullet \xleftarrow{\beta} (\Delta^\bullet)^{\text{op}}
\]

of cosimplicial objects in \(\text{sSet} \).

We take the functor \(\mathcal{G} \) of (47.1) to be \(\text{Si}_{\text{Iso}} \). We take the functor \(\mathcal{G}' \) of (47.2). To prove it, we will need the following statements.

1. For any Kan complex \(X \), the object \(\text{Si}_{\text{Iso}} X \) is a Kan complex.
2. For any Kan complex \(X \), the maps \(\text{Si}_X: \text{Si}_{\text{Iso}} X \to \text{Si}_X \approx X \), and \(\text{Si}_\beta X: \text{Si}_{\text{Iso}} X \to \text{Si}_X^{\text{op}} \approx X^{\text{op}} \) are trivial fibrations.
3. For any simplicial set \(X \), the maps \(\text{Re}_\alpha X \approx \text{Re}_\Delta X \to \text{Re}_{\text{Iso}} X \), and \(\text{Re}_\beta X^{\text{op}} \approx \text{Re}_{\Delta^{op}} X \to \text{Re}_{\text{Iso}} X \) are weak equivalences.

Note that if \(C \) is a quasicategory, \(\text{Hom}(\text{Iso}^n, C^{\text{core}}) \approx \text{Hom}(\text{Iso}^n, C) \), and thus \(\text{Si}_{\text{Iso}}(C^{\text{core}}) \approx \text{Si}_{\text{Iso}} C \). With this we recover the full statement of (47.1).

47.9. **Singular and realization functors in lifting problems.** Fix a map \(\eta: C^\bullet \to D^\bullet \) of cosimplicial objects \(\Delta \to \mathcal{A} \). Given a map \(f: K \to L \) of simplicial sets, we obtain a map

\[
\text{Re}_\eta f := (\text{Re}_\eta K, \text{Re}_D f): \text{Re}_C L \cup_{\text{Re}_C K} \text{Re}_D K \to \text{Re}_D L
\]

in \(\mathcal{A} \). Likewise, given a map \(g: X \to Y \) in \(\mathcal{A} \), we obtain a map

\[
\text{Si}_\eta g := (\text{Si}_\eta X, \text{Si}_D g): \text{Si}_D X \to \text{Si}_C X \times_{\text{Si}_C Y} \text{Si}_D Y.
\]

of simplicial sets.

47.10. **Exercise.** Show that for any \(\eta: C^\bullet \to D^\bullet \) in \(\text{Fun}(\Delta, \mathcal{A}) \), \(f: K \to L \) in \(\text{sSet} \), and \(g: X \to Y \) in \(\mathcal{A} \), we have that \((\text{Re}_\eta f)^{\text{op}} \otimes g \) if and only if \(f \otimes (\text{Si}_\eta g) \).

47.11. **Proposition.** Let \(S = \{s_i: A_i \to B_i\} \) be a set of maps in \(\text{sSet} \), and let \((\mathcal{L}, \mathcal{R}) \) be a weak factorization system in \(\mathcal{A} \). Consider a map \(\eta: C^\bullet \to D^\bullet \) of cosimplicial objects in \(\mathcal{A} \). If \(\text{Re}_\eta s_i \in \mathcal{L} \) for every \(s_i \in S \), then

1. for all \(i: K \to L \) in \(\mathfrak{S} \), we have that \(\text{Re}_\eta i: \text{Re}_C L \cup_{\text{Re}_C K} \text{Re}_D K \to \text{Re}_D L \) is in \(\mathcal{L} \), and
2. for all \(p: X \to Y \) in \(\mathcal{R} \), we have that \(\text{Si}_\eta p: \text{Si}_D X \to \text{Si}_C X \times_{\text{Si}_C Y} \text{Si}_D Y \) is in \(\mathfrak{S} \).

In particular, if \(E^\bullet: \Delta \to \mathcal{A} \) is a cosimplicial object such that \(\text{Re}_E s_i \in \mathcal{L} \) for all \(s_i \in S \), then \(\text{Re}_E(\mathfrak{S}) \subseteq \mathcal{L} \) and \(\text{Si}_E(\mathfrak{R}) \subseteq \mathfrak{S} \).

Proof. In view of (47.10) and the properties of the weak factorization systems \((\mathfrak{S}, \mathfrak{S}) \) and \((\mathcal{L}, \mathcal{R}) \), we have that \(\text{Re}_\eta i \in \mathcal{L} \) iff \((\text{Re}_\eta i)^{\text{op}} \otimes \mathcal{R} \) iff \(i \otimes (\text{Si}_\eta \mathcal{R}) \). Thus, the class of \(i \) for which statement (1) holds is weakly saturated, and the claim follows. Likewise, \(\text{Si}_\eta p \in \mathfrak{S} \) iff \(S \otimes (\text{Si}_\eta p) \) iff \((\text{Re}_\eta S)^{\text{op}} \otimes p \), so statement (2) follows by what we have already proved.
The final statement corresponds to: the special case of (1) with $D^\bullet = E^\bullet$ and C^\bullet the initial cosimplicial object, and the special case of (2) with $C^\bullet = E^\bullet$ and D^\bullet the terminal cosimplicial object.

We want to apply this to the transformations $\Delta^\bullet \overset{\alpha}{\to} \text{Iso}^\bullet \overset{\beta}{\leftarrow} (\Delta^\bullet)^{\text{op}}$ of cosimplicial objects in $\mathcal{A} = \text{sSet}$, with respect to the weak factorization system $(\text{Cell}, \text{TrivFib})$.

It turns out that for maps of cosimplicial objects in sSet, there is a fantastic criterion for verifying that $\text{Re}_C^\downarrow\text{Cell} \subseteq \downarrow\text{Cell}$. Given a cosimplicial object C^\bullet, let $\text{Ker} C := \lim[(0), (1) : C^0 \rightarrow C^1]$, the equalizer of the pair of arrows.

47.12. **Proposition.** Let $\eta : C^\bullet \rightarrow D^\bullet$ be a map of cosimplicial objects of sSet. Then Re_C^\downarrow takes elements of Cell to monomorphisms if and only if (i) each $\eta^n : C^n \rightarrow D^n$ is a monomorphism and (ii) the induced map $\text{Ker} \eta : \text{Ker} C \rightarrow \text{Ker} D$ is an isomorphism.

I will prove this at the end of the section. We note now that the proposition clearly applies to both transformations $\Delta^\bullet \overset{\alpha}{\to} \text{Iso}^\bullet \overset{\beta}{\leftarrow} (\Delta^\bullet)^{\text{op}}$, since $\text{Ker} \Delta$, $\text{Ker} \Delta^{\text{op}}$, and $\text{Ker} \text{Iso}$, are all empty.

Let $C^\bullet : \Delta \to \text{Set}$ be a cosimplicial object in sets, i.e., a **cosimplicial set**. Say that an element $x \in C^n$ is **codegenerate** if $x = fy$ for some $(f : [k] \rightarrow [n], y \in C^k)$ where f is a non-surjective simplicial operator. If this is not the case we say x is **non-codegenerate**. Note that all elements of C^0 are non-codegenerate.

47.13. **Lemma.** For a cosimplicial set $C^\bullet : \Delta \to \text{Set}$ and an element $x \in C^n$. Consider the set S of all triples $(k, f : [k] \rightarrow [n], y \in C^k)$ such that (i) $fy = x$, (ii) f is injective, and (iii) y is non-codegenerate. Then

1. for all $(k, f, y), (k', f', y') \in S$, we have that $k = k'$ and $y = y'$. Furthermore
2. either $f = f'$ or $y \in \text{Ker} C$. (In the latter case, we must have $k = k' = 0$.)

Proof. Given $(f : [k] \rightarrow [n]) \in \Delta^{\text{ini}}$, let $R(f) = \{ r : [n] \rightarrow [k] \mid rf = \text{id}_{[k]} \}$, the set of retractions of f. Note that $R(f)$ is always non-empty.

Suppose $(k, f, y), (k', f', y') \in S$ such that $fy = x = f' y'$. Choose arbitrary $r \in R(f)$ and $r' \in R(f')$. Then $y = ry'y = r'f'y' = r'y'$. Since y and y' are non-codegenerate, both $r'f : [k] \rightarrow [k]$ and $rf' : [k'] \rightarrow [k]$ must be surjective, whence $k = k'$ and thus $r'f = \text{id} = rf'$ and so $y = y'$.

Since the retractions were arbitrary, we see that $R(f) = R(f')$. When $k \geq 1$, it is easy to see that this implies that $f = f'$. When $k = 0$, we may write $f = \langle i \rangle$ and $f' = \langle j \rangle$ for some $i, j \in [n]$, and (after perhaps switching f and f') we may assume $i \leq j$. Choose $g \in R(\langle ij \rangle : [1] \rightarrow [n])$, whence $g(i) = \langle 0 \rangle$ and $g(j) = \langle 1 \rangle$ as maps $[0] \rightarrow [1]$, and therefore $\langle 0 \rangle y = g(i)y = gx = g(j)y = \langle 1 \rangle y$, so $y \in \text{Ker} C$.

47.14. **Skeletal induction.** The next step is to show that we have weak equivalences $X \rightarrow \text{Re}_D^\downarrow X \leftarrow X^{\text{op}}$. To do this, we will use the following strategy.

47.15. **Proposition** (Skeletal induction). Let \mathcal{C} be a class of simplicial sets with the following properties.

1. If $X \in \mathcal{C}$, then every object isomorphic to X is in \mathcal{C}.
2. Every $\Delta^n \in \mathcal{C}$.
3. The class \mathcal{C} is closed under good colimits. That is:
 a. any coproduct of objects of \mathcal{C} is in \mathcal{C};
 b. any pushout of a diagram $X_0 \leftarrow X_1 \rightarrow X_2$ of objects in \mathcal{C} along a monomorphism $X_1 \rightarrow X_2$ is in \mathcal{C};
 c. any colimit of a countable sequence $X_0 \rightarrow X_1 \rightarrow X_2 \rightarrow \cdots$ of objects in \mathcal{C}, such that each $X_k \rightarrow X_{k+1}$ is a monomorphism, is in \mathcal{C}.
Then \mathcal{C} is the class of all simplicial sets.

Proof. This is a straightforward consequence of the skeletal filtration (15.23). To show $X \in \mathcal{C}$, it suffices to show each $S_k^n X \in \mathcal{C}$ by (3c). So we show that all n-skeleta are in \mathcal{C} by induction on n, with base case $n = -1$ (the empty simplicial set), which is really a special case of (3a). Since $S_{k-1}^n X \subseteq S_k^n X$ is a pushout along a coproduct of maps $\partial \Delta^n = S_{k-1}^n \Delta^n \to \Delta^n$, this follows using (2), (3a), (3b), and the inductive hypothesis, which tells us that $\partial \Delta^n \in \mathcal{C}$.

47.16. Equivalences between realization functors.

47.17. Proposition. For every simplicial set X, the maps $Re_\alpha \colon Re_\alpha X : \Re_\Delta X \to \Re_{\Iso} X$ and $Re_\beta \colon Re_{\Delta op} \to \Re_{\Iso} X$ are weak equivalences of simplicial sets. equivalence.

Proof. Consider the case of Re_α. Let \mathcal{C} be the class of X such that $Re_\alpha X$ is a weak equivalence. We verify the hypotheses of the above proposition. Property (1) is obvious.

To prove property (2) recall that $Re_\alpha \Delta^1 : \Delta^1 \to \Iso^1$ is anodyne (35.16). We can use this to show that $Re_\alpha \Delta^n$ is anodyne for all $n \geq 0$, and thus a weak equivalence. In fact, we have maps

$$\Delta^n \xrightarrow{s} (\Delta^1)^n \xrightarrow{r} \Delta^n \quad \text{and} \quad \Iso^n \xrightarrow{s} (\Iso^1)^n \xrightarrow{r} \Iso^n,$$

which in each case are the unique maps which on vertices send

$$s(k) = (1, \ldots, 1, 0, \ldots, 0), \quad r(k_1, \ldots, k_n) = \max \{ j \mid k_j = 1 \}.$$

Clearly $rs = id$ in both cases, and we easily see that $Re_\alpha \Delta^n$ is a retract of $(Re_\alpha \Delta^1)^n$, which is anodyne since the product of anodyne maps is anodyne.

Property (3) involves colimits, which in every case are good colimits. In each case, we need to show that a map $Re_\Delta \mathrm{colim} X_i \to \Re_{\Iso} \mathrm{colim} X_i$ is a weak equivalence when each $X_i \to \Re X_i$ is. The functor Re preserves colimits and monomorphisms (47.22), so in every case we are comparing good colimits, so the result follows from (46.8), (46.12), (46.10).

The proof for Re_β is exactly the same. Or note that $Re_\beta X$ is isomorphic to $(Re_\alpha X)^{op} : X^{op} \to (Re_{\Iso} X)^{op}$.

We thus obtain the desired result.

47.18. Corollary. Every simplicial set is weakly equivalent to its opposite X^{op}.

Proof. Both maps in $X \xrightarrow{Re_\alpha X} \Re X \approx \Re X^{op} \xleftarrow{Re_\beta X} X^{op}$ are weak equivalences (47.17).

47.19. Proposition. For each monomorphism $K \to L$, the induced map $(Re K) \amalg K L \to Re L$ is a monomorphism and a weak equivalence.

Proof. Both squares

$$\begin{array}{ccc}
K & \xrightarrow{\eta} & \Re K \\
\downarrow & & \downarrow \\
L & \xrightarrow{\eta} & (Re K) \amalg K L \\
\end{array} \quad \begin{array}{ccc}
Re K & \xrightarrow{id} & \Re K \\
\downarrow & & \downarrow \\
Re L & \xrightarrow{id} & \Re L \\
\end{array}$$

are good pushouts, using (47.22). The evident map from the left square to the right square is a weak equivalence at the upper left, upper right, and lower left corners (47.17), so the result follows from the invariance of good pushouts (46.12).

47.20. Corollary. If $p : X \to Y$ is a Kan fibration between Kan complexes, then $Si X \to Si Y \times_Y X$ is a trivial fibration. In particular, if X is a Kan complex, then $Si X \to X$ is a trivial fibration.

In particular, for any Kan complex X, both maps in $X \xleftarrow{\epsilon X} Si X \approx Si X^{op} \xrightarrow{\epsilon X^{op}} X^{op}$ are trivial fibrations.
Proof. Straightforward, using (47.19).

Older material below.

47.21. Remark. Here is one possible proof (in some sense, the most natural proof). Note that there is a homeomorphism of geometric realizations \(||X|| \approx ||X^\op||\). Then use the fact that geometric realization induces an equivalence \(h(s\text{Set}, \text{WkEq}) \approx h(\text{Top}, \text{WkEq})\). Of course, we haven’t actually proved this fact about homotopy categories yet.

Although \(\Delta^\bullet\) and \(\Delta^\bullet \circ \text{op}\) are not isomorphic as functors \(\Delta \to s\text{Set}\), it is the case that \(\text{Iso}^\bullet \approx \text{Iso}^\bullet \circ \text{op}\), using the isomorphisms of categories \(\text{Iso}^n \to \text{Iso}^n\) given on objects by \(x \mapsto n - x\). Putting all this together, we obtain natural transformations

\[
\begin{align*}
X \xrightarrow{\eta_X} \text{Re}_{\text{Iso}^\bullet} X & \approx \text{Re}_{\text{Iso}^\bullet} X^\op \xrightarrow{\eta_X^\op} X^\op, \\
X \xleftarrow{\epsilon_X} \text{Si}_{\text{Iso}^\bullet} X & \approx \text{Si}_{\text{Iso}^\bullet} X^\op \xrightarrow{\epsilon_X^\op} X^\op.
\end{align*}
\]

We’ll show that that \(\eta_X\), and hence \(\eta_X^\op\), are always weak equivalences, and that \(\epsilon_X\), and hence \(\epsilon_X^\op\), are weak equivalences whenever \(X\) is a Kan complex. In the following, \(\text{Re} = \text{Re}_{\text{Iso}^\bullet}\) and \(\text{Si} = \text{Si}_{\text{Iso}^\bullet}\).

47.22. Lemma. For each monomorphism \(K \to L\), the induced map \((\text{Re} K) \amalg_K L \to \text{Re} L\) is a monomorphism. In particular,

- \(\text{Re}\) preserves monomorphisms and \(\text{Si}\) preserves trivial fibrations, and
- \(\eta_L\): \(L \to \text{Re} L\) is always a monomorphism.

Proof. Formally, it is enough to check the case of \(\partial \Delta^n \subset \Delta^n\). To see this, check that the lifting problems

\[
\begin{array}{ccc}
(\text{Re} K) \amalg_K L & \to & X \\
\downarrow & & \downarrow \\
\text{Re} L & \to & Y \\
\end{array}
\quad \Leftrightarrow \quad
\begin{array}{ccc}
K & \to & \text{Si} X \\
\downarrow & & \downarrow \\
L & \to & (\text{Si} Y) \times_Y X
\end{array}
\]

are equivalent. This means we need to show that all monomorphisms are contained in the weakly saturated class \(\mathcal{C}\), where \(\mathcal{C}\) is the class of all the maps \((\text{Si} p, \epsilon_X)\): \(\text{Si} X \to (\text{Si} Y) \times_Y X\) such that \(p \in \text{TrivFib}\), which means we only need to show that \(\text{Cell}\) is contained in it.

