Lecture Notes (Week 4), Math 525 (Spring 2012)

Charles Rezk

M 6 Feb

Application: Borsuk-Ulam theorem. Let \(Y = \mathbb{R}^2 \setminus \{0\} \).

Lemma 0.1. Let \(\gamma : I \rightarrow Y \) be a loop with \(\gamma(s + \frac{1}{2}) = \gamma(s) \) for \(s \in [0, \frac{1}{2}] \). Then \(W(\gamma) \) is even.

Proof. In short, \(\gamma \) amounts to the same loop repeated twice. Thus, think of \(\gamma = \alpha \ast \beta \) where \(\alpha \) is the evident reparameterization of \(\gamma|_{[0, \frac{1}{2}]} \), and \(\beta \) is the evident reparameterization of \(\gamma|_{[\frac{1}{2}, 1]} \). If \(x = \gamma(0) \), then both \(\alpha \) and \(\beta \) are loops based at \(x \), and in fact \(\beta = \alpha \). Thus \(W(\gamma) = 2W(\alpha) \in 2\mathbb{Z} \). \(\square \)

Lemma 0.2. Let \(\gamma : I \rightarrow Y \) be a loop with \(\gamma(s + \frac{1}{2}) = -\gamma(s) \) for \(s \in [0, \frac{1}{2}] \). Then \(W(\gamma) \) is odd.

Proof. Let \(x = \gamma(0) \), so \(-x = \gamma(\frac{1}{2})\) We can think of \(\gamma = \alpha \ast \beta \), where \(\alpha : x \sim -x \) and \(\beta(s) = -\alpha(s) \).

Let \(\tilde{\alpha} : \hat{x} \sim \hat{x} + c \) be a lift of \(\alpha \), where \(c = W(\alpha) \in (\frac{1}{2} + \mathbb{Z}) \). Then \(\tilde{\beta} : \hat{x} + c \sim \hat{x} + 2c \) given by \(\tilde{\beta}(s) = \alpha(s) + c \) is a lift a \(\beta \), and \(\hat{\gamma} = \tilde{\alpha} \ast \tilde{\beta} : \hat{x} \sim \hat{x} + 2c \) is a lift of \(\gamma \). Thus \(W(\gamma) = 2c \in (1 + 2\mathbb{Z}) \). \(\square \)

Theorem 0.3. If \(f : S^2 \rightarrow \mathbb{R}^2 \) is continuous, there exist \(x \in S^2 \) with \(f(x) = f(-x) \).

Proof. Suppose not, consider \(g : S^2 \rightarrow Y \) by \(g(x) = f(x) - f(-x) \). Note that \(g(-x) = -g(x) \).

Let \(\delta(s) = (\cos 2\pi s, \sin 2\pi s, 0) \) be a loop in \(S^2 \); it is homotopic to a constant loop, so is null homotopic, and therefore so is \(\gamma = g \circ \delta : I \rightarrow Y \). But \(\gamma(s + \frac{1}{2}) = -\gamma(s) \), so has odd winding number by the above. \(\square \)

Application: Fundamental theorem of algebra.

Theorem 0.4. Let \(f(z) = \sum_{k=0}^{n} c_k z^k \) be a polynomial with \(c_k \in \mathbb{C}, c_n \neq 0 \), and \(n \geq 1 \). Then \(f \) has a root in \(\mathbb{C} \).

Proof. WLOG, can assume \(c_n = 1 \). Observe that \(f : \mathbb{C} \rightarrow \mathbb{C} \) is a continuous map. I’ll use the identification \(\mathbb{C} \approx \mathbb{R}^2 \).

For \(r > 0 \), let \(D_r^2 = \{ z \in \mathbb{C} \mid |z| \leq r \} \), and \(S_r^1 = \{ z \in \mathbb{C} \mid |z| = r \} \). I claim that for sufficiently large \(r \), \(f(S_r^1) \subset \mathbb{C} - \{0\} \) and \(W(f|_{S_r^1}) = n \). Since \(n \neq 0 \), this implies by the above proposition that there exists \(z_0 \in D_r^2 \) such that \(f(z_0) = 0 \).

