PROOF OF THE BLAKERS-MASSEY THEOREM

CHARLES REZK

ABSTRACT. An exposition of some proofs of the Freudenthal suspension theorem and the Blakers-
Massey theorem. These are meant to be reverse engineered versions of proofs in homotopy type
theory due to Lumsdaine, Finster, and Licata. The proof of Blakers-Massey given here is based on a
formalization given by Favonia.

1. INTRODUCTION

This proof is a reverse engineered version of the homotopy type theoretic proof given by Lumsdaine,
Finster, and Licata (stated in [TUFP13| Theorem 8.10.1]), as formalized by Favonia (at http:
//github.com/HoTT/HoTT-Agda/tree/1.0).

I've written everything in (the homotopy theory of) spaces, but I expect that things go through
in an arbitrary oco-topos. “Pushout/pullback” really means “homotopy pushout/pullback”, etc.

The first section gives some preliminaries on n-truncated and n-connected maps. The second
section gives a reverse engineered version of the proof of the Freudenthal suspension theorem given
in [TUFP13, Theorem 8.6.4]. The third section gives the reverse engineered proof of Blakers-Massey.
The fourth section presents some allegedly helpful pictures.

1.1. Truncated and connected. Recall that a space X is n-truncated if X — Map(S™*!, X)
is a weak equivalence. We say that a map f: X — Y is n-truncated if its homotopy fibers are
n-truncated, or equivalently if X — Map(S™*!1,Y) X}I\L/Iap( Snty) Y is a weak equivalence.

We say that a space A is n-connected if Map(A, X) is contractible for any n-truncated space X;
equivalently, A is n-connected if n-truncated map f: X — Y the map Map(A, f): Map(A4,Y) —
Map(A, X) is a weak equivalence.

More generally, we say that a map j: A — B is n-connected if for any n-truncated map f: X - Y
the map

Map(B, X) = Map(4, X) X}1p(4y) Map(B,Y)

is a weak equivalence. That is, j is n-connected if and only if the (derived) space of solutions to the
lifting problem
A— X

B——Y
is contractible for every n-connected f.
The following properties of n-connected maps are immediate.

1.2. Lemma. The composite of two n-connected maps is n-connected.

1.3. Lemma. The class of n-connected maps is closed under homotopy colimits. That is, given
any diagram {f;: A; — B;} such that each f; is n-connected, then colim f;: colim A; — colim B; is
n-connected.

We have the following characterization of n-connected maps of spaces.
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1.4. Lemma. A map j: X — Y of spaces is n-connected if and only if its homotopy fibers are
n-connected.

This is a special case of the following.

1.5. Lemma. Consider a homotopy pullback square

) N

A

Y’T>Y

If f is n-connected, then " is n-connected. If f' is n-connected and g is (—1)-connected, then f is
n-connected.

Proof. To see that n-connected maps are closed under pullback, note that “pullback along ¢” admits
(homotopically) a right adjoint, which necessarily preserves n-truncated maps.

If g is (—1)-connected then Y is equivalent to the realization of the Cech complex of g. The
pullback ¢’ is also (—1)-connected, so X is equivalent to the realization of the Cech complex of ¢'.
That f is n-connected follows easily using (1.3). O

1.6. Remark. Our use of an “n-connected map” differs from the usual convention in topology by an
offset of 1. Under this definition, X — * is n-connected iff X is an n-connected space in the usual
sense. A space is (—1)-connected if and only if it is non-empty, and thus a map is (—1)-connected if
and only if it is surjective on path components.

We also have the following.

1.7. Lemma. If X i> Y % Z is such that g and gf are n-connected, then f is (n — 1)-connected.

Proof. By looking at homotopy fibers, it suffices to show that if X and Y are n-connected spaces,
then any map f: X — Y is (n — 1)-connected. O

As a consequence of the definition of truncation, we have that if X — x is n-truncated, then
X — Map(S*, X) is (n — k — 1)-truncated. More generally, if X — Y is n-truncated, then
X — Map(S*, X) XMap(sk,y) Y 18 (n — k — 1)-truncated. More generally, we have the following.

1.8. Proposition. If j: A — B is k-connected and f: X —Y is n-truncated, then Map(B, X ) —
Map(A, X) x'l\l/[ap(A Y) Map(B,Y) is (n — k — 2)-truncated.

Using the lifting criterion and cartesian closedness, we obtain the following.

1.9. Lemma (Join connectivity). If A — X is m-connected and B — Y is n-connected, then
(AxY)Uaxp (X X B) = X XY is (m+ 2+ n)-connected.