This is a calculation: \(\text{Re}(\partial \Delta^n) \to \text{Re}(\Delta^n) = N(\text{Iso}^n)\) is isomorphic to inclusion of the subcomplex \(K \subseteq N(\text{Iso}^n)\) whose \(k\)-dimensional elements are sequences \(x_0 \to \cdots \to x_k\) such that \(\{x_0, \ldots, x_k\} \neq \{0, \ldots, n\}\). To show this, use the fact that \(\Delta^n\) is a colimit of its \((n - 1)\)-dimensional faces along their intersections, and that \(\text{Re}\) preserves colimits. The image of the element \((0, 1, \ldots, n)\) in \(\text{Re}(\Delta^n)\) intersects \(K\) exactly in its boundary, so \((\text{Re} \partial \Delta^n) \cup_{\partial \Delta^n} \Delta^n \to \text{Re} \Delta^n\) is a monomorphism as desired.

47.23. Remark. Given any natural transformation \(\lambda: F \to G\) of functors, and map \(f: X \to Y\), we get induced maps

\[
F(Y) \cup_{F(X)} G(X) \to G(Y), \quad F(X) \to F(Y) \times_{G(Y)} G(X).
\]

These can be thought of as a variant of the “box” construction we’ve considered elsewhere (27.6), but associated to the “evaluation pairing” \(\text{Fun}(s\text{Set}, s\text{Set}) \times s\text{Set} \to s\text{Set}\) rather than a functor \(s\text{Set} \times s\text{Set} \to s\text{Set}\).

48. Initial and terminal objects, revisited

Recall the definition of initial and terminal objects in a quasicategory. One characterization was: \(x\) is an initial object of \(C\) iff the left fibration \(p: C_{x/} \to C\) is a trivial fibration, and a terminal object iff the right fibration \(p': C_{/x} \to C\) is a trivial fibration.

When \(C\) is the nerve of an ordinary category, these reduce to the usual definitions of initial and terminal object. In this case, there is an equivalent characterization: \(x\) is initial if and only
if $\text{Hom}_{C}(x, y)$ is a singleton set for all objects y of C, and terminal if and only if $\text{Hom}_{C}(y, x)$ is a singleton set for all y.

We would like to generalize this to the case of quasicategories.

Deferred Proposition. An object x of a quasicategory is initial if and only if $\text{map}_{C}(x, c)$ is contractible for all objects c of C, and terminal if and only if $\text{map}_{C}(c, x)$ is contractible for all objects c of C.

To prove this, you need to be able to relate mapping spaces of a quasicategory to the join/slice constructions that we used to define initial and terminal. We will establish such a relation in the next few sections.

48.1. Right and left mapping spaces. Let x, y be objects of a quasicategory C. We define the \textbf{right mapping space} $\text{map}^{R}_{C}(x, y)$ and \textbf{left mapping space} $\text{map}^{L}_{C}(x, y)$ by pullback diagrams

$$
\begin{array}{ccc}
\text{map}^{R}_{C}(x, y) & \longrightarrow & C_{x/} \\
\downarrow & & \downarrow \pi \\
\Delta^{0} & \longrightarrow & C
\end{array}
\quad
\begin{array}{ccc}
\text{map}^{L}_{C}(x, y) & \longrightarrow & C_{/y} \\
\downarrow & & \downarrow \pi \\
\Delta^{0} & \longrightarrow & C
\end{array}
$$

where the maps labelled π are the evident forgetful maps.

For instance, an n-dimensional element of $\text{map}^{R}_{C}(x, y)$ is precisely a map $a: \Delta^{n+1} \rightarrow C$ such that $a|\Delta^{0,...,n}$ represents the vertex x, and $a|\Delta^{n+1} = y$. In particular, a vertex of $\text{map}^{R}_{C}(x, y)$ is a morphism $x \rightarrow y$ in C, while an edge of $\text{map}^{R}_{C}(x, y)$ is a 2-dimensional element in C exhibiting the \sim_{r} relation between two maps, which we used to define the homotopy category in §9.

Recall (27.16) that when C is a quasicategory, the maps $C_{x/} \rightarrow C$ and $C_{/y} \rightarrow C$ are left fibrations and right fibrations respectively. Thus both $\text{map}^{R}_{C}(x, y)$ and $\text{map}^{L}_{C}(x, y)$ are Kan complexes, by the following.

48.2. Exercise. Show that if $X \rightarrow \Delta^{0}$ is a left fibration or a right fibration, then X is a Kan complex. (Hint: Joyal lifting.)

Furthermore, by the above remarks relating edges in the right and left mapping spaces to the homotopy relation, we have bijections

$$
\pi_{0} \text{map}^{R}_{C}(x, y) \approx \pi_{0} \text{map}^{L}_{C}(x, y) \approx \text{Hom}_{hC}(x, y) \approx \pi_{0} \text{map}_{C}(x, y).
$$

We will show below that both $\text{map}^{R}_{C}(x, y)$ and $\text{map}^{L}_{C}(x, y)$ are actually \textit{weakly equivalent} to the standard mapping space $\text{map}_{C}(x, y)$.

48.3. Box products and right and left anodyne maps. Recall that $\text{InnHorn} \Box \text{Cell} \subseteq \text{InnHorn}$ (16.7) and $\text{Horn} \Box \text{Cell} \subseteq \text{Horn}$. We have an analogous fact for left or right anodyne maps.

48.4. Proposition. We have that $\text{LHorn} \Box \text{Cell} \subseteq \text{LHorn}$ and $\text{RHorn} \Box \text{Cell} \subseteq \text{RHorn}$.

Proof. See the appendix (60). \hfill \Box

48.5. Fiberwise criterion for trivial fibrations, revisited. Recall the fiberwise criterion for trivial fibrations (37.2): a Kan fibration p is a trivial fibration if and only if the fibers of p are contractible Kan complexes. In fact, this still holds if we only know p is a left or right fibration.

48.6. Proposition. Suppose $p: X \rightarrow Y$ is a right fibration or left fibration of simplicial sets. Then p is a trivial fibration if and only if it has contractible fibers.
which by hypothesis is a contractible Kan fibration.

We attempt to carry out the argument of the proof of (37.2), and show that \((\partial \Delta^n \subset \Delta^n) \sqcup p\) for all \(n \geq 0\). The case of \(n = 0\) is immediate, since the fibers of \(p\) must be non-empty, since they are contractible, so we can assume \(n \geq 1\).

Examining that proof of (37.2), we see that we used only the hypothesis that \(p\) is a Kan fibration in order to solve particular lifting problems of type

\[
(\partial \Delta^n \times \{0\} \subset \partial \Delta^n \times \Delta^1) \sqcup p \quad \text{and} \quad ((\partial \Delta^n \subset \Delta^n) \sqcup \{1\} \subset \Delta^1) \sqcup p.
\]

In the first case, the inclusion \((\partial \Delta^n \times \{0\} \subset \partial \Delta^n \times \Delta^1)\) is left anodyne by (48.4), so the lifting problem still has a solution when \(p\) is only a left fibration.

In the second case, we need to argue a little differently. In the proof of (37.2) this lifting problem appears when producing a lifting (for \(n \geq 1\)) in a diagram of the form

\[
\begin{array}{ccc}
(\partial \Delta^n \times \Delta^1) \cup_{\partial \Delta^n \times \{1\}} (\Delta^n \times \{1\}) & \xrightarrow{(c, jd)} & X \\
\Delta^n \times \Delta^1 & \xrightarrow{b} & Y
\end{array}
\]

where \(\gamma: \Delta^n \times \Delta^1 \to \Delta^n\) represents a natural transformation from \(\text{id}_{\Delta^n}\) to \(\Delta^n \to \{n\} \subset \Delta^n\). Pulling back along \(b\gamma\), we obtain a diagram

\[
\begin{array}{ccc}
(\partial \Delta^n \times \Delta^1) \cup_{\partial \Delta^n \times \{1\}} (\Delta^n \times \{1\}) & \xrightarrow{g} & C & \xrightarrow{p} & X \\
\Delta^n \times \Delta^1 & \xrightarrow{\gamma} & \Delta^n & \xrightarrow{b} & Y
\end{array}
\]

where the right-hand square is a pullback. Observe that (i) \(p'\) is a left fibration, and hence an inner fibration, between quasicategories, and that (ii) the map \(\gamma\) (as defined in the proof of (37.2)) sends the edge \{\(n\)\} \times \Delta^1 to the degenerate edge \{\(mn\)\} in \(\Delta^n\). This implies that the map \(g\) sends the edge \{\(n\)\} \times \Delta^1 into the fiber of \(p'\) over \(n \in (\Delta^n)_0\), which is isomorphic to the fiber of \(p\) over \(b(n) \in Y_0\), which by hypothesis is a contractible Kan fibration.

Therefore we can apply the pushout-product version of Joyal lifting (31.6) to produce a lift \(s'\), and hence a lift \(s\) as desired. \(\square\)

Corollary. An object \(x\) of a quasicategory \(C\) is initial if and only if \(\text{map}^R_C(x, c)\) is contractible for all objects \(c\) of \(C\), and is final if and only if \(\text{map}^L_C(c, x)\) is contractible for all objects \(c\) of \(C\).

Proof. The fibers of the left fibration \(C_{x/} \to C\) are precisely the right mapping spaces \(\text{map}^R_C(x, c)\). By what we just proved (48.6) these fibers are all contractible if and only if \(C_{x/} \to C\) is a trivial fibration, which we have noted (26.3) is equivalent to \(x\) being initial in \(C\). \(\square\)

49. **The alternate join and slice**

We now want to compare the right and left mapping spaces, which are fibers of the projections \(C_{x/} \to C\) and \(C_{x/} \to C\), to the ordinary mapping spaces, which are fibers of \(\text{Fun}(\Delta^1, C) \to \text{Fun}(\partial \Delta^1, C)\). We do this using constructions called the “alternate join” and “alternate slice” [Lur09, §4.2.1].

Given an object \(x\) in \(C\), consider the map

\[
q: \text{Fun}(\Delta^1, C) \times_{\text{Fun}(\{0\}, C)} \{x\} \to \text{Fun}(\{1\}, C) = C
\]
induced by restriction along \{0\} \subset \Delta^1. Note that the fiber of \(q \) over some object \(c \) of \(C \) is precisely the quasigroupoid maps_{\mathcal{C}}((x, c)). The domain of \(q \) is an example of what we will call the “alternate slice” construction, for which we (following Lurie) will use the (unmemorable) notation \(C^{x/} \).

49.1. Exercise. Show that if \(C \) is an ordinary category, then \(C^{x/} \) is isomorphic to the usual slice category \(C_{x/} \), and \(q \) is isomorphic to the usual projection \(p: C_{x/} \to C \).

For a general quasicategory, \(q \) is not isomorphic \(p \). What is true is that there is a commutative diagram

\[
\begin{array}{ccc}
C_{x/} & \xrightarrow{f} & C^{x/} = \text{Fun}(\Delta^1, C) \times_{\text{Fun}([0], C)} \{x\} \\
p \downarrow & & \downarrow q \\
C & \simeq & C
\end{array}
\]

The map \(f \) sends an element \(a: \Delta^k \to C_{x/} \), which corresponds to \(\bar{a}: \Delta^{k+1} \to C \) such that \(\bar{a}_0 = x \), to an element in \(C^{x/} \) corresponding to \(\bar{a}r: \Delta^k \times \Delta^1 \to C \), where \(r: \Delta^k \times \Delta^1 \to \Delta^{k+1} \) is the unique map given on vertices by \(r(i, 0) = 0 \), \(r(i, 1) = i + 1 \).

The characterization (H) of initial objects in terms of contractible mapping spaces thus amounts to the claim that \(p \) is a trivial fibration if and only if \(q \) has contractible fibers. In fact, we’ll prove that

- both \(p \) and \(q \) are left fibrations,
- \(f \) is a categorical equivalence.

Because \(p \) and \(q \) are left fibrations, they are trivial fibrations iff their fibers are contractible (48.6). Because \(f \) is a categorical equivalence, \(p \) is a categorical equivalence if and only if \(q \) is by 2-out-of-3 (22.10). The result follows because \(p \) and \(q \) are in particular isofibrations (29.10), and an isofibration is a trivial fibration if and only if it is a categorical equivalence (40.1).

In other words, we can regard \(C^{x/} \) as an alternate version of the slice construction, so we call it the “alternate slice”. It is related to an alternate version of the join, denoted \(X \diamond Y \) and called the “alternate join”, which we define first.

49.2. The alternate join. Given simplicial sets \(X \) and \(Y \), define the alternate join by the pushout diagram

\[
\begin{array}{ccc}
(X \times \{0\} \times Y) \amalg (X \times \{1\} \times Y) & \to & X \times \Delta^1 \times Y \\
\downarrow & & \downarrow \\
(X \times \{0\} \times \Delta^0) \amalg (\Delta^0 \times \{1\} \times Y) & \to & X \diamond Y
\end{array}
\]

where the maps on top and left are induced by the evident inclusion and projection maps.

The alternate join comes with a natural comparison map

\[X \diamond Y \to X \star Y, \]

defined as follows. Using the recipe of (23.14) for constructing maps to a join, we get a map \(X \times \Delta^1 \times Y \to X \star Y \) corresponding to the triple \((g, f^{(0)}, f^{(1)})\), where \(g: X \times \Delta^1 \times Y \to \Delta^1 \), \(f^{(0)}: X \times \{0\} \times Y \to X \), and \(f^{(1)}: X \times \{1\} \times Y \to Y \) are the evident projections. A similar procedure produces compatible maps to \(X \star Y \) from the other vertices of the pushout square defining \(X \diamond Y \). Note that the comparison map induces a bijection on vertices.

49.3. Example. We have

\[X \diamond \Delta^0 \approx (X \times \Delta^1)/(X \times \{1\}), \quad \Delta^0 \diamond Y \approx (\Delta^1 \times Y)/\{(0) \times Y\}, \]

simplicial sets obtained by collapsing subcomplexes to a single point. These come with evident maps \(X \diamond \Delta^0 \to X^{>o} \) and \(\Delta^0 \diamond Y \to Y^{<o} \).
Like the true join, \(X \circ \emptyset \approx X \approx \emptyset \circ X \), and the functors \(X \circ - : \text{sSet} \to \text{sSet}_{X/} \) and \(- \circ Y : \text{sSet} \to \text{sSet}_{Y/} \) commute with colimits.

49.4. **Warning.** When \(X \) and \(Y \) are non-empty, \(X \times \Delta^1 \times Y \to X \circ Y \) is surjective, but this is not the case when either \(X \) or \(Y \) are empty.

49.5. **Exercise.** Show that for \(p,q \geq 0 \), the composite

\[
\Delta^p \times \Delta^1 \times \Delta^q \to \Delta^p \circ \Delta^q \to \Delta^p \ast \Delta^q \overset{\sim}{\to} \Delta^{p+1+q}
\]

is the unique map which is given on vertices by

\[(x,t,y) \mapsto (1-t)x + t(p+1+y), \quad x \in [p], t \in [1], y \in [q].\]

Unlike the true join, the alternate join is not monoidal: \((X \circ Y) \circ Z \not\approx X \circ (Y \circ Z)\) in general. Also, the alternate join of two quasicategories is not usually a quasicategory.

The alternate join is a categorically invariant construction.

49.6. **Proposition.** The alternate join \(\circ \) preserves categorical equivalences in either variable. That is, if \(Y \to Y' \) is a categorical equivalence, then so are \(X \circ Y \to X \circ Y' \) and \(Y \circ Z \to Y' \circ Z \).