Let \(F_t : S_r^1 \rightarrow \mathbb{C} \) be a homotopy defined by

\[
F_t(z) = (1-t)z^n + t f(z) = z^n + t \sum_{k=0}^{n-1} c_k z^k.
\]

Date: February 10, 2012.
Theorem 0.5. If
\[\sum_{k=0}^{n-1} \left| c_k \right| z^k \leq \sum_{k=0}^{n-1} \left| c_k \right| r^k \leq \sum_{k=0}^{n-1} \left| c_k \right| r^{n-1} < r^{n-1}(|c_{n-1}| + \cdots + |c_0|) \leq r^n = |z^n|.\]

Thus \(z^n \neq t \sum_{k=0}^{n-1} c_k z^k\) for \(z \in S^1_r\), so \(F_t : S^1_r \to \mathbb{C} - \{0\}\). Thus \(F_1 = f|S^1_r\) is homotopic in \(\mathbb{C} - \{0\}\) to \(F_0 : z \mapsto z^n\), so has winding number \(n\).

\[\square\]

Fundamental groups of products. If \((X, x)\) and \((Y, y)\) are spaces with basepoints, there is an isomorphism
\[\pi_1(X \times Y; (x, y)) \xrightarrow{\cong} \pi_1(X; x) \times \pi_1(Y; y).\]

This amounts to the fact that continuous maps \(h : T \to X \times Y\) are the same as pairs of continuous maps \((f, g)\). So there is a one-to-one correspondence between loops in \(X \times Y\) and pairs of loops, and also a one-to-one correspondence between homotopies of paths.

Example. Let \(X = S^1 \times S^1\), a torus. Then \(\pi_1(X) \approx \mathbb{Z} \times \mathbb{Z}\.\)

Fundamental group of spheres. There’s a higher dimensional version of the Brouwer fixed point theorem: any continuous map \(f : D^n \to D^n\) has a fixed point, for any \(n \geq 0\). Unfortunately, we cannot use the fundamental group to prove this for \(n \geq 2\).

Theorem 0.5. If \(n \geq 2\), \(\pi_1(S^n, x_0)\) is the trivial group.

The idea of the proof is this: If \(y \in S^n\), then \(U_y = S^n - \{y\}\) is homeomorphic to an open \(n\)-disc, and so is contractible. Thus, if \(\gamma : I \to S^n\) is not surjective, it factors through some \(U_{y_i}\), and therefore is null homotopic.

The problem is that it is perfectly possible for a continuous path \(I \to S^n\) to be surjective. This is the same issue we had when \(n = 1\), but for \(n \geq 2\) the existence of space-filling curves is more surprising. (Look up “Peano curve” if you haven’t seen space-filling curves.)

However, since \(I\) is compact, and \(\{U_{y_i}\}\) is an open cover of \(S^n\), there exists a subdivision
\[0 = a_0 < a_1 < \cdots < a_n = 1\]

such that \(\gamma([a_{i-1}, a_i]) \subseteq U_{y_i}\) for some \(y_i \in S^n\).

Let \(I_i = [a_{i-1}, a_i]\), and let \(\gamma_i = \gamma|_{I_i}\). Up to reparameterization, it is a path from \(x_{i-1} = \gamma(a_{i-1})\) to \(x_i = \gamma(a_i)\) in \(U_{y_i}\).

Pick a homeomorphism \(U_{y_i} \approx \dot{D}^n\). The path \(\gamma_i : I_i \to \dot{D}^n\) is homotopic to a great circle path \(\delta_i : I_i \to \dot{D}^n\). We can glue these together, to get a path \(\delta : I \to S^n\) such that \(\delta|_{I_i} = \delta_i\), and \(\gamma \sim \delta\) as loops.

We have that \(\delta_i(I_i)\) is contained in a great circle in \(S^n\). Thus \(\delta(I)\) is contained in a finite union of great circles, which is therefore not all of \(S^n\). (This is where we use \(n \geq 2\).) Thus \(\delta : I \to S^n\) is not surjective, and we are done.

Covering maps and covering spaces. Let \(p : Y \to X\) be a map. Say that an open set \(U \subseteq X\) is **evenly covered** if \(p^{-1}U = \bigsqcup V_\alpha\), where the \(V_\alpha\) are open subsets of \(Y\), and \(p|V_\alpha : V_\alpha \to U\) is a homeomorphism.

We say that \(p : Y \to X\) is a **covering map** if \(X\) admits an open cover by evenly covered sets.