1.10. Corollary. If X and Y are pointed, and X is m-connected and Y is n-connected, then
XVY = X xY is (m+ n)-connected.

Proof. If X — * is m-connected, then * — X is (m — 1)-connected by (1.7)). O

1.11. Truncation and fiberwise truncation. For every X, there exists an n-truncation:: X —
| X|,,, where |X|, is n-truncated and 7 is n-connected. A space X is n-truncated if and only if
| X1, ~ *.

More generally, given f: X — Y, there exists a fiberwise n-truncation, which is a factorization

X5, Ly
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where i is n-connected and j is n-truncated. This map is characterized by the fact that for each
y € Y, the induced map on homotopy fibers over y,

i
Xy = (1f1n)y
presents (|f|,)y as an n-truncation of X,. It is essentially unique, characterized by being a
factorization of f into an n-connected map followed by an n-truncated map.

1.12. n-equifibered squares. Say that a commutative square

X— X

(1.13) fJ lf’

Y —— Y’
is n-equifibered if the induced square

[l —— 11,

[T

Y — Y’
involving fiberwise n-truncations is a homotopy pullback. Equivalently, it is n-equifibered if for
each y € Y the maps X, — X ; @) between homotopy fibers become equivalences after applying
n-truncation.

Note: “n-equifibered” is similar to, but distinct from, “n-cartesian”, which asserts that each of
the maps X, — X;(y) between homotopy fibers are (n + €)-connected. (I don’t want to bother

figuring out what e is under the conventions I am using.)

The property “n-equifibered” (unlike n-cartesian) is not diagonally symmetric; it is really a
condition on a map between maps f = f’.

We have the following result for recognizing n-equifibered squares.

1.14. Lemma. A commutative square as in (1.13) is n-equifibered if there exists a factorization of
1t into two commutative squares

X— X

1l

77— 7

Bt

Yy —Y'
such that g and g’ are n-connected and h = h' is n-equifibered.

Proof. If Z SN |h|,, & Y is fiberwise n-truncation of h, then X % || % Y presents a fiberwise
n-truncation of f, because g is n-connected. O

The following observation, though trivial, is crucial to our arguments.
1.15. Lemma. If f = f' is n-equifibered and f’ is n-connected, then f is also n-connected.

For instance, in the proof of the Freudenthal suspension theorem given below, we will show that
o: X — Q¥XX is (2n)-connected (for X n-connected) by constructing a (2n)-equifibered square

o= p,
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where p: Y — P is actually a map between contractible spaces. A similar technique is used in the
proof of homotopy excision which follows.
To use this idea, we will use the following “patching” result for n-equifibered squares.

1.16. Lemma. Consider a diagram of n-equifibered squares
AE o f

and let fio be the pushout of g1 along go. Then the evident squares fi = fia < fa, as well as the
composite square fo = fi1o are n-equifibered.

Proof. Apply fiberwise n-truncations to each f; for ¢ = 0, 1,2. The usual descent property implies
that the squares relating these fiberwise n-truncations to their pushout are pullback squares. Now
use (|1.3]) to identify the pushout of fiberwise n-truncations as the fiberwise n-truncation of fi2. O

Finally, we use the following result on composition of n-equifibered squares.
1.17. Lemma. Consider squares

X14>X2HX3

L

Y1T>Y2*>Yé

(1) Suppose fo = f3 is n-equifibered. Then f1 = fo is n-equifibered iff f1 = f3 is n-equifibered.
(2) Suppose g is (—1)-connected, and f1 = fo and f1 = f3 are n-equifibered. Then fo = f3 is
n-equifibered.

Proof. Proved just as for pullback squares. O

2. THE FREUDENTHAL SUSPENSION THEOREM

2.1. Theorem (Freudenthal). Suppose X is n-connected and pointed. Then o: X — QXX is
(2n)-connected.

I give the proof below. First note that if n < 0, then the statement is vacuous (every map is
(—2)-connected), so we may assume n > 0.

Write G = QX X. I am going to pretend that G is actually a monoid.

Consider the commutative diagram

(id,*) (id,id)
X+—XVX—X

(2.2) l J J

G axX-tsa

Here o is the standard unit map, 7 is projection, and p is “multiplication”, i.e., u(vy,z) = v - o(x).
The map 7 is given on the left summand by (o,%): X — G x X, and on the right summand by
(%,id): X - G x X.
Take homotopy colimits in each row to get a map p: Y — P. We observe that
(1) Y is obviously contractible.
(2) P is contractible, since it presents a decomposition of the path space fibration P — XX,
where X is assembled as the colimit of % < X — .
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We now claim that both squares in (2.2)), i.e., the maps o < 7 = o, are (2n)-equifibered. As a
consequence, it will follow from (|1.16)) that (either) square