Proof. The \(\circ \) product is constructed using a “good” pushout, i.e., a pushout along a cofibration. The result follows because both products and good pushouts preserve categorical equivalences (46.12). \(\square \)

49.7. **Alternate slice.** Given \(p : S \to X \) and \(q : T \to X \), we define the \textbf{alternate slices} \(X^{p/} \) and \(X^{/q} \) via the bijective correspondences

\[
\begin{align*}
\begin{cases}
S \circ \emptyset & \iff \{K \dashv X^{p/}\}, \\
S \circ K & \iff \{\emptyset \circ T \dashv X^{/q}\},
\end{cases}
\end{align*}
\]

just as we defined ordinary slices using joins. These constructions give right adjoints to the alternate join functors:

\(S \circ (-) : \text{sSet} \rightleftarrows \text{sSet}_{S/} : (p \mapsto X^{p/}), \quad (-) \circ T : \text{sSet} \rightleftarrows \text{sSet}_{T/} : (q \mapsto X^{/q}). \)

Alternate slices are “functorial” in exactly the same sense that ordinary slices are (24.13): a sequence of maps \(T \xrightarrow{j} S \leftarrow X \xrightarrow{f} Y \) induces \(X^{p/} \to Y^{f[p]} \) and \(X^{/p} \to Y^{/f[p]}. \)

49.8. **Exercise.** Show that there are pullback squares of the form

\[
\begin{array}{ccc}
X^{p/} & \longrightarrow & \text{Map}(S \times \Delta^1, X) \\
\downarrow & & \downarrow \\
X & \xrightarrow{(p,c)} & \text{Map}(S \times \{0\}, X) \times \text{Map}(S \times \{1\}, X)
\end{array}
\quad
\begin{array}{ccc}
X^{/p} & \longrightarrow & \text{Map}(\Delta^1 \times S, X) \\
\downarrow & & \downarrow \\
X & \xrightarrow{(c,p)} & \text{Map}(\{0\} \times S, X) \times \text{Map}(\{1\} \times S, X)
\end{array}
\]

where \(p : X \to \text{Map}(S, X) \) is adjoint to \(X \times S \xrightarrow{\text{proj}} S \xrightarrow{p} X \), and \(c : X \to \text{Map}(S, X) \) is adjoint to \(X \times S \xrightarrow{\text{proj}} X \xrightarrow{id} X \).

Using the adjunction relation between joins and slices, and alternate joins and slices, the natural comparison map \(X \circ Y \to X \ast Y \) induces natural comparison maps on alternate slices. That is, given \(p : S \to X \) and \(q : T \to Y \) we have natural comparison maps

\(X^{p/} \to X^{p/} \quad \text{and} \quad Y^{/q} \to Y^{/q}. \)
49. **Joins, slices, and function complexes.** Recall the function complex $\text{Map}(X,Y) \in \text{sSet}$, defined for any pair of simplicial sets X,Y. Recall also (20.15) the relative function complex under S, which for objects $p: S \to X$ and $q: S \to Y$ in $\text{sSet}_{S/}$ is a simplicial set

$$\text{Map}_{S/}(X,Y) := \text{Map}(X,Y) \times_{\text{Map}(S,Y)} \{q\}$$

with bijective correspondences

$$\left\{ \begin{array}{c} K \rightarrow \text{Map}_{S/}(X,Y) \end{array} \right\} \iff \left\{ \begin{array}{c} K \times S \xrightarrow{\text{proj}} S \\ \text{id} \times p \downarrow \downarrow q \\ K \times X \rightarrow Y \end{array} \right\}$$

natural in the simplicial set K. The set of vertices of $\text{Map}_{S/}(X,Y)$ is precisely the set $\text{Hom}_{\text{sSet}_{S/}}(X,Y)$ of morphisms in the category $\text{sSet}_{S/}$.

Given X and $p: S \to Y$, we have join/slice adjunctions

$$\text{Hom}_{\text{sSet}}(X,Y_p) \approx \text{Hom}_{\text{sSet}_{S/}}(S \ast X,Y), \quad \text{Hom}_{\text{sSet}}(X,Y/p) \approx \text{Hom}_{\text{sSet}_{S/}}(X \ast S,Y).$$

We now construct maps

$$\text{Map}(X,Y_p) \to \text{Map}_{S/}(S \ast X,Y), \quad \text{Map}(X,Y/p) \to \text{Map}_{S/}(X \ast S,Y).$$

which are natural in both X and p, and which on vertices are exactly the join/slice adjunctions. We will call these the **enriched adjunction maps** for join/slice; they are not isomorphisms in general.

I write this out in the case of slice-over, by constructing a transformation

$$\left\{ \begin{array}{c} K \rightarrow \text{Map}(X,Y_p) \end{array} \right\} \implies \left\{ \begin{array}{c} K \rightarrow \text{Map}_{S/}(S \ast X,Y) \end{array} \right\}$$

natural in the simplicial set K. Applying the product/function complex adjunction, and the join/slice adjunction, this amounts to defining natural maps

$$\left\{ \begin{array}{c} S \ast \emptyset \xrightarrow{p} Y \\ S \ast (K \times X) \rightarrow Y \end{array} \right\} \implies \left\{ \begin{array}{c} K \times (S \ast \emptyset) \xrightarrow{\text{proj}} S \\ K \times (S \ast X) \rightarrow Y \end{array} \right\}$$

Thus it suffices to produce natural maps

$$K \times (S \ast X) \to S \ast (K \times X)$$

which in the case that $X = \emptyset$ reduce to the projection map $K \times S \to S$. We take this to be the map corresponding by (23.14) to the triple $(g, f_{(0)}, f_{(1)})$ so that g is the composite

$$K \times (S \ast X) \to K \times (\Delta^0 \ast \Delta^0) \to \Delta^0 \ast \Delta^0 = \Delta^1,$$

and

$$f_{(0)} = \text{proj}: K \times (S \ast \emptyset) \to S, \quad f_{(1)} = \text{id}: K \times (\emptyset \ast X) \to K \times X.$$

It is now straightforward to derive explicit formulas for the desired transformation (by specializing to $K = \Delta^n$), and to show that is is natural.

49.10. **Exercise.** Construct a natural “distributivity” map $K \times (X \ast Y) \to (K \times X) \ast (K \times Y)$.

49.11. **Alternate joins, alternate slices, and function complexes.** We can carry out the same procedure for alternate joins and slices, to obtain maps

\[\text{Map}(X, Y^{p/}) \rightarrow \text{Map}_{S/}(S \diamond X, Y), \quad \text{Map}(X, Y^{p/}) \rightarrow \text{Map}_{S/}(X \circ S, Y) \]

which are natural in both \(X \) and \(p \), and which on vertices are exactly the alternate join/slice adjunctions. We will call these the **enriched adjunction maps** for alternate join/slice.

Tracing through the same steps as in the previous section, we see that (in the first case) we need natural maps

\[K \times (S \circ X) \rightarrow S \circ (K \times X) \]

which when \(X = \emptyset \) reduce to the projection map \(K \times S \rightarrow S \). In this case it is entirely straightforward to construct such a map, since both objects are naturally quotients of the product \(K \times S \times \Delta^1 \times K \times X \approx S \times \Delta^1 \times K \times X \). In fact, examination of the constructions shows that the evident diagram

\[
\begin{array}{ccc}
K \times S & \xrightarrow{\text{proj}} & S \\
\downarrow & & \downarrow \\
K \times (S \circ X) & \longrightarrow & S \circ (K \times X)
\end{array}
\]

is a pushout square. (*Exercise:* prove this.) Given this consideration, we see that we have actually defined natural isomorphisms

\[\text{Map}(X, Y^{p/}) \simeq \text{Map}_{S/}(S \circ X, Y), \quad \text{Map}(X, Y^{p/}) \simeq \text{Map}_{S/}(X \circ S, Y). \]

Furthermore, these natural isomorphisms are compatible with the transformations for join/slice.

49.12. **Proposition.** The evident diagrams

\[
\begin{array}{ccc}
\text{Map}(X, Y^{p/}) & \longrightarrow & \text{Map}_{S/}(S \star X, Y) \\
\downarrow & & \downarrow \\
\text{Map}(X, Y^{p/}) & \simeq & \text{Map}_{S/}(S \circ X, Y)
\end{array} \quad \begin{array}{ccc}
\text{Map}(X, Y^{p/}) & \longrightarrow & \text{Map}_{S/}(X \star S, Y) \\
\downarrow & & \downarrow \\
\text{Map}(X, Y^{p/}) & \simeq & \text{Map}_{S/}(X \circ S, Y)
\end{array}
\]

commute.

Proof. This amounts to showing that the evident diagram

\[
\begin{array}{ccc}
K \times (S \circ X) & \longrightarrow & S \circ (K \times X) \\
\downarrow & & \downarrow \\
K \times (S \star X) & \longrightarrow & S \star (K \times X)
\end{array}
\]

commutes, which we leave to the reader. \(\square \)

Below we will show that if \(Y = C \) is a quasicategory, then all of the maps in these diagrams are categorical equivalences. As a consequence, we will obtain categorical equivalences \(C_{p/} \rightarrow C^{p/} \) and \(C_{/p} \rightarrow C^{/p} \).

50. **Equivalence of the two join and slice constructions**

50.1. **The enriched adjunction map for joins/slices preserves isomorphism classes of objects.** We now consider the natural maps

\[\text{Map}(X, C_{p/}) \rightarrow \text{Map}_{S/}(S \star X, C), \quad \text{Map}(X, C_{/p}) \rightarrow \text{Map}_{S/}(X \star S, C) \]

in the case when \(p: S \rightarrow C \) is a map to a quasicategory \(C \). In this case both sources and targets of the natural maps in question are themselves quasicategories, and both induce bijections on sets of...
objects. Eventually we will show that these functors are categorical equivalences. Right now we will just prove that these functors induce bijections on isomorphism classes of objects.

50.2. Proposition. For X a simplicial set and $p: S \to C$ a map to a quasicategory, the enriched adjunction map for join/slice induces bijections

$$\pi_0(\text{Map}(X,C_{p/})^{\text{core}}) \xrightarrow{\sim} \pi_0(\text{Map}_S/(S \star X,C)^{\text{core}}), \quad \pi_0(\text{Map}(X,C_{/p})^{\text{core}}) \xrightarrow{\sim} \pi_0(\text{Map}_S/(X \star S,C)^{\text{core}}),$$

Proof. We give the proof in the slice-over case. Since the enriched adjunction map gives a bijection on objects, it suffices to prove injectivity on sets of isomorphism classes.

Let $f_0, f_1: X \to C_{p/}$ be objects of $\text{Map}(X,C_{p/})$, which correspond to objects $\tilde{f}_0, \tilde{f}_1: S \star X \to C$ of $\text{Map}_S/(S \star X,C)$, with $\tilde{f}_j|S = p$. If \tilde{f}_0 and \tilde{f}_1 are isomorphic objects, then there exists a map $N\text{Iso} \to \text{Map}_S/(S \star X,C)$ representing such an isomorphism (35.17). The data of such a map amounts to an arrow \tilde{f} fitting in the commutative diagram

$$\begin{array}{ccc}
S & \xrightarrow{p} & C \\
\downarrow & & \downarrow \\
5S \star X & \xrightarrow{(f_0,f_1)} & C \times C
\end{array}$$

where $C \to \text{Map}(N\text{Iso},C) \to C \times C$ are induced by restriction along $\ast \leftarrow N\text{Iso} \leftarrow \{0,1\}$. Write $D = \text{Map}(N\text{Iso},C)$ and $\pi: S \to D$ for the map along the top of the rectangle. Applying the join/slice adjunction, we see that we have a diagram

$$\begin{array}{ccc}
X & \xrightarrow{(f_0,f_1)} & C_{p/} \times C_{/p} \\
\downarrow & & \downarrow \\
D_{p/} & \xrightarrow{\pi_0, \pi_1} & \text{Map}(X,C_{p/})
\end{array}$$

That is, we have produced an object f in $\text{Map}(X,D_{p/})$ which under the two evident projections $\pi_0, \pi_1: \text{Map}(X,D_{p/}) \to \text{Map}(X,C)$ is sent to f_0 and f_1 respectively.

We have that both projections $D \to C$ are trivial fibrations, whence so are both projections $D_{p/} \to C_{p/}$ (this needs a proof), and hence both projections π_0 and π_1. Considering the induced commutative diagram

$$\begin{array}{ccc}
\text{Map}(X,C_{p/}) & \xrightarrow{\text{id}} & \text{Map}(X,D_{p/}) \\
\downarrow & & \downarrow \pi_0 \\
\text{Map}(X,C_{p/}) & \xrightarrow{\pi_1} & \text{Map}(X,C_{p/})
\end{array}$$

we see that every arrow in this diagram is a categorical equivalence, and therefore both π_0 and π_1 induce the same bijection on isomorphism classes on objects. Therefore f_0 and f_1 are isomorphic objects, as desired. \qed

50.3. Equivalence of join and alternate join. The key result of this section is the following.

50.4. Proposition. The canonical comparison map $X \diamond Y \to X \star Y$ is a categorical equivalence for all simplicial sets X and Y.

What we have proved implies the categorical invariance of the usual join.

50.5. Corollary. The join \star preserves categorical equivalences in either variable. That is, if $Y \to Y'$ is a categorical equivalence, then so are $X \star Y \to X \star Y'$ and $Y \star Z \to Y' \star Z$.
Proof. Immediate using (50.4), the invariance of the alternate join under categorical equivalence (49.6), and the 2-out-of-3 property of categorical equivalences (22.10). □

The proof is based on the following general strategy.

50.6. Proposition. Let $\alpha : F \to F'$ be a natural transformation between functors $sSet \to \mathcal{M}$, where \mathcal{M} is some model category. If

1. F and F' preserve colimits,
2. F and F' take monomorphisms to cofibrations,
3. F and F' take inner anodyne maps to to weak equivalences in \mathcal{M}, and
4. $\alpha(\Delta^1) : F(\Delta^1) \to F'(\Delta^1)$ is a weak equivalence in \mathcal{M},

then $\alpha(X) : F(X) \to F'(X)$ is a weak equivalence in \mathcal{M} for all simplicial sets X.

Proof. [Lur09, 4.2.1.2] Consider the class of simplicial sets $\mathcal{C} := \{ X \mid \alpha(X) \text{ is a weak equivalence} \}$. We use skeletal induction (47.15) to show that \mathcal{C} contains all simplicial sets.

It is clear that \mathcal{C} is closed under isomorphic objects. Because F and F' preserve colimits (1) and cofibrations (2), they take good colimit diagrams in $sSet$ to good colimit diagrams in \mathcal{M}. Since good colimits are weak equivalence invariant (46.8), (46.12), (46.10), we see that \mathcal{C} is closed under forming good colimits. It remains to show that $\Delta^n \in \mathcal{C}$ for all n.

We have $\Delta^1 \in \mathcal{C}$ by (4). Since Δ^0 is a retract of Δ^1, we get that $\Delta^0 \in \mathcal{C}$ since weak equivalences in \mathcal{M} are closed under retracts (44.4).

The spines I^n can be built from Δ^0 and Δ^1 by a sequence of good pushouts (glue on one 1-simplex at a time), so the $I^n \in \mathcal{C}$. The inclusions $I^n \subset \Delta^n$ are inner anodyne (12.11), so by (3) and the 2-out-of-3 property of weak equivalences in \mathcal{M} it follows that $\Delta^n \in \mathcal{C}$. □

We will apply this idea to functors $sSet \to sSet_{X/}$, where the slice category $sSet_{X/}$ inherits its model structure from the Joyal model structure on $sSet$ (44.5).

Proof of (50.4). The functors $X \circ (-), X \star (-), (-) \circ X, (-) \star X : sSet \to sSet_{X/}$ satisfy the first three properties required of the functors in the previous proposition (50.6). That is, they (1) preserve colimits, (2) take monomorphisms to monomorphisms, and (3) take inner anodyne maps to categorical equivalences. Condition (3) for \circ follows from (49.6), while condition (3) for \star this follows from (27.13) since $sSet \subseteq

Thus, to show $X \circ Y \to X \star Y$ is a categorical equivalence for a fixed X and arbitrary Y, it suffices by the previous proposition to show that $X \circ \Delta^1 \to X \star \Delta^1$ is a categorical equivalence. The same argument lets us reduce to the case when $X = \Delta^1$, i.e., to showing that a single map $\bar{f} : \Delta^1 \circ \Delta^1 \to \Delta^1 \star \Delta^1$ is a categorical equivalence.

We will show \bar{f} is a categorical equivalence by producing a map $\bar{g} : \Delta^1 \star \Delta^1 \to \Delta^1 \circ \Delta^1$ such that $\bar{f} \bar{g} = \text{id}_{\Delta^1 \circ \Delta^1}$ and $\bar{g} \bar{f}$ is preisomorphic to the identity map of $\Delta^1 \circ \Delta^1$, via (20.8).

Since $\Delta^1 \circ \Delta^1$ is a quotient of a cube, we start with maps involving the cube. Write vertices in $(\Delta^1)^{\times 3}$ as sequences (x, t, y) where $x, t, y \in \{0, 1\}$. Let

$$f : (\Delta^1)^{\times 3} \to \Delta^1 \star \Delta^1 = \Delta^3$$

be the map which on vertices sends

$$(x, t, y) \mapsto (1 - t)x + t(2 + y) = \begin{cases} x & \text{if } t = 0, \\ 2 + y & \text{if } t = 1. \end{cases}$$

On passage to quotients this gives the comparison map $ar{f} : \Delta^1 \circ \Delta^1 \to \Delta^1 \star \Delta^1$ of the proposition (49.5).

Let $g : \Delta^3 \to (\Delta^1)^{\times 3}$ be the map classifying the element $\langle (000), (100), (110), (111) \rangle$, and let $\bar{g} : \Delta^3 \to \Delta^1 \circ \Delta^1$ be the composite with the quotient map. We have $fg = \text{id}_{\Delta^3} = \bar{f} \bar{g}$.