Example. \(p : \mathbb{R} \to S^1\) by \(p(s) = (\cos 2\pi s, \sin 2\pi s)\).

Example. \(p : \mathbb{C} \to \mathbb{C} \setminus \{0\}\) by \(p(z) = e^{2\pi i z}\).

Example. For \(n \neq 0\), \(p : S^1 \to S^1\) by \(p(z) = z^n\).
Example. $p: \coprod X \to X$ for any X. In particular, $\emptyset \to X$.
(Some texts will require for a covering map $p: Y \to X$ that X and Y be path connected; we’ll use this more general notion.)

Coverings of $S^1 \lor S^1$. Let $X = S^1 \lor S^1$, the one point union of two circles, which I’ll name a and b.
Example of 2-sheeted cover. Example of infinite sheeted cover.

Coverings of $S^2 \lor S^1$. Let $X = S^2 \lor S^1$, the one point union of two circles, which I’ll name a and b.

Example of 2-sheeted cover. Example of infinite sheeted cover.

Coverings of $S^2 \lor S^1$. Let $X = S^2 \lor S^1$. Give the simply connected covering space of this.

F 10 Feb

Coverings from group actions. Let G be a discrete group, and let $\cdot : G \times X \to X$ be a continuous action of G on the space X. That is, $1 \cdot x = x$, $g_1 \cdot (g_2 \cdot x) = (g_1g_2) \cdot x$, and the map is continuous.

We write $G \backslash X$ for the quotient space of X, using the equivalence relation $x \sim gx$ whenever $g \in G$.

Thus there is a continuous quotient map $p: X \to G \backslash X$.

Say the action is properly discontinuous if every $x \in X$ has an open neighborhood U such that $U \cap gU = \emptyset$ for all $g \in G$ such that $g \neq 1$.

Note that this implies that $gx \neq x$ for all $x \in X$ and $g \neq 1$. That is, a properly discontinuous action is in particular a free action.

Exercise. If an action of G on X is properly discontinuous, then $p: X \to G \backslash X$ is a covering map.

Showing that an action is properly discontinuous might involve some work, but sometimes you can show it for free.

Exercise. If a finite group G acts freely on a Hausdorff space X, then the action is always properly discontinuous.

Example. Let $G = C_2 = \langle \sigma | \sigma^2 \rangle$ act on S^n by involution: $\sigma(x) = -x$. The quotient space $C_2 \backslash S^n$ is called $\mathbb{R}P^n$ (real projective n-space). Question: What is $\pi_1 \mathbb{R}P^n$?

(Draw model of $\mathbb{R}P^2$, obtained by making identifications on boundary of a disk.)

Example. Let $G = \{e^{2\pi i k/n} \in \mathbb{C}^\times \mid k \in \mathbb{Z}\} \subset \mathbb{C}^\times$ act on S^{2n-1} as follows. We have

$S^{2n-1} \approx \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid \sum |z_i|^2 = 1\}$

For $\lambda \in G$, we set $\lambda(z_1, \ldots, z_n) = (\lambda z_1, \ldots, \lambda z_n)$.

Example. Let G be a Lie group, e.g., a closed subgroup of $GL_n(\mathbb{R})$. If H is a closed subgroup of G which is discrete as a space, you can show that the left action of H on G is properly discontinuous, and so $G \to H \backslash G$ is a covering map.

Homotopy lifting property.

Proposition 0.6. Given a covering map $p: Y \to X$, a homotopy of maps $f_t: A \to X$, and a map $\tilde{f}_0: A \to Y$ such that $p \circ \tilde{f}_0 = f_0$, there exists a unique homotopy $\tilde{f}_t: A \to Y$ such that $p \circ \tilde{f}_t = f_t$.
That is, given \(f \) and \(\tilde{f}_0 \) there exists a unique lift \(\tilde{f}_t \) in

\[
\begin{array}{c}
A \times \{0\} \xrightarrow{\tilde{f}_0} Y \\
\downarrow \quad \downarrow \\
A \times I \xrightarrow{\tilde{f}_t} X
\end{array}
\]

When \(A = \ast \), this is just path lifting. When \(A = I \), this gives lifting for path homotopies.

Lemma 0.7. The proposition holds in the special case that \(f(A \times I) \subseteq U \), where \(U \) is an evenly covered open subset of \(X \).