X —Y

gﬁy

is (2n)-equifibered. Then (|1.15)) implies that o is (2n)-connected, because p is an equivalence and
thus (2n)-connected.
The left-hand square of (2.2)). Consider the commutative diagram

id,*)
X—)XVX (

/|
(id,*)

(2.3) XX xx

UJ UXidJ al
(id,*)

G—5GxX—"5G

where f is the wedge inclusion. The two lower squares of (2.3]) are manifestly homotopy pullbacks.
The map f is (2n)-connected by (1.10). It follows that the two tall rectangles in (2.3]) are (2n)-
equifibered by (1.14]). The right-hand tall rectangle of (2.3)) is precisely the left-hand square of

3.
The right-hand square of (2.2)). Consider

(id,id)
X" xvx 29Uy
(2.4) J l J
¢ e x "G

The left-hand square in ([2.4]) is the tall left-hand rectangle in (2.3), and so is (2n)-equifibered.
The composite rectangle of (2.4)) is a pullback (the composite horizontal maps are identities), so

is certainly (2n)-equifibered. Because X is O-connected, (id,*): G — G x X is (—1)-connected, so
statement (2) of applies to show that the right-hand square in is (2n)-equifibered, and
this square is precisely the right-hand square of .

We are done.

3. THE HOMOTOPY EXCISION THEOREM

3.1. Theorem (Blakers-Massey). Consider a homotopy pushout square

QLY

I

X——P

Let R .= X x}lé Y denote the homotopy pullback. If f is m-connected and g is n-connected, and
m,n > —1, then the tautological map Q — R is (m + n)-connected.

Because connectivity (|1.5)), pushouts, and pullbacks are preserved under (homotopy) pullbacks,
to prove the conclusion of the theorem it suffices to prove it after (homotopy) pullback along any
map * — P. That is, we can immediately reduce to the following special case.
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3.2. Proposition. Let X <i Q 2 Y be maps such that f is m-connected, g is n-connected,
m,n > —1, and the homotopy pushout of f along g is contractible. Then (f,g): @ — X XY is
(m + n)-connected.

Without loss of generality, we can assume that (f,g): @ — X x Y is a fibration. I will sometimes
use the following notation: if (z,y) € X x Y, then Q(z,y) denotes the fiber of (f, g) over (z,y). 1
will also write Q(X,y) for the pullback of (f,g): @ — X xY along X x {y} — X x Y, and similarly
Q(z,Y) for the pullback of (f,g) along {z} xY — X x Y.

Note that Q(X,y) is precisely the fiber of g over y, and thus the hypotheses of the theorem assert
that Q(X,y) is n-connected. Likewise, Q(x,Y) is precisely the fiber of f over z, so the hypotheses
of the theorem assert that Q(z,Y’) is m-connected.

Consider the pullback square

(qoo,q01)—qo1

QxXxQ——Q
UYI=((qoo,qo1)'—>(qoo,g(%1)))l J(fvg)

QXY —XxY
fxly

Because f is (—1)-connected, so is f x 1y, and thus to prove the result it suffices suffices to show
that oy is (m + n)-connected (1.5)).
Let J be the homotopy pushout

QXy Q<+ Q—QxxQ

along diagonal inclusions. Let jx: @ Xy @ — J and jy: Q Xx Q@ — J denote the tautological maps.
Now we consider the following commutative diagram.

pPx Py

Qxy Q J QxxQ
- o] TJ a@
QXX+ QxXQ—— QXY

where the maps are defined as follows.

ox (400, ¢10) = (q00 f(q10)),
oy (qoo, qo1) = (qoo, 9(qo1))-

The map oy is precisely the one we need to show is (m + n)-connected.

pxix(qoq1-) = (qo_, q1.), pxJv(q.0,91) = (¢0,90),
pyix (g0, q1.) = (go_,90.), py gy (q0,91) = (q0,91),
Tix(q0_,q1.) = (qo_,q1.), TJv(¢0,91) = (90,9.1)-

3.4. Lemma. The map p induced by taking homotopy colimits along rows in (3.3)) is equivalent to
the identity map of Q.

Proof. For the top row, consider the commutative square
pY
J——— R xxQ

pxl J{(qooﬂho)'—ﬂloo

QXy Q———Q
(g00,901)—qo0
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To show this is a homotopy pushout, it suffices to show that the square of fibers over any point
{qo0} € @ is a homotopy pushout. The square of the fibers has the form

QX %0) Vg Q0. Y) — s Q0 Y)

(id,*)l J

Q(X, o) *

which is clearly a homotopy pushout.
The rest of the proof is straightforward, using the fact that the assumption that the pushout of