Let \(h \in \text{Map}((\Delta^1)^{\times 3}, (\Delta^1)^{\times 3})_0 \) and \(a, b \in \text{Map}((\Delta^1)^{\times 3}, (\Delta^1)^{\times 3})_1 \) be as indicated in the following picture.

These pass to elements \(\overline{h}, \overline{a}, \overline{b} \) in \(\text{Map}(\Delta^1 \circ \Delta^1, \Delta^1 \circ \Delta^1) \). The edges \(\overline{a} \) and \(\overline{b} \) are preisomorphisms, as one sees that for each vertex \(v \in (\Delta^1 \circ \Delta^1) \), the induced maps \(\Delta^1 \times \{v\} \subset \Delta^1 \times (\Delta^1 \circ \Delta^1) \) preisomorphic \(\Delta^1 \circ \Delta^1 \) represent degenerate edges. Thus \(\overline{f} \overline{g} \) and \(\overline{g} \overline{f} \) are preisomorphic to identity maps, and hence \(\overline{f} \) is a categorical equivalence as desired.

50.7. **Equivalence of slice and alternate slice.**

50.8. **Proposition.** For any quasicategory \(C \) and map \(p : S \to C \), the comparison maps \(C_{p/} \to C^{p/} \) and \(C_{/p} \to C^{/p} \) are categorical equivalences.

Proof. [Lur09, 4.2.1.5] We do the first case. We use the following fact: if \(f : A \to B \) is a functor between quasicategories, then \(f \) is a categorical equivalence if and only if the induced maps \(\pi_0(\text{Fun}(X, A)^\text{core}) \to (\text{Fun}(X, B)^\text{core}) \) are bijections for all simplicial sets \(X \). I **probably did this before somewhere.**

Recall (49.12) that we have a commutative diagram

\[
\begin{array}{ccc}
\text{Map}(X, C_{p/}) & \longrightarrow & \text{Map}_S(S \star X, C) \\
\downarrow & & \downarrow \\
\text{Map}(X, C^{p/}) & \longrightarrow & \text{Map}_S(S \diamond X, C)
\end{array}
\]

in which the bottom map is an isomorphism. By (50.2) the top map is a bijection on isomorphism classes of objects. By (50.4) \(S \diamond X \to S \star X \) is a categorical equivalence, and thus the right-hand map is a categorical equivalence, and hence a bijection on isomorphism classes of objects. It follows that the left-hand map is a bijection on isomorphism classes of objects, and the proposition is proved.

50.9. **Corollary.** For any quasicategory \(C \) and map \(p : S \to C \), the enriched adjunction maps \(\text{Fun}(X, C_{p/}) \to \text{Map}_S(S \star X, C) \) and \(\text{Fun}(X, C_{/p}) \to \text{Map}_S(X \diamond S, C) \) are categorical equivalences.

50.10. **Alternate pushout-join.** Just as we defined the “pushout-join” \(\sqcup \), we can define the “alternate pushout-join” \(\sqcup \): given \(f : A \to B \) and \(g : K \to L \), we obtain

\[f \sqcup g : (B \circ K) \cup_{A \circ K} (A \circ L) \to B \circ L. \]

50.11. **Proposition.** We have that

\[\text{RHorn} \sqcup \text{Cell} \sqcup \text{Cell} \sqcup \text{LHorn} \subseteq \text{Cell} \cap \text{CatEq}. \]

Proof. We’ll show that \(\text{RHorn} \sqcup \text{Cell} \subseteq \text{Cell} \cap \text{CatEq} \). It is straightforward to show that the \(\sqcup \)-product of two monomorphisms is a monomorphism. Thus, it suffices to show that for \(f : A \to B \) right
anodyne and any inclusion $g: K \to L$, the map $f \uplus g$ is a categorical equivalence. We know that $\text{RHor} \sqcup \text{Cell} \subseteq \text{InnHor} \subseteq \text{CatEq}$ (27.13), so $f \uplus g$ is a categorical equivalence. Furthermore, in

$$
\begin{align*}
(B \circ K) \cup_{A \circ K} (A \circ L) &\longrightarrow B \circ L \\
(q) &\downarrow \\
(B \ast K) \cup_{A \ast K} (A \ast L) &\longrightarrow B \ast L
\end{align*}
$$

the vertical maps are categorical equivalences; this uses the result proved above (50.4), as well as the fact that since f and g are monomorphisms, the domains of $f \uplus g$ and $f \uplus g$ are constructed from good pushouts.

Question: is $\text{LHor} \sqcup \text{Cell} \subseteq \text{InnHor}$?

50.12. Proposition. Given $K \xrightarrow{j} L \xrightarrow{p} C$, if C is a quasicategory and j is a monomorphism, then $C^p/ \to C^{pj}/$ is a left fibration, and $C^p/ \to C^{pj}/$ is a right fibration.

Proof. Follows from $\text{LHor} \sqcup \text{Cell} \subseteq \text{Cell} \cap \text{CatEq}$ and $\text{Cell} \sqcup \text{RHorn} \subseteq \text{Cell} \cap \text{CatEq}$. \qed

50.13. Equivalence of various mapping spaces. Finally we can prove our original goal.

50.14. Proposition. For any quasicategory C and object $x \in C_0$, the natural comparison maps $\text{map}_R^C(x, y) \to \text{map}_C(x, y) \leftarrow \text{map}_L^C(x, y)$ are weak equivalences.

Proof. In

$$
\begin{array}{ccc}
C_x/ & \xrightarrow{f} & C^{x/} \\
\downarrow p & & \downarrow q \\
C & & \\
\end{array}
$$

the map f is a categorical equivalence (50.8) and p and q are left fibrations by (??) and (??) respectively, and hence are categorical fibrations (??). It follows that the induced maps on fibers $\text{map}_R^C(x, c) \to \text{map}_C(x, c)$ are categorical equivalences and hence weak equivalences, since the pullbacks describing the pullbacks are good pullbacks (with respect to the Joyal model structure). \qed

50.15. Slices as fibers. Rewrite this in terms of the enriched adjunction maps.

The alternate slice $C^{f/}$ has another convenient characterization: it is the fiber over f of a map between functor categories.

50.16. Proposition. For a map $f: S \to X$ of simplicial sets, the alternate slice $X^{f/}$ is isomorphic to the fiber of the restriction map

$$
\text{Map}(S \circ \Delta^0, X) \to \text{Map}(S, X).
$$

Proof. Let F be the fiber of the restriction map. There is an evident correspondence

$$
\begin{array}{ccc}
K & \xrightarrow{f} & S \\
\downarrow \pi & & \downarrow f \\
(S \circ \Delta^0) \times K & \to & C
\end{array}
$$

The claim follows by showing that the evident quotient map $S \times \Delta^1 \times K \to (S \circ \Delta^0) \times K$ extends to an isomorphism

$$
S \circ K \cong ((S \circ \Delta^0) \times K) \cup_{S \times K} S
$$

compatible with the standard inclusions of S. \qed
We can also consider the fiber of the inclusion $S \subset S \star \Delta^0$ into the standard cone. This gives yet another version of the slice.

50.17. **Corollary.** Let C be a quasicategory, and let $F(f) :=$ the fiber of $\text{Fun}(S^\triangleright, C) \to \text{Fun}(S, C)$ over f. Then there is a chain of categorical equivalences

$$F(f) \to C_{f/} \leftarrow C_{f/}.$$

Furthermore, $F(f)$ and $C_{f/}$ have the same set of 0-dimensional elements, and both arrows above coincide on 0-dimensional elements.

Proof. The second equivalence is just (50.8). For the first equivalence, note that

$$\begin{array}{ccc}
\text{Fun}(S \star \Delta^0, C) & \longrightarrow & \text{Fun}(S \cdot \Delta^0, C) \\
\downarrow & & \downarrow \\
\text{Fun}(S, C) & \longrightarrow & \text{Fun}(S, C)
\end{array}$$

the top horizontal map is a categorical equivalence using (50.4), while the vertical maps are both categorical fibrations. Therefore the induced map on fibers over f is a categorical equivalence, since the pullback squares in question are good.

The vertices of $F(f)$ and $C_{f/}$ are exactly the set $\{S^\triangleright \to C\}$. Both inclusions $F(f)_0 \to (C_{f/})_0 \leftarrow (C_{f/})_0$ are induced by restriction along the standard comparison map $S \cdot \Delta^0 \to S \star \Delta^0$. □

Part 6. The quasicategory of ∞-categories

Category theory naturally provides an example of itself. That is, the collection of categories and functors between them is itself a category. In particular, we write Cat for the (large) category whose objects are (small) categories, and whose morphisms are functors between them.

By analogy, one may expect that quasicategory theory provides an an example of itself, e.g., that the collection of quasicategories and functors between forms part of the data of a **quasicategory**. In fact, that is the case: we write qCat for the (large) category whose objects are (small) quasicategories, and whose morphisms are functors between them. Being an ordinary category, qCat is a fortiori a quasicategory.

This is unsatisfying. We would hope to have a richer object, i.e., a quasicategory which we might name Cat_∞, whose objects and functors are as in qCat, but which in addition has some kind of non-trivial “higher structure”.

Such “quasicategory of ∞-categories” Cat_∞ does exist. However, its description is nowhere as evident or natural as Cat. In fact, there are many possible constructions of Cat_∞ which are not isomorphic to each other (though they are categorically equivalent to each other). We will describe a particular construction of Cat_∞ (due to Lurie, and which is in some sense the standard construction) below.

In order to understand the role that Cat_∞ plays, we will start by thinking about ordinary categories. We will see that even in the classical case, what is wanted is not the ordinary category Cat, but rather a certain quasicategorical thickening of it, which we will Cat_1.

51. The Quasicategory of Categories

51.1. **The category of categories.** We write Cat for the category of categories, by which we mean the category of small categories (i.e., categories whose collections of objects and morphisms are sets). Sometimes I will need to talk about a larger category CAT of possibly non-small categories (so that Cat is an object of CAT).

To understand Cat (and CAT), let us think about what functors to it look like. Given a category C, we obtain the category $\text{Fun}(C, \text{Cat})$ of functors from C to the category of categories. Explicitly:
• An object of \(\text{Fun}(C, \text{Cat}) \) is a functor \(F : C \to \text{Cat} \), which assigns
 - to each object \(c \in \text{ob} C \) a category \(F(c) \), and
 - each morphism \(\alpha : c \to c' \) in \(C \) a functor \(F(\alpha) : F(c) \to F(c') \), such that
 - \(F(\text{id}_c) \) is the identity functor of \(F(c) \), and \(F(\beta \alpha) = F(\beta) \circ F(\alpha) \) for all composable arrows \(c \xrightarrow{\alpha} c' \xrightarrow{\beta} c'' \) in \(C \).

• A morphism \(\gamma : F \to F' \) in \(\text{Fun}(C, \text{Cat}) \) is a natural transformation of functors, which assigns
 - to each object \(c \in \text{ob} C \) a functor \(\gamma(c) : F(c) \to F'(c) \) such that
 - for each morphism \(\alpha : c \to c' \) in \(C \) we have an equality \(F'\alpha \gamma(c) = \gamma(c') F(\alpha) \) of functors \(F(c) \to F'(c') \).

The same description applies to \(\text{Fun}(C, \text{CAT}) \).

A functor \(C \to \text{Cat} \) may be thought of as a “family of categories parameterized by \(C \)”.

51.2. Example

Let \(\text{Ring} \) be the category of associative rings and homomorphisms; it is a large category. We may define a functor \(\mathcal{M} : \text{Ring}^{\text{op}} \to \text{CAT} \) as follows.

- For a ring \(R \in \text{ob} \text{Ring} \), let \(\mathcal{M}(R) := \text{Mod}_R \) the category of left \(R \)-modules.
- For a homorphism \(\alpha : R \to R' \) of rings, let \(\mathcal{M}(\alpha) : \text{Mod}_R \to \text{Mod}_R \) be the restriction-of-scalars-\(\alpha \) functor, which on objects sends an \(R' \)-module \(M \) to the \(R \)-module with same underlying abelian group and with \(r x = \alpha(r)x \) for \(r \in R \) and \(x \in M \).

It is straightforward to see that this indeed defines a functor \(\text{Ring}^{\text{op}} \to \text{CAT} \).

There however many examples of “families of categories parameterized by a category” which can not be easily described by a functor to \(\text{Cat} \) or \(\text{CAT} \).

51.3. Example

As in (51.2) let \(\text{Ring} \) be the category of associative rings and homomorphisms. We may attempt to define a functor \(\mathcal{M}' : \text{Ring} \to \text{CAT} \) as follows.

- For a ring \(R \in \text{ob} \text{Ring} \), let \(\mathcal{M}'(R) := \text{Mod}_R \) the category of left \(R \)-modules.
- For a homomorphism \(\alpha : R \to R' \), let \(\mathcal{M}'(\alpha) : \text{Mod}_R \to \text{Mod}_{R'} \) be the extension-of-scalars-\(\alpha \) functor, which on objects sends an \(R \)-module \(M \) to the \(R' \)-module \(R' \otimes_R M \).

However, the above data does not define a functor. Given morphisms \(R \xrightarrow{\alpha} R' \xrightarrow{\beta} R'' \), we need to have a natural isomorphism of functors, given by isomorphisms \(\mathcal{M}'(\beta) \circ \mathcal{M}'(\alpha) = \mathcal{M}'(\beta \alpha) \). However, we only have a natural isomorphism of functors \(\mathcal{M}'(\beta, \alpha) : R' \otimes_R (R' \otimes_R M) \xrightarrow{\sim} R'' \otimes_R M \) which are natural in the \(R \)-module \(M \).

The data of (51.3) does not define a functor, but rather a **pseudofunctor**. A pseudofunctor\(^{33}\) from \(F : C \to \text{Cat} \) associates

- to each object \(c \in \text{ob} C \) a category \(F(c) \),
- to each morphism \(\alpha : c \to c' \) in \(C \) a functor \(F(\alpha) : F(c) \to F(c') \),
- to each object \(c \in \text{ob} C \), a natural isomorphism \(\epsilon_c : \text{id}_{F(c)} \xrightarrow{\sim} F(\text{id}_c) \) of functors \(F(c) \to F(c) \),
- to each composable sequence \(c \xrightarrow{\alpha} c' \xrightarrow{\beta} c'' \) in \(C \), a natural isomorphism \(\mu_{\beta, \alpha} : F(\beta) \circ F(\alpha) \to F(\beta \alpha) \) of functors \(F(c) \to F(c') \),

such that

- strictly unitary pseudofunctor . . .

Part 7. Old stuff

Note. From this point forward, these notes are not an organize narrative, but rather a collection of bits and pieces that might be worked into something useful at some point.

\(^{33}\)Pseudofunctors may be defined more generally with domain and codomain arbitrary 2-categories, or even arbitrary bicategories.
52. Coherent nerve

52.1. The coherent nerve. The coherent nerve \mathcal{N} is a construction which turns a simplicially enriched category into a simplicial set, and in particular turns a Kan-enriched category into a quasicategory. It was invented by Cordier [Cor82]. The coherent nerve is constructed as right adjoint of a “realization/singular” pair $\mathbf{C}: \text{sSet} \rightleftarrows \text{sCat}: \mathcal{N}$.

Given a finite totally ordered set S, define $P(S) := \{A \subseteq S \mid \{\min, \max\} \subseteq A \subseteq S\}$. This is a poset, ordered by set containment; here min, max denote the least and greatest elements of S (possibly the same). If S is empty, so is $P(S)$.

Let $C(\Delta^n)$ denote the simplicially enriched category defined as follows.

- The objects are elements of $[n] = \{0, \ldots, n\}$.
- For objects $x, y \in [n]$, the function complex is $\text{Map}_{\mathbf{C}(\Delta^n)}(x, y) := NP([x, y])$, where $[x, y] := \{t \in [n] \mid x \leq t \leq y\}$, which is set to be empty if $x > y$.
- Composition is induced by the union operation on subsets: $(T, S) \mapsto T \cup S: P([y, z]) \times P([x, y]) \to P([x, z])$.

Every $f: [m] \to [n]$ in Δ gives rise to an enriched functor $\mathbf{C}(f): \mathbf{C}(\Delta^m) \to \mathbf{C}(\Delta^n)$, which on objects operates as f does on elements of the ordered sets, and is induced on morphisms by $S \mapsto f(S): P([x, y]) \to P([fx, fy])$.

We obtain (after identifying Δ with its image in sSet) a functor $\mathbf{C}: \Delta \to \text{sCat}$.

Given a simplicially enriched category C, its coherent nerve (or simplicial nerve) is the simplicial set $\mathcal{N}C$ defined by $(\mathcal{N}C)_n = \text{Hom}_{\text{sCat}}(\mathbf{C}(\Delta^n), C)$.

52.2. Quasicategories from simplicial nerves.

52.3. Proposition. If \mathcal{C} is a category enriched over Kan complexes, then $\mathcal{N}(\mathcal{C})$ is a quasicategory.