Proof. This is almost the same as what we did before. The only problem is that \(A \) might not be connected.

Since \(f(A \times I) \subseteq U \), any lift must satisfy \(\tilde{f}(A \times I) \subseteq p^{-1}U \). We must show there is a unique lift in a diagram of the form

\[
\begin{array}{c}
A \times \{0\} \xrightarrow{\tilde{f}_0} p^{-1}U \\
\downarrow \quad \downarrow \\
A \times I \xrightarrow{\tilde{f}_t} U
\end{array}
\]

Write \(p^{-1}U = \bigsqcup V_\beta \), where each \(p|V_\beta: V_\beta \to U \) is a homeomorphism. The map \(\tilde{f}_0: A \to \bigsqcup V_\beta \) may map different parts of \(A \) into different “slices” \(V_\beta \). Let \(A_\beta = \tilde{f}_0^{-1}V_\beta \). Then \(\bigsqcup A_\beta \to A \) is a homeomorphism (because each \(V_\beta \) is open in \(p^{-1}U \)), and it follows that \(\bigsqcup A_\beta \times I \to A \times I \) is a homeomorphism (check this!).

Thus, it is enough to show that for each \(\beta \), there is a unique solution to the lifting problem

\[
\begin{array}{c}
A_\beta \times \{0\} \xrightarrow{\tilde{f}_0} \bigsqcup V_\beta \\
\downarrow \quad \downarrow \\
A_\beta \times I \xrightarrow{\tilde{f}_t} U
\end{array}
\]

where \(\tilde{f}_0(A_\beta) \subseteq V_\beta \). First note that any lift must satisfy \(\tilde{f}(A_\beta \times I) \subseteq V_\beta \). To see this, think about the restriction of such a lift to \(\{a\} \times I \); since this subspace is connected, its image must land in the connected component of \(\bigsqcup V_\beta \) which contains the point \(\tilde{f}_0(a) \), and this component is contained in \(V_\beta \); that is, \((\tilde{f}_0^{-1}V_\beta) \cap (\{a\} \times I) \) will be open and closed. Thus, we can replace the map on the right with \(p|V_\beta: V_\beta \to U \), which is a homeomorphism. \(\square \)

Proof of the homotopy lifting theorem. We show

1. Given \(a \in A \), there exists an open neighborhood \(N \) of \(a \) and a lift \(\tilde{f}|N \times I \) of \(f|N \times I \) extending \(\tilde{f}_0|N \).
2. Given \(a \in A \), there is at most one lift \(\tilde{f}|\{a\} \times I \) of \(f|\{a\} \times I \) extending \(\tilde{f}_0|\{a\} \).

That is, there is an open cover \(\{N_a\} \) of \(A \), such that for each element of the cover there exists a solution to the lifting problem, and all such solutions must agree on overlaps. This will imply that there is a global solution, which must be unique.
Let’s prove (1). Let \(\{ U_\alpha \} \) be a cover of \(X \) by evenly covered sets. Then \(\{ f^{-1}U_\alpha \} \) is a cover of \(A \times I \). In particular, given a point \(a \in A \), we see that for each \(t \in I \), there exists

- an open neighborhood \(N_t \) of \(a \) in \(A \), and
- an open neighborhood \(B_t \) of \(t \) in \(I \), and
- an evenly covered \(U_{\alpha_t} \) open subset of \(X \), such that

\[N_t \times B_t \subseteq f^{-1}U_{\alpha_t}. \]

Since \(I \) is compact, there exist \(0 = t_0 < t_1 < \cdots < t_n = 1 \), and elements \(t_1^*, \ldots, t_n^* \in I \) such that

\[[t_{i-1}, t_i] \subseteq B_{t_i^*}. \]

Taking \(N = N_{t_1^*} \cap \cdots \cap N_{t_n^*} \), we see that each \(f(N \times [t_{i-1}, t_i]) \) is contained in an evenly covered subset \(U_{\alpha_{t_i^*}} \) of \(X \). Thus, we can show there is a solution to the lifting problem over \(N \), by successively producing lifts \(\tilde{f}|N \times [t_{i-1}, t_i] \) of \(f|N \times [t_{i-1}, t_i] \) which are compatible with the already produced \(\tilde{f}_0|N \times \{ t_{i-1} \} \).

\[\square \]