X <i Q 9y ¥ is contractible to show that the homotopy pushout of the bottom row is also equivalent

to Q. O
We define maps d,d': J — Q xx Q Xy Q as follows.
djx (g0, q1.) = (q0_, 90, 1), djy (9.0,9.1) = (9.0,91,9.1),
d'jx(qo,q1.) = (q1_,91.,90.), d'jy(q0,q1) = (41,490, 9.0)-

3.5. Lemma. The maps d and d' are (m + n)-connected.

Proof. We actually have that d’ = di, where i: J — J is the involution of J defined by ijx (qo_, q1_) =
(q1.,90.) and ijy(q.0,9.1) = (q.1,90). Thus, it suffices to show that d is (m + n)-connected.
The map d is induced by the commutative square

Q Qxy Q
(3.6) l l(qo,q1)'—>(qo7qo,q1)
Q@ *xxQ QxxQxyQ
(9.0,9.1)—(9.0,9.1,91)

To show that d is (m+n)-connected it suffices to show (by ((1.5))) that for any point go1 € Q(z0,y1) C
Q, the pullback of d along the inclusion

k: Q(z0,Y) x Q(X,y1) = Q Xx {gn} Xy Q@ = Q xx Q xy Q,
is (m 4+ n)-connected. The pullback of (3.6) along k is the square

{401} ————— Q(X,y1)

J |

Q($07 Y) — Q(.’Eo, Y) X Q(X7 yl)
The pullback of d along k is a the map

Q(0,Y) X {01} Ug(gor,q00)} 1901} X Q(X,y1) — Q(w0,Y) x Q(X,y1),
which is (m + n)-connected by (1.10)). O
3.7. Lemma. Each of the two squares in (3.3|) is (m + n)-equifibered.
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Proof. For the right-hand square, consider the commutative square

Py

J QxxQ
/|
Qxx QxyQ Qxx Q
(goo,q01,911)—(go0,q01)
(tIoo,tIo1,(111)'—>(fI007q11)l lay
QxQ - QxY

in which the the composite of the left-hand column is 7, the lower square is a pullback, and and d is

(m + n)-connected by (3.5). The result follows by (1.14)).

For he left-hand square, consider the commutative square

Qxy Q = J
J#
Qxy Q Qxx QxyQ
(g00,910)4(q11,910,900)
UXJ/ l(qu,qlo,%o)ﬁ(%o,qu)
Qx X — QxQ

in which the composite of the right-hand column is 7, the lower square is a pullback, and d’ is
(m + n)-connected by (3.5). The result follows by (1.14)). O

Now we can finish the proof of , and thus of the homotopy excision theorem. As noted
earlier, it suffies to show that oy is (m + n)-connected. By , each of the two squares in
is (m + n)-equifibered. By it follows that the square oy = u relating oy to the homotopy
pushout of the rows of is (m + n)-equifibered. By the map p is equivalent to the identity
map of @, and thus in particular is (m + n)-connected. It follows that oy is (m + n)-connected by
([T.15).

4. GRAPHIC REMARKS ON THE PROOF OF HOMOTOPY EXCISION

Fix a fibration (f,g): @ — X x Y, and consider the diagram
Q xy Q Qxx Q

. | ol

QXX(lQ—foXQWQXY

using the notation of the previous section. The limit U of this diagram (which is also the homotopy
limit) is the space of 4-tuples (gij)ij—0,1 € Q* satisfying

9(qo0) = g(qi0);  flqio) = fla1), g(q1) = g(qo1), f(go1) = f(goo)-
We can illustrate such a point in U using the picture

Yo —900— Zo

q10 q01

r1 M=y
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Let J' be the subspace of U consisting of tuples such that either (i) goo = go1 and q10 = ¢11 or (ii)
goo = q10 and go1 = q11. That is, J’ consists of points of U which are of the form

Y —40-— T Yo —90— T
\ | \ |
q]_ q0_ or q0 q_1
| I w (
T —Nn-—y T —41— 1

There is a tautological map J — J' from the homotopy pushout of Q xy Q + Q — Q xXx @ to J'.
More generally, we can represent objects and maps in the diagram (4.1)) using the pictures

Yo —00— Zg Yo —900—= o

q10 QTl

T Y1

Yo —qlolo— Zo Yo —4900— X Yo —qgo— o
= =

T T —am— Y1

The maps px, py, and 7 from J in (3.3 are the evident ones determined by the inclusion J' C U
into the limit of (4.1)).
A key step in the argument is the observation that the induced maps d’ and d from J into each

of the two pullbacks implicit in (4.1)) is (m + n)-connected. These maps are induced by maps from
J’ having the form

Yo —900— Zg Y —0-— o Yo —140— Yo —900— Zg
a | | | | ]« |
q10 = q‘L Q(‘L or q‘,O qT =N Q(‘)l
r1 —m—1 Ty ——y T —41=Y Tp—m—1
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