Proof. \square

53. Correspondences

A correspondence is defined to be an inner fibration $p: M \to \Delta^1$. A map of correspondences is a morphism in the slice category sSet/Δ^1.

53.1. Correspondences of ordinary categories. If M is an ordinary category, then any functor $p: M \to \Delta^1$ is an inner fibration. Given such a functor, we can identify the following data:

- categories $C := p^{-1}(\{0\})$ and $D := p^{-1}(\{1\})$, the preimages of the vertices, and
- for each pair of objects $c \in \text{ob } C$, $d \in \text{ob } D$, a set $\mathcal{M}(c, d) := \text{Hom}_M(c, d)$,

which

- fit together to give a functor $\mathcal{M}: C^{\text{op}} \times D \to \text{Set}$.
Conversely, given the data of categories \(C \) and \(D \), and a functor \(\mathcal{M}: \mathcal{C}^{\text{op}} \times D \to \text{Set} \), we can construct a category \(M \) with functor \(p: M \to \Delta^1 \) in the evident way, with

\[
\text{ob } M := \text{ob } C \amalg \text{ob } D, \quad \text{mor } M := \text{mor } C \amalg \left(\coprod_{c,d} \mathcal{M}(c, d) \right) \amalg \text{mor } D.
\]

Under the above, maps \(f: M \to M' \) between correspondences which are categories are sent to data consisting of: functors \(u: C \to C' \) and \(v: D \to D' \), and natural transformations \(\mathcal{M} \to \mathcal{M}' \circ (u \times v) \) of functors \(\mathcal{C}^{\text{op}} \times D \to \text{Set} \).

53.2. Example. If \(C \) and \(D \) are categories, then the functor \(C \star D \to \Delta^0 \star \Delta^0 \approx \Delta^1 \) is an example of a correspondence. The corresponding functor \(\mathcal{M}: \mathcal{C}^{\text{op}} \times D \to \text{Set} \) is the one with \(\mathcal{M}(c, d) = \{ * \} \) for all objects.

53.3. Example. Let \(F: C \to D \) be a functor between categories. Then we get a functor \(\mathcal{M}: \mathcal{C}^{\text{op}} \times D \to \text{Set} \) defined by

\[
\mathcal{M}(c, d) := \text{Hom}_D(F(c), D),
\]

and thus an associated correspondence \(p: M \to \Delta^1 \).

Similarly, let \(G: D \to C \) be a functor between categories. Then we get a functor \(\mathcal{M}': \mathcal{C}^{\text{op}} \times D \to \text{Set} \) defined by

\[
\mathcal{M}'(c, d) := \text{Hom}_C(c, G(d)),
\]

and thus an associated correspondence \(p': M' \to \Delta^1 \).

53.4. Example. Suppose \(F: C \rightleftharpoons D: G \) is an adjoint pair of functors. If we form \(\mathcal{M} \) and \(\mathcal{M}' \) as in the previous example, we see that the adjunction gives a natural isomorphism \(\mathcal{M} \approx \mathcal{M}' \) of functors \(\mathcal{C}^{\text{op}} \times D \to \text{Set} \). The associated correspondences \(M \to \Delta^1 \) and \(M' \to \Delta^1 \) are isomorphic.

54. Cartesian and cocartesian morphisms

In the following, we fix an inner fibration \(p: M \to S \). We will often assume that \(S \) (and thus \(M \)) is a quasicategory.

Consider an edge \(f: x \to y \) in \(M \). We say that the edge represented by \(f: \Delta^1 \to M \) is \(p \)-cartesian if a lift exists in every diagram of the form

\[
\Delta \{ n-1, n \} \xrightarrow{f} \Lambda^n_{n-1} \xrightarrow{M} \Delta^n \xrightarrow{p} S
\]

for all \(n \geq 2 \).

There is a dual notion of a \(p \)-cocartesian edge, where \(\Lambda^n_{n-1} \) is replaced by \(\Lambda^n_0 \), and we use the leading edge of the simplex instead of the trailing edge.

We have already seen examples of this property.

- Let \(p: C \to \ast \) where \(C \) is a quasicategory By the Joyal extension theorem (29.2), we have that an edge in \(C \) is \(p \)-cartesian if and only if it is \(p \)-cocartesian if and only if it is an isomorphism.
- Let \(p: M \to S \) be an inner fibration between quasicategories, and suppose \(f \in M_1 \) is an edge such that \(p(f) \) is an isomorphism in \(S \). By the Joyal lifting theorem (29.13), \(f \) is \(p \)-cartesian if and only if it is \(p \)-cocartesian if and only if \(f \) is an isomorphism in \(M \).
- If \(p: M \to S \) is a right fibration, then every edge in \(M \) is \(p \)-cartesian. Likewise, if \(p \) is a left fibration, then every edge in \(M \) is \(p \)-cocartesian.
Thus, Joyal’s theorem completely describe cartesian/cocartesian edges over an isomorphism in a quasicategory.

We have an equivalent formulation: f is p-cartesian if and only if

$$M/f \to M/y \times_{S/p(y)} S/pf$$

is a trivial fibration.

54.1. **Cartesian edges and correspondence.** Let $p: M \to \Delta^1$ be a correspondence, with M an ordinary category. We write $C := p^{-1}(\{0\})$, $D := p^{-1}(\{1\})$, and $\mathcal{M}: C^{\text{op}} \times D \to \text{Set}$ for the associated functor.

Suppose $f: c \to d$ is an edge such that $p(f) = \langle 01 \rangle$.

54.2. **Lemma.** The edge f is p-catesian if and only if, for each $u: x \to d$ with $p(u) = \langle 01 \rangle$, there exists a unique $v: x \to c$ such that $fv = u$.

In particular, if f is p-cartesian, then composition

$$f_*: \text{Hom}_M(x, c) \to \text{Hom}_M(x, d)$$

is a bijection for all $x \in \text{ob} C$. Equivalently, the map

$$\text{Hom}_C(x, c) \to \mathcal{M}(x, d), \quad v \mapsto fv$$

is a bijection, so $\mathcal{M}(\cdot, d): C^{\text{op}} \to \text{Set}$ is represented by c.

54.3. **Box criterion for cartesian edges.**

54.4. **Proposition.** [Lur09, 2.4.1.8] Let $p: M \to S$ be an inner fibration, and $f \in M_1$ an edge. Then f is p-cartesian if and only if a lift exists in every diagram of the form

$$\begin{array}{ccc}
\Delta^1 \times \{n\} & \xrightarrow{f} & (\{1\} \times \Delta^n) \cup_{\{1\} \times \partial \Delta^n} (\Delta^1 \times \partial \Delta^n) \\
\downarrow & & \downarrow \\
\Delta^1 \times \Delta^n & \xrightarrow{p} & S
\end{array}$$

for all $n \geq 1$.

Proof. The if part is just like the proof of the box version of Joyal lifting. \qed

We reformulate this criterion. Consider the box power map

$$q := p^{\square(\{1\} \subset \Delta^1)}: \text{Map}(\Delta^1, M) \to \text{Map}(\Delta^1, S) \times_{\text{Map}(\{1\}, S)} \text{Map}(\{1\}, M).$$

Then the above proposition says that f is p-cartesian iff a lift exists in every diagram

$$\begin{array}{ccc}
\partial \Delta^n & \xrightarrow{a} & \text{Map}(\Delta^1, M) \\
\downarrow & & \downarrow q \\
\Delta^n & \xleftarrow{b} & \text{Map}(\Delta^1, S) \times_{\text{Map}(\{1\}, S)} \text{Map}(\{1\}, M)
\end{array}$$

such that $n \geq 1$ and $a(n) = f \in \text{Map}(\Delta^1, M)_0$.

54.5. **Uniqueness of lifts to Cartesian edges.** Let $U \subseteq \text{Map}(\Delta^1, M)$ be the full subsimplicial set spanned by the vertices which represent p-cartesian edges. Likewise, let $V \subseteq \text{Map}(\Delta^1, S) \times_{\text{Map}\{1\}, S} \text{Map}\{1\}, M)$ denote the essential image of U under q, i.e., the full subsimplicial set spanned by the vertices $q(U_0)$. Obviously, the map q restricts to a map $q': U \rightarrow V$.

Note in particular that V_0 is the subset of $\{ (g, y) \in S_1 \times M_0 \mid g_1 = p(y) \}$ such that there exists a Cartesian edge $f \in M_1$ with $f_1 = y$ and $p(f) = g$, and the preimage of (g, y) under $q': U \rightarrow V$ is the set of all choices of lifts. The following in particular asserts a kind of uniqueness for choices of lifts.

54.6. **Proposition.** The map $q': U \rightarrow V$ is a trivial fibration.

Proof. Consider

$$
\begin{array}{ccc}
\partial \Delta^n & \xrightarrow{a} & U \\
\downarrow & qU & \downarrow q \\
\Delta^n & \xrightarrow{\nabla} & V \\
& \text{Map}(\Delta^1, M) & \text{Map}(\Delta^1, S) \times_{\text{Map}\{1\}, S} \text{Map}\{1\}, M)
\end{array}
$$

If $n \geq 1$, then a lift $s: \Delta^n \rightarrow \text{Map}(\Delta^1, M)$ exists by the previous proposition, since $a(n) \in U_0 \subseteq \text{Map}(\Delta^1, M)_0$ represents a p-cartesian edge. Because $(\partial \Delta^n)_0 = (\Delta^n)_0$ when $n \geq 1$, we see that s maps into the full subcomplex U.

If $n = 0$, this amounts to $U_0 \rightarrow V_0$ being surjective, which holds by definition.

54.7. **Cartesian fibration.** A **cartesian fibration** is a map $p: M \rightarrow S$ which is an inner fibration, and is such that for all $(g, y) \in S_1 \times M_0$ with $g_1 = p(y)$, there exists a p-cartesian edge f with $p(f) = g$ and $f_1 = y$.

54.8. **Example.** Every left or right fibration is a cartesian fibration, since all edges are cartesian.

By the above, we see that an inner fibration $p: M \rightarrow S$ is a cartesian fibration if and only if $V = \text{Map}(\Delta^1, S) \times_{\text{Map}\{1\}, S} \text{Map}\{1\}, M)$.

54.9. **Cartesian correspondences.** Given a map $p: M \rightarrow S$, for any element $a \in S_k$ write $M_a := \text{Map}_{S}(\Delta^k, M) = \text{Map}_{S}(a, p)$.

Note that if $a = bf$ for some simplicial operator $f: [k] \rightarrow [l]$, we obtain an induced restriction map $f^*: M_b \rightarrow M_a$.

Given a correspondence $p: M \rightarrow \Delta^1$, we obtain

$$
C = M_{(0)} \xleftarrow{(0)^*} M_{(01)} \xrightarrow{(1)^*} M_{(1)} = D.
$$

Note that these are all quasicategories. The objects of $M_{(01)}$ are precisely the edges in M lying over (01).

54.10. **Proposition.** Let $p: M \rightarrow S$ be a cartesian fibration, and let $M_{\text{cart}}^{(01)} \subseteq M_{(01)}$ be the full subcategory spanned by elements corresponding to cartesian edges. Then $M_{(01)}^{\text{cart}} \rightarrow M_{(1)}$ is a trivial fibration.
Proof. Every square in

\[
\begin{array}{ccc}
M_{(01)}^{\text{cart}} & \rightarrow & U \\
\downarrow & & \downarrow i \\
M_{(01)} & \rightarrow & \text{Map}(\Delta^1, M) \\
\downarrow & & \downarrow q \\
M_{(1)} & \rightarrow & \text{Map}(\Delta^1, \Delta^1) \times \text{Map}(\{1\}, \Delta^1) \text{Map}(\{1\}, M) \\
\downarrow & & \downarrow \\
\{\text{id}_{\Delta^1}\} & \rightarrow & \text{Map}(\Delta^1, \Delta^1) \rightarrow \text{Map}(\{1\}, \Delta^1)
\end{array}
\]

is a pullback. The result follows because \(qi = q'\) is a trivial fibration. \(\square\)

More generally, given an inner fibration \(p: M \rightarrow S\) and an element \(a \in S_k\), the objects of the quasicategory \(M_a\) correspond to \(k\)-dimensional elements \(b \in M_k\) such that \(p(b) = a\). Let \(M_a^{\text{cart}} \subseteq M_a\) denote the full subcategory spanned by objects corresponding to \(b \in M_k\) such that all edges of \(b\) are \(p\)-cartesian.

54.11. Proposition. Let \(p: M \rightarrow S\) be an inner fibration, and \(f \in M_1\) an edge. Consider

\[
f: \Delta^k \times \{n\} \rightarrow (\Lambda^k_j \times \Delta^n) \cup \partial \Delta^k \times \partial \Delta^n = M
\]

where \(\Lambda^k_j \subseteq \Delta^k\) is a right horn inclusion, and \(f\) represents a \(p\)-cartesian edge. Then a lift exists whenever \(n, k \geq 1\), and also when \(k \geq 2, n = 0\).

Proof. This should also be like the box version of Joyal lifting. Note that if \(k = 0\), we recover the definition of \(p\)-cartesian edge. \(\square\)

This admits a reformulation: if \(f\) is \(p\)-cartesian, then if \(0 < j \leq k\) and \(a(n) = f\) is \(p\)-cartesian there is a lift in

\[
\begin{array}{ccc}
\partial \Delta^n & \rightarrow & \text{Map}(\Delta^k, M) \\
\downarrow^a & & \downarrow^q \\
\Delta^n & \rightarrow & \text{Map}(\Delta^k, S) \times \text{Map}(\Lambda^k_j, S) \text{Map}(\Lambda^k_j, M)
\end{array}
\]

when \(k \geq 1\) and \(n \geq 1\), or for all \(n \geq 0\) if \(k \geq 2\).

54.12. Cartesian fibrations and right fibrations.

54.13. Proposition. [Lur09, 2.4.2.4] A map \(p: M \rightarrow S\) is a right fibration iff it is a cartesian fibration whose fibers are Kan complexes.

Proof. We have already seen that a right fibration is a cartesian fibration, and has Kan complexes as fibers.

Now suppose \(p\) is cartesian fibration with Kan complex fibers. Let \(f: x \rightarrow y\) be an edge in \(M\). Since \(p\) is cartesian, there exists a \(p\)-cartesian edge \(f': x' \rightarrow y\) over \(p(f)\). Since \(p\) is cartesian fibration and \(f'\) a cartesian edge, there exists \(a \in M_2\) with \(a_{02} = f\) and \(a_{12} = f'\) and \(p(a) = (p(f))_{001}\). Thus \(g := a_{01}\) is an edge in the fiber over \((p(f))_0\), so is an isomorphism in that fiber. \(\square\)
54.14. **Mapping space criterion for cartesian edges.**

54.15. **Proposition.** [Lur09, 2.4.4.3] Let $p: C \to D$ be an inner fibration between quasicategories, and $f: x \to y$ a morphism in C. The following are equivalent.

1. f is p-cartesian.
2. For every $c \in C_0$, the diagram

$$
\begin{array}{ccc}
\text{map}_C(c, x) & \xrightarrow{f_\ast} & \text{map}_C(c, y) \\
\downarrow & & \downarrow \\
\text{map}_D(p(c), p(x)) & \xrightarrow{p(f)_\ast} & \text{map}_D(p(c), p(y))
\end{array}
$$

is a homotopy pullback.

55. **Limits and colimits as functors**

Suppose J and C are categories. We say that C has all J-colimits if every functor $F: J \to C$ has a colimit in J. It is a standard observation that if F is such a functor, then we can assemble a functor

$$
colim_J: \text{Fun}(J, C) \to C.
$$

In fact, we can regard this functor as a composite of functors

$$
\text{Fun}(J, C) \xrightarrow{s} \text{Fun}(J^{op}, C) \xrightarrow{\text{eval. at } v} C,
$$

where s is some section of the restriction functor $\text{Fun}(J^{op}, C) \to \text{Fun}(J, C)$ which takes values in colimit cones.

Even when C does not have all J-colimits, we can assert the following. Consider the diagram

$$
\begin{array}{ccc}
\text{Fun}^{\text{colim cone}}(J^{op}, C) & \xrightarrow{p} & \text{Fun}^{\text{colim cone}}(J^{op}, C) \\
\downarrow & & \downarrow \\
\text{Fun}^{\text{colim}}(J, C) & \xrightarrow{\text{eval. at } v} & \text{Fun}(J, C)
\end{array}
$$

in which the objects on the left are the evident full subcategories of the corresponding objects on the right, i.e., the ones consisting of colimit cones, and of functors which admit colimits. Then p is an equivalence of categories, and in fact is a trivial fibration. Therefore there is a contractible groupoid of sections of p, and any section s gives rise to a colimit functor

$$
\text{Fun}^{\text{colim}}(J, C) \xrightarrow{s} \text{Fun}^{\text{colim cone}}(J^{op}, C) \xrightarrow{\text{eval. at } v} C.
$$

We want to prove the analogous statement for quasicategories. Thus, given a quasicategory C and a simplicial set S, let $\text{Fun}^{\text{colim cone}}(S^{op}, C) \subseteq \text{Fun}(S^{op}, C)$ denote the full subcategory spanned by $S^{op} \to C$ which are colimit cones, and let $\text{Fun}^{\text{colim}}(S, C) \subseteq \text{Fun}(S, C)$ denote the full subcategory spanned by $S \to C$ for which a colimit exists.

55.1. **Proposition.** The induced projection $q: \text{Fun}^{\text{colim cone}}(S^{op}, C) \to \text{Fun}^{\text{colim}}(S, C)$ is a trivial fibration.

We refer to this as the **functoriality of colimits**. We will prove it below.

The strategy is to show (1) that q is an isofibration, and (2) that q is fully faithful and essentially surjective. Then (42.1) applies to show that q is a categorical equivalence, and so a trivial fibration by (43.1).

Parts of this are already clear. For instance, q is certainly an inner fibration, since $p: \text{Fun}(S^{op}, C) \to \text{Fun}(S, C)$ is one, and q is the restriction of p to full subcategories. Likewise, q is manifestly essentially surjective.
55.2. Conical maps. In what follows, C will be a quasicategory and S a simplicial set, and we write

$$V = V(S) := \text{Fun}(S^\circ, C), \quad U = U(S) := \text{Fun}(S, C).$$

Let $p: V \to U$ be the evident restriction map.

Let’s say that a morphism $\hat{\alpha}: \hat{f} \to \hat{g}$ in V is \textbf{conical} if its evaluation $\hat{\alpha}(v): \hat{f}(v) \to \hat{g}(v)$ at the cone point of S° is an isomorphism in C.

“Conical” here is really equivalent to “p-Cartesian morphism” where $p: \text{Fun}(S^\circ, C) \to \text{Fun}(S, C)$. This whole section needs to have that observation baked in.

What follows are two propositions involving conical maps. We will prove them soon. The first says that any morphism in U can be lifted to a \textit{conical} morphism in V with prescribed target.

55.3. Proposition. Fix a quasicategory C and a simplicial set S. Suppose given

- a functor $\hat{g}: S^\circ \to C$, and
- a natural transformation $\alpha: f \Rightarrow g$ of functors $S \to C$ such that $g = \hat{g}|S$.

Then there exists a conical morphism $\hat{\alpha}: \hat{f} \to \hat{g}$ in V such that $\hat{\alpha}|S = \alpha$.

$$
\begin{array}{ccc}
\{1\} & \xrightarrow{\hat{g}} & \text{Fun}(S^\circ, C) = V \\
\downarrow & & \downarrow \hat{\alpha} \\
\Delta^1 & \xrightarrow{\text{conical}} & \text{Fun}(S, C) = U \\
\end{array}
$$

The second says that morphisms in V can be “transported” along conical maps.

55.4. Proposition. Fix a quasicategory C, simplicial set S, and a map $\hat{\alpha}: \hat{f} \to \hat{g}$ in V, and let $\alpha: f \to g$ denote $\hat{\alpha}|S$. For any object \hat{h} of V, consider the square

$$
\begin{array}{ccc}
\text{map}_V(\hat{h}, \hat{f}) & \xrightarrow{\hat{\alpha}_\circ} & \text{map}_V(\hat{h}, \hat{g}) \\
\downarrow & & \downarrow \\
\text{map}_U(h, f) & \xrightarrow{\alpha_\circ} & \text{map}_U(h, g) \\
\end{array}
$$

where $h = \hat{h}|S$, and the horizontal maps are induced by postcomposition with $\hat{\alpha}$ and α respectively. If $\hat{\alpha}$ is conical, then the above square is a homotopy pullback square.

We will explain and prove these two propositions soon. For the time being, you should convince yourself that if C is the nerve of an ordinary category, then both propositions are entirely straightforward to prove.

55.5. Proof of functoriality of colimits, using properties of conical maps. Recall that $\hat{f}: S^\circ \to C$ extending $f: S \to C$ is a colimit cone if and only if it corresponds to an initial object of $C_{/f}$. Using the categorical equivalences

$$F(f) \to C_{/f} \leftarrow C_{f/}$$

where $F(f) \subseteq V$ is the fiber of $p: V \to U$ over f, we see that it is equivalent to say that \hat{f} is initial in $F(f)$.

The following gives a criterion for being a colimit cone in terms of the whole functor category $V = \text{Fun}(S^\circ, C)$, rather than just in terms of the fiber over some f.

55.6. Proposition. A functor $\hat{f}: S^\circ \to C$ is a colimit cone if and only if

$$p': \text{map}_V(\hat{f}, \hat{g}) \to \text{map}_U(f, g)$$

is a weak equivalence for every $\hat{g}: S^\circ \to C$, $g = \hat{g}|S = p(\hat{g})$.
Proof. Since \(p : V \to U \) is a categorical fibration, the induced maps \(p' \) on mapping spaces are Kan fibrations. Thus, \(p' \) is a weak equivalence if and only if its fibers are contractible.

\((\Leftarrow)\) Suppose every \(p' \) is a weak equivalence. Then in particular \(p' \) is a weak equivalence for any \(\hat{g} : S^\circ \to C \) such that \(\hat{g}|S = f \). In this case, the fiber of \(p' \) over \(1_f \in \text{map}_U(f,f) \) is precisely the mapping space \(\text{map}_F(f)(\hat{f},\hat{g}) \) in the fiber quasicategory \(F(f) \subseteq \text{Fun}(S^\circ,C) \), and this fiber is contractible. Therefore, \(\hat{f} \) is an initial object of \(F(f) \), and therefore \(\hat{f} \) is initial in \(C_{f/} \) by the above discussion. We have shown that \(\hat{f} \) is a colimit cone.

\((\Rightarrow)\) Suppose \(\hat{f} \) is a colimit cone. Therefore for \(\hat{f}' \) such that \(\hat{f}'|S = f \) the fiber of \(\text{map}_U(\hat{f},\hat{f}') \to \text{map}_U(f,f) \) over \(1_f \) is contractible. We need to show that the fiber of \(p' : \text{map}_V(\hat{f},\hat{g}) \to \text{map}_U(f,g) \) over a general \(\alpha \in \text{map}_V(f,g) \) is contractible.

Given such an \(\alpha \), choose a conical map \(\hat{\alpha} : \hat{f}' \to \hat{g} \) with \(\hat{\alpha}|S = \alpha \) (55.3), and consider the resulting square

\[
\begin{array}{ccc}
\text{map}_V(\hat{f},\hat{f}') & \xrightarrow{\hat{\alpha}_o} & \text{map}_V(\hat{f},\hat{g}) \\
p' \downarrow & & \downarrow p'' \\
\text{map}_U(f,f) & \xrightarrow{\alpha_o} & \text{map}_U(f,g) \\
1_f & \xrightarrow{1_f} & \alpha
\end{array}
\]

Since \(\hat{\alpha} \) is conical, the square is a homotopy pullback square (55.4). Therefore, the fiber of \(p'' \) over \(\alpha \) is weakly equivalent to the fiber of \(p' \) over \(1_f \), which is contractible since \(\hat{f} \) is a colimit cone. \(\square \)

Proof of (55.1). First we show that \(q : \text{Fun}^{\text{colim cone}}(S^\circ,C) \to \text{Fun}^{3\text{colim}}(S,C) \) is an isofibration; we have already observed that it is an inner fibration. Given an isomorphism \(\alpha : f \to g \) between objects in \(\text{Fun}^{3\text{colim}}(S,C) \subseteq U \) and a choice of colimit cone \(\hat{g} \) over \(g \), chose a conical lift \(\hat{\alpha} : \hat{f} \to \hat{g} \). The arrow \(\hat{\alpha} : S^\circ \times \Delta^1 \to C \) restricts to an isomorphism at each vertex of \(S^\circ \), and so is a natural isomorphism by the objectwise criterion for natural isomorphisms. Thus \(\hat{f} \) is also a colimit cone by (55.6), so \(\hat{\alpha} \) is an isomorphism in \(\text{Fun}^{\text{colim cone}}(S^\circ,C) \).

We have already observed that \(q \) is essentially surjective (in fact, it is surjective on vertices). That \(q \) is fully faithful is immediate from (55.6). \(\square \)

55.7. Proof of properties of conical maps.

Proof of (55.3). Recall the situation: we are given a natural transformation \(\alpha : f \Rightarrow g \) of functors \(S \to C \), and a lift \(\hat{g} : S^\circ \to C \) of the target to the cone, and we want to find a conical lift of \(\alpha \):

\[
\begin{tikzcd}
\{1\} \ar[r, shift right] & \text{Fun}(S^\circ,C) \\
\Delta^1 \ar[u, shift right] \ar[r, shift right, conical] \ar[u, hook] & \text{Fun}(S,C) \ar[u, shift right]
\end{tikzcd}
\]

We make use of a natural map

\[
\kappa : S^\circ \times K \to (S \times K)^\circ.
\]

Note that this map sends \(\{v\} \times K \) to the cone point \(\{v\} \). Consider the composite

\[
\lambda : (S \times \Delta^1) \cup_{S \times \{1\}} (S^\circ \times \{1\}) \to S^\circ \times \Delta^1 \xrightarrow{\kappa} (S \times \Delta^1)^\circ
\]

where the first map is the box-product \((S \subset S^\circ) \square \{\{1\} \subseteq \Delta^1\} \). By inspection, we see that the composite map can be identified with the box-join

\[
(S \times \{1\} \subseteq S \times \Delta^1) \sqcup (\emptyset \subseteq \Delta^0).
\]
Since \(\text{RHorn} \Box \text{Cell} \subseteq \text{RHorn} \) (48.4) we have that \((S \times \{1\} \subseteq S \times \Delta^1) \) is right anodyne. Likewise, since \(\text{RHorn} \Box \text{Cell} \subseteq \text{InnHorn} \) (27.13), we conclude that \(\lambda \) is inner anodyne. Therefore, an extension \(\pi \) exists in

\[
\begin{array}{ccc}
(S \times \Delta^1) \cup_{S \times \{1\}} (S^c \times \{1\}) & \xrightarrow{(\alpha, \tilde{g})} & C \\
\downarrow & & \downarrow \\
S^c \times \Delta^1 & \xrightarrow{\kappa} & (S \times \Delta^1)^c
\end{array}
\]

We set \(\tilde{\alpha} := \pi \circ \kappa \). It is clear that \(\tilde{\alpha} \) is conical: \(\hat{\alpha}(v) \) is the identity map of \(\overline{\alpha}(v) \).

For the proof of (55.4), let’s first note that, as stated, it actually doesn’t make sense! This proposition asserts that for conical \(\hat{\alpha} \), the diagram

\[
\begin{array}{ccc}
\text{map}_V(\hat{h}, \hat{f}) & \xrightarrow{\tilde{\alpha}_o} & \text{map}_V(\hat{h}, \hat{g}) \\
\downarrow & & \downarrow \\
\text{map}_U(h, f) & \xrightarrow{\alpha_o} & \text{map}_U(h, g)
\end{array}
\]

is a homotopy pullback. However, the horizontal maps (“postcomposition” with \(\alpha \) and \(\tilde{\alpha} \)) are only defined as a homotopy class of maps in \(h\text{Kan} \). For instance, \(\tilde{\alpha}_o \) is the homotopy class defined by the zig-zag around the left and top of the diagram

\[
\begin{array}{ccc}
\text{map}_U(h, f, g) & \xrightarrow{\text{comp}} & \text{map}_U(h, g) \\
\sim & & \sim \\
\text{map}_U(h, f) \times \{\alpha\} & \xrightarrow{} & \text{map}_U(h, f) \times \text{map}(f, g)
\end{array}
\]

where the left-hand square is a pullback. The correct statement of (55.4) is that in

\[
\begin{array}{ccc}
\text{map}_V(\hat{h}, \hat{f}) & \xleftarrow{\sim} & \text{map}_V(\hat{h}, \hat{f}, \hat{g}) \\
\downarrow & & \downarrow \\
\text{map}_U(h, f) & \xleftarrow{\sim} & \text{map}_U(h, f) \times \text{map}(f, g)
\end{array}
\]

the right-hand square is a homotopy pullback.

We can refine this a little further. Fix a map \(e: \Delta^{1,2} \rightarrow C \). For a simplicial set \(S \), let \(K \subseteq S^c \times \Delta^2 \) be a subcomplex containing the edge \(\{v\} \times \Delta^{1,2} \), and define \(\text{Map}(K, C)_e \) by the pullback square

\[
\begin{array}{ccc}
\text{Map}(K, C)_e & \xrightarrow{} & \text{Map}(K, C) \\
\{e\} & \xrightarrow{} & \text{Map}(\{v\} \times \Delta^{1,2}, C)
\end{array}
\]

To prove our proposition, it suffices to show that for every isomorphism \(e \) in \(C \), the map

\[
\text{Map}(S^c \times \Delta^2, C)_e \rightarrow \text{Map}((S^c \times \Lambda^2_2) \cup_{S \times \Lambda^2_2} (S \times \Delta^2), C)_e
\]
is a trivial fibration. Equivalently, we must produce a lift in each diagram of the form

\[(S^\circ \times \partial \Delta^m) \cup_{S \times \Delta^m} (S \times \Delta^m) \rightarrow \text{Map}(\Delta^2, C) \]

\[\{v\} \times \Delta^{\{1,2\}} \rightarrow S^\circ \times \Delta^m \rightarrow \text{Map}(\Lambda_2^2, C) \rightarrow \text{Map}(\Delta^{\{1,2\}}, C) \]

We reduce to producing a lift in

\[e \]

\[\{n\} \times \Delta^{\{1,2\}} \rightarrow (\Delta^n \times \Lambda_2^2) \cup_{\partial \Delta^n \times \Lambda_2^2} (\partial \Delta^n \times \Delta^2) \rightarrow C \]

\[\Delta^n \times \Delta^2 \rightarrow \]

where e is an isomorphism in C. This is precisely the box-version of Joyal extension.

56. More stuff

I’m not sure what this is needed for.

Recall that the join constructions $K \star -$ and $- \star K$ are colimit preserving functors $sSet \rightarrow sSet_{K/}$ to the category of simplicial sets under K. In particular, viewed as functors $sSet \rightarrow sSet$ to plain simplicial sets, they preserve pushouts, and transfinite compositions.

56.1. Proposition. If A is a class of maps in $sSet$, then $K \star A \subseteq K \star A$ and $A \star K \subseteq A \star K$.

Proof. Check that $K \star - : sSet \rightarrow sSet$ preserves isomorphisms, transfinite composition, pushouts, and retracts. □

56.2. Remark. Given $f : X \rightarrow Y$ and K, we have a factorization of $K \star f$ as

$K \star X \rightarrow (K \star X) \amalg_{\varnothing \star X} (\varnothing \star Y) \xrightarrow{(\varnothing \subseteq K) \amalg f} K \star Y$.

56.3. Proposition. We have $\Delta^0 \star \text{Cell} \subseteq \text{LHorn}$ and $\text{Cell} \star \Delta^0 \subseteq \text{RHorn}$.

56.4. Proposition. Let C be a quasicategory and x an object of C. Then x is an initial object iff $\{x\} \rightarrow C$ is left anodyne, and x is a terminal object iff $\{x\} \rightarrow C$ is right anodyne.

Proof. (\Rightarrow) Let x be terminal, and consider $j : \{x\} \rightarrow C$. Since j° is right anodyne, it suffices to show that j is a retract of j°. To do this, we construct a map r fitting into

\[\text{id} \]

\[\{x\} \xrightarrow{j} \{x\}^{\circ} \xrightarrow{j} \{x\} \]

\[j \]

\[C \xrightarrow{\text{id}} C^{\circ} \xrightarrow{r} C \]

\[\text{id} \]
This amounts to solving the lifting problem
\[
\begin{array}{ccc}
C \cup \{x\} & \xrightarrow{(\text{id},1_x)} & C \\
\downarrow & & \downarrow \\
\text{C} & \xleftrightarrow{\implies} & C \\
\end{array}
\]
\[
\begin{array}{ccc}
\{x\} & \xrightarrow{1_x} & C_x/ \\
\downarrow & & \downarrow \\
C & = & C \\
\end{array}
\]
Since \(x\) is terminal, \(C_x/ \to C\) is a trivial fibration \(\Rightarrow\), so a lift exists.

\((\Leftarrow)\) Suppose \(j: \{x\} \to C\) is right anodyne. Since \(C/_{x} \to C\) is a right fibration, a lift exists in
\[
\begin{array}{ccc}
\{x\} & \xrightarrow{1_x} & C_x/ \\
\downarrow & & \downarrow \\
C & = & C \\
\end{array}
\]
which is equivalent to \(x\) being terminal. \(\square\)

56.5. \textbf{Corollary.} Let \(p: D \to C\) be a right fibration between quasicategories, and let \(x\) be an object of \(C\). Then the induced map
\[
\text{Map}(C_{/x}, D) \to \text{Map}(\{1_x\}, D) \times_{\text{Map}(\{1_x\}, C)} \text{Map}(C_{/x}, C)
\]
is a trivial fibration. In particular, the map
\[
\text{Map}_{C}(C_{/x}, D) \to \text{Map}_{C}(\{1_x\}, D)
\]
induced by restriction over the projection map \((C_{/x} \to C) \in \text{Map}(C_{/x}, C)\) is a trivial fibration between Kan complexes.

57. \textbf{Straightening and unstraightening}

Let \(\mathcal{D}_{\Delta^n}: \mathcal{C}(\Delta^n)^{\text{op}} \to \text{sSet}\) be the simplicially enriched functor defined as follows.

- For each object \(x \in \{0, \ldots, n\}\), set
 \[
 \mathcal{D}_{\Delta^n}(x) := N\mathcal{P}_\ell(x),
 \]
 the nerve of the poset
 \[
 \mathcal{P}_\ell(x) := \{S \mid \{x\} \subseteq S \subseteq [x, n]\}
 \]
of subsets of the interval \([x, n]\) = \(\{x, \ldots, n\}\) which contain the left endpoint.
- The structure of enriched functor is induced by the union operation on subsets:
 \[
 (T, S) \mapsto T \cup S: \mathcal{P}(x, y) \times \mathcal{P}(y) \to \mathcal{P}(x).
 \]
- For each map \(\delta: \Delta^m \to \Delta^n\), we define a natural transformation
 \[
 \mathcal{D}_\delta: \mathcal{D}_{\Delta^m} \to \mathcal{D}_{\Delta^n} \circ \mathcal{C}(\delta)^{\text{op}}
 \]
of simplicially enriched functors \(\mathcal{C}(\Delta^m)^{\text{op}} \to \text{sSet}\), which at each object \(x\) of \(\mathcal{C}(\Delta^m)^{\text{op}}\) is a map \(\mathcal{D}_{\Delta^m}(x) \to \mathcal{D}_{\Delta^n}(\delta x)\) induced by the map of posets
 \[
 S \mapsto \delta(S): \mathcal{P}_\ell(x) \to \mathcal{P}_\ell(\delta x).
 \]

57.1. \textbf{Remark.} The functor \(\mathcal{D}_{\Delta^n}: \mathcal{C}(\Delta^n)^{\text{op}} \to \text{sSet}\) is isomorphic to the representable functor \(\text{Map}_{\mathcal{C}(\Delta^n)^{\text{op}}}(\cdot, v)\), where \(v\) represents the cone point of \((\Delta^n)^{\text{op}}\). Likewise, the natural transformation
\[
\mathcal{D}_\delta: \mathcal{D}_{\Delta^m} \to \mathcal{D}_{\Delta^n} \circ \mathcal{C}(\delta)^{\text{op}}
\]
coincides with the transformation
\[
\text{Map}_{\mathcal{C}(\Delta^m)^{\text{op}}}(\cdot, v) \xrightarrow{\mathcal{C}(\delta)^{\text{op}}} \text{Map}_{\mathcal{C}(\Delta^n)^{\text{op}}}(\delta(-), v)
\]
induced by \(\delta^{\text{op}}: (\Delta^m)^{\text{op}} \to (\Delta^n)^{\text{op}}\).
Fix a simplicial set S, and consider a simplicially enriched functor $F: \mathcal{C}(S)^{\text{op}} \to \text{sSet}$. We define a morphism
\[
\text{Un}_S(F): X \to S
\]
of simplicial sets, called the \textbf{unstraightening} of F over S, as follows.

- An n-dimensional element of $\text{Un}_S F$ is a pair
 \[
 f: \Delta^n \to S, \quad t: \mathcal{D}_{\Delta^n} \to F \circ \mathcal{C}(f),
 \]
 where f is a map of simplicial sets, and t is a map of simplicially enriched functors $\mathcal{C}(\Delta^n)^{\text{op}} \to \text{sSet}$.

- To a map $\delta: \Delta^m \to \Delta^n$ we have an induced map $(\text{Un}_S F)_n \to (\text{Un}_S F)_m$, which sends an n-dimensional element (f,t) to the pair
 \[
 \Delta^m \xrightarrow{\delta} \Delta^n \xrightarrow{f} S, \quad \mathcal{D}_{\Delta^m} \xrightarrow{\mathcal{D}(\delta)} \mathcal{D}_{\Delta^n} \circ \mathcal{C}(\delta)^{\text{op}} \xrightarrow{\text{to} \mathcal{C}(\delta)^{\text{op}}} F \circ \mathcal{C}(f) \circ \mathcal{C}(\delta)^{\text{op}}.
 \]

58. Cartesian Fibrations

Let $p: C \to D$ a functor between ordinary categories. A morphism $f: x' \to x$ in C is called \textbf{p-Cartesian} if for every object c of C the evident commutative square
\[
\begin{array}{ccc}
\text{Hom}_C(c,x') & \xrightarrow{f_0} & \text{Hom}_C(c,x) \\
\downarrow p & & \downarrow p \\
\text{Hom}_D(p(c),p(x')) & \xrightarrow{p(f)_0} & \text{Hom}_D(p(c),p(x))
\end{array}
\]
is a pullback of squares.

Given an object $x \in \text{ob} \ C$ and a morphism $g: y' \to p(x)$ in D, a \textbf{Cartesian lift of g at x} is a p-Cartesian morphism $f: x' \to x$ such that $p(f) = g$.

We say that $p: C \to D$ is a \textbf{Cartesian fibration} of categories if every pair $(x \in \text{ob} \ C, g: y' \to p(x) \in D)$ admits a Cartesian lift.

Here are some observations, whose verification we leave to the reader. Fix a functor $p: C \to D$.

- Every isomorphism in C is p-Cartesian.
- Every Cartesian lift of an isomorphism in D is itself an isomorphism.
- If $f: x' \to x$ is p-Cartesian, then for any $g: x'' \to x'$ in C, we have that g is p-Cartesian if and only if gf is p-Cartesian.
- Any two Cartesian lifts of g at x are “canonically isomorphic”.
 Explicitly, fix $g: y' \to y$ in D and an object x in C such that $y = p(x)$. If $f_1: x'_1 \to x$ and $f_2: x'_2 \to x$ are any two Cartesian lifts of g, then there exists a unique map $u: x'_1 \to x'_2$ such that $p(u) = 1_y$ and $f_2u = f_1$; the map u is necessarily an isomorphism.
- The map p is a right fibration if and only if it is a Cartesian fibration and every morphism in C is p-Cartesian.

Now suppose that $p: C \to D$ is a Cartesian fibration. For an object y of D, we write $C_y := p^{-1}(y)$ for the fiber of C over y.

- The map p is an isofibration.
- For each morphism $g: y' \to y$ in D and object x in C with $p(x) = y$, fix a choice of Cartesian lift \bar{g}_x of g at x. Using this data, we obtain functors
 \[
g^1: C_y \to C'_y
 \]
so that for morphism $\alpha: x_1 \to x_2$ in C_y, the map $g^i(\alpha)$ in $C_{y'}$ is the unique one fitting into

$$
\begin{array}{ccc}
 x_1' & \xrightarrow{\bar{g}_{x_1}} & x_1 \\
 \downarrow g^i(\alpha) & & \downarrow \alpha \\
 x_2' & \xrightarrow{\bar{g}_{x_2}} & x_2
\end{array}
$$

The functor g^i depends on the choices of Cartesian lifts of g. Any two set of choices of lifts give rise to isomorphic functors.

- For each pair of morphisms $g'' \xrightarrow{h} y' \xrightarrow{g} y$, we obtain a natural isomorphism of functors $\gamma: h^i \circ g^i \cong (hg)^i: C_y \to C_{y''}$.

This natural transformation is given by the unique maps γ_x in $C_{y''}$ fitting into

$$
\begin{array}{ccc}
 x'' & \xrightarrow{\bar{h}_x} & x' \\
 \downarrow \gamma_x & & \downarrow \bar{g}_x \\
 x''' & \xrightarrow{(gh)_x} & x
\end{array}
$$

Similarly, there is a natural isomorphism $\text{id} \cong (1_y)_!: C_y \to C_y$. The data of the functors g^i together with these natural isomorphisms define a pseudofunctor $D^{op} \to \text{Cat}$, which on objects sends $y \mapsto C_y$.

- We can produce an actual functor $F: D^{op} \to \text{Cat}$ with $F(y)$ equivalent to C_y as follows. Given functors $p': C' \to D$ and $p: C \to D$, let $\text{Fun}_D(C', C)$ denote the category of fiberwise functors and natural transformations; i.e., the fiber of $p_0: \text{Fun}(C', C) \to \text{Fun}(C', D)$ over q. Let $\text{Fun}_D^+(C', C) \subseteq \text{Fun}_D(C', C)$ denote the full subcategory of functors $f: C' \to C$ which take p'-Cartesian morphisms to p-Cartesian morphisms. We obtain a functor $F: D^{op} \to \text{Cat}$, given on objects by

$$
F(y) := \text{Fun}_D^+(D/y, C).
$$

One can show that restriction to $\{1_y\} \subseteq D/y$ defines an equivalence of categories $F(y) \to C_y$.

- Given D, there is a 2-category \mathcal{F}_D, whose objects are Cartesian fibrations $p: C \to D$; for any two objects $p: C \to D$ and $p': C' \to D$ we take $\text{Fun}_D^+(C', C)$ as the category of morphisms from p' to p. One can show that \mathcal{F}_D is 2-equivalent to the 2-category $\text{Fun}(D^{op}, \text{Cat})$.

Part 8. Appendices

59. Appendix: Generalized horns

A generalized horn34 is a subcomplex $\Lambda^n_S \subset \Delta^n$ of the standard n-simplex, where $S \subseteq [n]$ and

$$
(\Lambda^n_S)_k := \{ f: [k] \to [n] \mid S \not\subseteq f([k]) \}.
$$

In other words, a generalized horn is a union of some codimension 1 faces of the n-simplex:

$$
\Lambda^n_S = \bigcup_{s \in S} \Delta^{[n]-s}.
$$

34This notion is from [Joy08a, §2.2.1]. However, I have changed the sense of the notation: our Λ^n_S is Joyal’s $\Lambda^{[n]-S}$. I find my notation easier to follow, but note that it does conflict with the standard notation for horns. Maybe I should use something like $\Lambda^{[n]-S}$?
In particular,

\[\Lambda^n_{[n]} = \partial \Delta^n, \quad \Lambda^n_{n \setminus j} = \Lambda^n_j, \quad \Lambda^n_{\{j\}} = \Delta^{[n] \setminus j}, \quad \Lambda^n_\emptyset = \emptyset. \]

In general \(S \subseteq T \) implies \(\Lambda^n_S \subseteq \Lambda^n_T. \)

59.1. **Proposition** (Joyal [Joy08a, Prop. 2.12]). Let \(S \subseteq [n] \) be a proper subset.

1. \((\Lambda^n_S \subset \Delta^n) \in \mathrm{Horn} \) if \(S \neq \emptyset. \)
2. \((\Lambda^n_S \subset \Delta^n) \in \mathrm{LHorn} \) if \(n \in S. \)
3. \((\Lambda^n_S \subset \Delta^n) \in \mathrm{RHorn} \) if \(0 \in S. \)
4. \((\Lambda^n_S \subset \Delta^n) \in \mathrm{InnHorn} \) if \(S \) is not an “interval”; i.e., if there exist \(a < b < c \) with \(a, c \in S \) and \(b \notin S. \)

Proof. We start with an observation. Consider \(S \subseteq [n] \) and \(t \in [n] \setminus S. \) Observe the diagram

\[
\begin{array}{ccc}
\Delta^{[n] \setminus t} \cap \Lambda^n_S & \rightarrow & \Delta^{[n] \setminus t} \\
\Lambda^n_S & \downarrow & \Lambda^n_S \\
& \Lambda^n_{S \cup t} & \rightarrow & \Delta^n
\end{array}
\]

in which the square is a pushout, and the top arrow is isomorphic to the generalized horn \(\Lambda^n_{S \setminus t} \subset \Delta^{[n] \setminus t}. \) Thus, \((\Lambda^n_S \subset \Delta^n) \) is contained in the weak saturation of any set containing the two inclusions

\[\Lambda^n_{S \setminus t} \subset \Delta^{[n] \setminus t} \quad \text{and} \quad \Lambda^n_{S \cup t} \subset \Delta^n. \]

Each of the statements of the proposition is proved by an evident induction on the size of \([n] \setminus S, \) using the above observation. I’ll do case (4), as the other cases are similar. If \(S \subset [n] \) is not an interval, there exists some \(s < u < s' \) with \(s, s' \in S \) and \(u \notin S. \) If \([n] \setminus S = \{u\}\) then we already have an inner horn. If not, then choose \(t \in [n] \setminus (S \cup \{u\}), \) in which case \(S \cup t \) is not an interval in \([n], \) and \(S \) is not an interval in \([n] \setminus t. \) Therefore both \(\Lambda^n_{S \setminus t} \subset \Delta^{[n] \setminus t} \) and \(\Lambda^n_{S \cup t} \subset \Delta^n \) are inner anodyne by the inductive hypothesis. The proofs of the other cases are similar. \(\Box \)

59.2. **Proposition** (Joyal [Joy08a, Prop. 2.13]). For all \(n \geq 2, \) we have that \((I^n \subset \Delta^n) \in \mathrm{InnHorn}. \)

Proof. We can factor the inclusion spine inclusion as \(h_n = g_nf_n: \)

\[I^n \xrightarrow{f_n} \Delta^{\{1, \ldots, n\}} \cup I^n \xrightarrow{g_n} \Delta^n. \]

We show by induction on \(n \) that \(f_n, g_n, h_n \in \mathrm{InnHorn}, \) noting that the case \(n = 2 \) is immediate.

To show that \(f_n \in \mathrm{InnHorn}, \) consider the pushout square

\[
\begin{array}{ccc}
I^{\{1, \ldots, n\}} & \rightarrow & \Delta^{\{1, \ldots, n\}} \\
\downarrow & & \downarrow \\
I^n & \rightarrow & \Delta^{\{1, \ldots, n\}} \cup I^n
\end{array}
\]

in which the top arrow is isomorphic to \(h_{n-1}, \) which is in \(\mathrm{InnHorn} \) by induction.

To show that \(g_n \in \mathrm{InnHorn}, \) consider the diagram

\[
\begin{array}{ccc}
\Delta^{\{1, \ldots, n-1\}} \cup I^{\{0, \ldots, n-1\}} & \xrightarrow{g_{n-1}} & \Delta^{\{0, \ldots, n-1\}} \\
\downarrow & & \downarrow \\
\Delta^{\{1, \ldots, n\}} \cup I^n & \rightarrow & \Delta^{\{1, \ldots, n\}} \cup \Delta^{\{0, \ldots, n-1\}} \rightarrow \Delta^n
\end{array}
\]
in which the square is a pushout, the top horizontal arrow is isomorphic to \(g_{n-1} \), an element of \(\text{InnHorn} \) by induction, and the bottom right horizontal arrow is equal to \(\Lambda^n_{\{0,n\}} \subset \Delta^n \), which is in \(\text{InnHorn} \) by (59.1)(4).

\[\blacksquare \]

60. Appendix: Box product lemmas

Here is where I'll prove various statements mentioned in the text.

- \(\text{LHorn} \subset \text{Cell} \subset \text{LHorn} \) (48.4), proved in (60.1) below.
- \(\text{RHorn} \subset \text{Cell} \subset \text{RHorn} \) (48.4), proved in (60.1) below.
- \(\text{Horn} \subset \text{Cell} \), is a consequence of the above, since \(\text{Horn} = \text{LHorn} \cup \text{RHorn} \) and \(\text{LHorn} \cup \text{RHorn} \subset \text{Cell} \).
- \(\text{InnHorn} \subset \text{Cell} \subset \text{LHorn} \) (16.9), proved in (60.3) below.

60.1. Left and right horns. We prove the case of \(\text{LHorn} \subset \text{Cell} \subset \text{LHorn} \) here. Given this \(\text{RHorn} \subset \text{Cell} \subset \text{RHorn} \) follows since \(s\text{Set} \to \text{sSet} \) carries \(\text{LHorn} \) to \(\text{RHorn} \) and preserves \(\text{Cell} \).

Joyal [Joy08a, 2.25]\(^{35}\) observes that \((\Lambda^n_k \subset \Delta^n) \) is a retract of \((\Lambda^n_k \subset \Delta^n) \sqcap (\{0\} \subset \Delta^1) \) when \(0 \leq k < n \). The retraction is

\[\Delta^n \xrightarrow{s} \Delta^n \times \Delta^1 \xrightarrow{r} \Delta^n \]

defined by \(s(x) = (x, 1) \) and

\[r(x, 0) = \begin{cases} x & \text{if } x \leq k, \\ k & \text{if } x \geq k, \end{cases} \quad r(x, 1) = x. \]

Note that \(r(\Delta^n_{\{n-j \times \Delta^1}) = \Delta^n_{\{n-j \times \text{if } j \neq k, \text{ and } r(\Delta^n \times \{0\}) = \Delta^n_{\{0,...,k\} \subset \Delta^n_{\{n-(k+1)} \}

The existence of the retraction reduces showing \(\text{LHorn} \subset \text{Cell} \subset \text{LHorn} \) to proving

\[(\{0\} \subset \Delta^1) \sqcap \text{Cell} \subset \text{LHorn}, \]

since \((\Lambda^n_k \subset \Delta^n) \subset \text{Cell} \) and thus \((\Lambda^n_k \subset \Delta^n) \sqcap \text{Cell} \subset \text{Cell} \).

60.2. Lemma. We have that \((\{0\} \subset \Delta^1) \sqcap \text{Cell} \subset \text{LHorn} \).

Proof. . . . Let \(K = (\{0\} \times \Delta^n) \cup (\Delta^1 \times \partial \Delta^n) \), so that \((\{0\} \subset \Delta^1) \sqcap (\partial \Delta^n \subset \Delta^n) \) is the inclusion \(K \to \Delta^1 \times \Delta^n \). We will show that we can build \(\Delta^1 \times \Delta^n \) from \(K \) by an explicit sequence of steps, where in each case we attach an \((n+1) \)-sequence along a left horn.

For each \(0 \leq a \leq n \) let \(\tau_a \) be the \((n+1) \)-dimensional element of \(\Delta^1 \times \Delta^n \) defined by

\[\tau_a = \langle (0,0), \ldots, (0,a), (1,a), \ldots, (1,n) \rangle. \]

We obtain an ascending filtration of \(\Delta^1 \times \Delta^n \) by starting with \(K \) and attaching simplices in the following order:

\[\tau_n, \tau_{n-1}, \ldots, \tau_1, \tau_0. \]

The \(\tau \)s range through all non-degenerate \((n+1) \)-dimensional elements of \(\Delta^1 \times \Delta^n \), so \(K \cup \bigcup \tau_a = \Delta^1 \times \Delta^n \). (Here I am using the same notation for elements \(\tau_a \in (\Delta^1 \times \Delta^n)_{n+1} \) and for the corresponding subcomplex of \(\Delta^1 \times \Delta^n \) which is isomorphic to \(\Delta^{n+1} \)).

The claim is that each attachment is along a specified horn inclusion. More precisely, for \(a \in [n] \) the simplex \(\tau_a \) is attached to \(K \cup \bigcup_{k\geq a} \tau_k \) along the horn at the vertex \((0,a) \) in \(\tau_a \), i.e., via a \(\Lambda^n_{a+1} \subset \Delta^n \) horn inclusion. Note that if when \(a > 0 \) this is an inner horn, while when \(a = 0 \) this is the inclusion \(\Lambda^n_{a+1} \subset \Delta^n \); in either case, it is a left horn. Given the claim, it follows that \((\{0\} \subset \Delta^1) \sqcap (\partial \Delta^n \subset \Delta^n) \in \text{LHorn} \) as desired.

The proof of the claim amounts to the following list of elementary observations about \(\tau_a \):

\(^{35}\)Lurie [Lur09, 2.1.2.6] states this incorrectly.
• Every codimension-one face is contained in $\Delta^{1} \times \partial \Delta^{n}$ except: the face opposite vertex $(0, a)$, and the face opposite vertex $(1, a)$.
• The face opposite vertex $(1, a)$ is contained in $\{0\} \times \Delta^{n}$ if $a = n$, or is a face of τ_{a+1} if $a < n$.
• The face opposite vertex $(0, a)$ is not contained in $\Delta^{1} \times \partial \Delta^{n}$, nor in $\{0\} \times \Delta^{n}$. Nor is it contained in any τ_{i} with $i > a$ (because the vertex $(1, a)$ is in this face but not in τ_{i} with $i > a$).

Taken together these show that $\tau_{a} \cap (K \cup \bigcup_{k > a} \tau_{k})$ is the ath horn in the $(n + 1)$-simplex τ_{a}.

\[\square \]

60.3. Inner horns. Here is an argument for the key case for inner horns.

Consider $\Delta^{2} \to \Delta^{2} \times \Delta^{n} \xrightarrow{r} \Delta^{n}$, the unique maps which are given on vertices by

$$
 s(y) = \begin{cases}
(0, y) & \text{if } y < j, \\
(1, y) & \text{if } y = j, \\
(2, y) & \text{if } y > j,
\end{cases}
\quad
r(x, y) = \begin{cases}
 y & \text{if } x = 0 \text{ and } y < j, \\
 y & \text{if } x = 2 \text{ and } y > j, \\
j & \text{otherwise.}
\end{cases}
$$

These explicitly exhibit $(\Lambda^{n}_{j} \subset \Delta^{n})$ as a retract of $(\Lambda^{2}_{1} \subset \Delta^{2}) \square (\Lambda^{n}_{j} \subset \Delta^{n})$, so

$$
\text{InnHorn} \subseteq \{\Lambda^{2}_{1} \subset \Delta^{2}\} \square \text{Cell}.
$$

We have (17.5) that $\text{Cell} \sqcup \text{Cell} \subseteq \text{Cell}$, so the above implies that $\text{InnHorn} \sqcup \text{Cell} \subseteq \{\Lambda^{2}_{1} \subset \Delta^{2}\} \square \text{Cell}$. Thus the assertions “$\text{InnHorn} \sqcup \text{Cell} \subseteq \text{InnHorn}$” and “$(\Lambda^{2}_{0} \subset \Delta^{2}) \square \text{Cell} \subseteq \text{InnHorn}$” are equivalent. Thus both assertions follow from the following.

60.4. Lemma. For all $n \geq 0$ we have that $(\Lambda^{2}_{1} \subset \Delta^{2}) \square (\partial \Delta^{n} \subset \Delta^{n}) \in \text{InnHorn}$.

Proof. [Lur09, 2.3.2.1].

For each $0 \leq a \leq b < n$, let σ_{ab} be the $(n + 1)$-simplex of $\Delta^{2} \times \Delta^{n}$ defined by

$$
\sigma_{ab} = \langle (0, 0), \ldots, (0, a), (1, a), \ldots, (1, b), (2, b + 1), \ldots, (2, n) \rangle.
$$

For each $0 \leq a \leq b \leq n$, let τ_{ab} be the $(n + 2)$-simplex of $\Delta^{2} \times \Delta^{n}$ defined by

$$
\tau_{ab} = \langle (0, 0), \ldots, (0, a), (1, a), \ldots, (1, b), (2, b), \ldots, (2, n) \rangle.
$$

The set $\{\tau_{ab}\}$ consists of all the non-degenerate $(n + 2)$-dimensional elements. Note that σ_{ab} is a face of τ_{ab} and of $\tau_{a,b+1}$, but not a face of any other τ.

We attach simplices to $K := (\Lambda^{2}_{1} \times \Delta^{n}) \cup (\Delta^{2} \times \partial \Delta^{n})$ in the following order:

$$
\sigma_{00}, \sigma_{01}, \sigma_{11}, \sigma_{02}, \sigma_{12}, \sigma_{22}, \ldots, \sigma_{0,n-1}, \ldots, \sigma_{n-1,n-1},
$$

followed by

$$
\tau_{00}, \tau_{01}, \tau_{11}, \tau_{02}, \tau_{12}, \tau_{22}, \ldots, \tau_{0,n}, \ldots, \tau_{n,n}.
$$

The τs range through all the non-degenerate $(n + 2)$-dimensional elements of $\Delta^{2} \times \Delta^{n}$, so that $K \cup \bigcup_{\sigma_{a,b}} \cup \bigcup_{\tau_{a,b}} = \Delta^{2} \times \Delta^{n}$.

The claim is that each attachment is along an inner horn inclusion. More precisely, each σ_{ab} gets attached along the horn at the vertex $(1, a)$ in σ_{ab}, i.e., via a $\Lambda^{n+1}_{a+1} \subset \Delta^{n+1}$ horn inclusion, which is always inner since $a \leq b < n$. Likewise, each τ_{ab} gets attached along the horn at vertex $(1, a)$ in τ_{ab}, i.e., via a $\Lambda^{n+2}_{b+1} \subset \Delta^{n+2}$ horn inclusion, which is always inner since $a \leq b < n$.

The proof of the claim amounts to the following lists of elementary observations.

For $\sigma_{a,b}$:

• Every codimension-one face is contained in $\Delta^{2} \times \partial \Delta^{n}$, except the following: the face opposite vertex $(0, a)$, and the face opposite vertex $(1, a)$.
• The face opposite vertex $(0, a)$ is either contained in $\Lambda^{2}_{a} \times \Delta^{n}$ if $a = 0$, or a face of $\sigma_{a-1,b}$ if $a > 0$.

Proof. [Lur09, 2.3.2.1].
• The face of $\sigma_{a,b}$ opposite vertex $(1, a)$ is not contained in $\Delta^2 \times \partial \Delta^n$, nor in $\Lambda^2_0 \times \Delta^n$, nor in any $\sigma_{i,b}$ with $i < a$ (because of the vertex $(0, a)$), nor in any $\sigma_{i,j}$ with $i \leq j < b$ (because of the vertex $(1, b)$ if $a < b$, or the vertex $(0, a)$ if $a = b$).

For $\tau_{a,b}$ when $a < b$:
• Every codimension-one face is contained in $\Delta^2 \times \partial \Delta^n$ except the following: the face opposite vertex $(0, a)$, the face opposite vertex $(1, a)$, the face opposite vertex $(1, b)$, and the face opposite vertex $(2, b)$.
• The face opposite vertex $(2, b)$ is $\sigma_{a,b}$, while the face opposite vertex $(1, b)$ is $\sigma_{a,b-1}$.
• The face opposite vertex $(0, a)$ is either contained in $\Lambda^2_1 \times \Delta^n$ if $a = 0$, or is a face of $\tau_{a-1,b}$ if $a > 0$.
• The face opposite vertex $(1, a)$ is not contained in $\Delta^2 \times \partial \Delta^n$, nor in $\Lambda^2_1 \times \Delta^n$, nor in any $\sigma_{i,j}$ (because of the vertices $(1, b)$ and $(2, b)$), nor in any $\tau_{i,b}$ with $i < b$ (because of the vertex $(0, a)$), nor in any $\tau_{i,j}$ with $i \leq j < b$ (because of the vertex $(1, b)$).

For $\tau_{a,b}$ when $a = b$:
• Every codimension-one face is contained in $\Delta^2 \times \partial \Delta^n$ except the following: the face opposite vertex $(0, a)$, the face opposite vertex $(1, a) = (1, b)$, and the face opposite vertex $(2, b)$.
• The face opposite vertex $(2, b)$ is $\sigma_{a,b}$.
• The face opposite vertex $(0, a)$ is contained in $\Lambda^2_1 \times \Delta^n$ if $a = 0$, or is a face of $\tau_{a-1,b}$ if $a > 0$.
• The face opposite vertex $(1, a) = (1, b)$ is not contained in $\Delta^2 \times \partial \Delta^n$, nor in $\Lambda^2_1 \times \Delta^n$, nor in any $\sigma_{i,j}$ (because of the vertices $(0, a)$ and $(2, b)$), nor in any $\tau_{i,b}$ with $i < b$ (because of the vertex $(0, a)$), nor in any $\tau_{i,j}$ with $i \leq j < b$ (because of the vertex $(0, a)$).

\[\square\]

60.5. A pushout-product version of Joyal lifting. We now give a proof of (31.6): we will prove the case of $(i, j) = (0, 0)$, i.e., given $p: C \to D$ an inner fibration of quasicategories, $n \geq 1$, and

\[
\begin{array}{ccc}
\Delta^1 \times \{0\} & \xrightarrow{f} & (\{0\} \times \Delta^n) \cup \{0\} \times \partial \Delta^n \subset \Delta^1 \times \partial \Delta^n \\
\downarrow & & \downarrow p \\
\Delta^1 \times \Delta^n & \xrightarrow{\partial} & D
\end{array}
\]

such that f represents an isomorphism in C, we will construct a lift. (Note that if $n = 0$ such a lift does not generally exist.)

We refer to the proof of (60.2), where we observed that we can build $\Delta^1 \times \Delta^n$ from $K = (\{0\} \times \Delta^n) \cup (\Delta^1 \times \partial \Delta^n)$ by successively attaching a sequence τ_n, \ldots, τ_0 of $(n + 1)$-simplices along horns; in particular, τ_a is attached to $K \cup \bigcup_{k > a} \tau_k$ along a horn inclusion isomorphic to $\Lambda^{n+1}_a \subset \Delta^{n+1}$.

Given this, we thus construct the desired lift by inductively choosing a lift defined on each τ_a relative to the given lift on its Λ^{n+1}_a-horn. When $a > 0$ such a lift exists because p is an inner fibration and τ_a is attached along an inner horn, while when $a = 0$ a lift exists by Joyal lifting (29.13), as $\Delta^1 \times \{0\}$ is the leading edge of τ_0.

61. Appendix: Weak equivalences and homotopy groups

61.1. Reduction to Kan fibrations. Say that a map $f: X \to Y$ between Kan complexes is a $\pi_*\text{-equivalence}$ if for all $k \geq 0$ and all $x \in X_0$, the induced map $\pi_k(X, x) \to \pi_k(Y, f(x))$ is a bijection. It is clear that every weak equivalence of Kan complexes is a $\pi_*\text{-equivalence}$.

61.2. Proposition. The class of $\pi_*\text{-equivalences}$ satisfies 2-out-of-6, and thus satisfies 2-out-of-3.
Proof. This is much like the proof that functors which are essentially surjective and fully faithful share this property. One ingredient is to prove that if \(f_0, f_1 : X \rightarrow Y \) are functors which are naturally isomorphic, then \(f_0 \) is a \(\pi_* \)-equivalence if and only if \(f_1 \) is. Another ingredient is the observation that to check that \(f \) is a \(\pi_* \)-equivalence, it suffices to check \(\pi_k(X, x) \rightarrow \pi_k(Y, f(x)) \) for \(x \in S \) where \(S \subseteq X_0 \) is a set of representatives of \(\pi_0 X \).

Given this, it is straightforward to reduce to the case that \(f \) is a Kan fibration between Kan complexes which is a \(\pi_* \)-equivalence, using the path factorization construction. In this case, we actually prove that \(f \) is a trivial fibration, using the following.

61.3. Proposition. Let \(p : X \rightarrow Y \) be a Kan fibration between Kan complexes, and consider \(n \geq 0 \). Then \(\text{Cell}_{\leq n} \sqcup p \) if and only if, for all \(0 \leq k < n \) and all \(x \in X_0 \), the induced map

\[
\pi_k(X, x) \rightarrow \pi_k(Y, p(x))
\]

is a bijection, and is a surjection for \(k = n \).

Note that the \(n = 0 \) case is immediate.

61.4. Some lemmas. Fix \(p : X \rightarrow Y \) a Kan fibration between Kan complexes. Define

\[
\mathcal{C}_p := \{ i \in \text{Cell} \mid i \sqcup p \}, \quad \mathcal{D}_p := \{ i \in \text{Cell} \mid p^i \in \text{TrivFib} \}.
\]

These are weakly saturated classes, and \(\mathcal{D}_p \subseteq \mathcal{C}_p \).

61.5. Lemma. Given any commutative square

\[
\begin{array}{ccc}
A & \xrightarrow{~} & A' \\
\downarrow{i} & & \downarrow{i'} \\
B & \xrightarrow{~} & B'
\end{array}
\]

such that the horizontal maps are weak equivalences, we have that \(i \in \mathcal{C}_p \) if and only if \(i' \in \mathcal{C}_p \).

Proof. By covering homotopy extension, \(i \in \mathcal{C}_p \) is equivalent to

\[
\pi_0 \text{Map}(B, X) \rightarrow \pi_0(\text{Map}(A, X) \times_{\text{Map}(A, Y)} \text{Map}(B, y))
\]

being surjective. \(\square \)

61.6. Proposition. Let \(T \subseteq \text{Map}(B, Y)_0 \) be a set of vertices which includes at least one representative from each path component. Then to show \(i \sqcup p \), it suffices to solve all lifting problems \((u, v) \) such that \(v \in T \).

Let \(S \subseteq \text{Map}(A, X)_0 \) be a set of vertices which includes at least one representative from each path component. Then to show \(i \sqcup p \), it suffices to solve all lifting problems \((u, v) \) such that \(u \in S \).

Suppose \(p \) is surjective on \(\pi_n \), and iso on \(\pi_k \) for \(k < n \). By induction on \(n \) this gives \(\text{Cell}_{\leq n-1} \subseteq \mathcal{C}_p \).

Show that with these hypotheses (e.g., injectivity on \(\pi_{n-1} \)), any lifting problem \((\partial \Delta^n \subset \Delta^n) \Rightarrow p \) can be deformed to one which factors through \((\ast \subset \Delta^n/\partial \Delta^n) \Rightarrow p \). Then surjectivity on \(\pi_n \) gives the solution.

REFERENCES

