I’ll start with a brief review of topological spaces.

Topological spaces. Definition of topological space. \((X, T_X)\), where \(T_X\) is a collection of subsets of \(X\) (called open sets) such that

- \(\emptyset, X \in T_X\).
- \(\{U_\alpha\} \subseteq T_X \) implies \(\bigcup U_\alpha \in T_X\).
- \(U, V \in T_X\) implies \(U \cap V \in T_X\).

Complements of open sets are closed sets. Sets can be both open and closed, or neither.

Example. Standard topology on \(\mathbb{R}^n\).

Example. Discrete topology on \(X\).

Definition of continuous map. \(f: X \to Y\) is continuous if \(V\) open in \(Y\) implies \(f^{-1}V\) open in \(X\).

Example. Continuous maps \(\mathbb{R}^m \to \mathbb{R}^n\).

Example. Continuous maps \(X \to Y\) with \(X\) discrete.

Constructions. Ways to build new spaces, characterized by universal properties.

Subspace. Given a space \(X\) and a subset \(A \subseteq X\), the subspace topology on \(A\) is that given by \(U \in T_A\) if there exists \(V \in T_X\) such that \(U = A \cap V\). Let \(j: A \to X\) be the inclusion function.

Universal property of subspace. If \(T\) is a space, a function \(f: T \to A\) is continuous if and only if \(j \circ f\) is continuous.

(A map \(k: Z \to X\) which factors through a homeomorphism between \(Z\) and the subspace \(k(Z) \subseteq X\) is an immersion.)

Quotient space. Let \(X\) be a space, let \(B = X/\sim\) be the set of equivalence classes for some equivalence relation on \(X\), and let \(q: X \to B\) be the projection. The quotient topology on \(B\) is that given by \(U \in T_B\) if and only if \(q^{-1}U \in T_X\).

Universal property of quotient topology. If \(T\) is a space, a function \(g: B \to T\) is continuous if and only if \(f \circ q\) is continuous.

Product. Given a family \(\{X_\alpha\}_{\alpha \in I}\), the product is the space whose underlying set is the product \(X = \prod X_\alpha\), and whose topology is the smallest one for which all sets \(p_\alpha^{-1}(U_\alpha)\) are open, where \(U_\alpha \subseteq X_\alpha\) is open, and where \(p_\alpha: X \to X_\alpha\) is the projection map.

Universal property of product. If \(T\) is a space, a function \(f: T \to X\) is continuous if and only if \(p_\alpha \circ f\) is continuous for all \(\alpha\).

Coproduct. Given a family \(\{X_\alpha\}_{\alpha \in I}\), the coproduct is the space whose underlying set is the disjoint union \(X = \coprod X_\alpha\), and such that \(U \subseteq X\) is open if and only if \(U \cap X_\alpha\) is open in \(X_\alpha\) for all \(\alpha\). The inclusion maps \(i_\alpha: X_\alpha \to X\) are continuous.
Universal property of coproduct. If \(T \) is a space, a function \(g: X \to T \) is continuous if and only if \(g \circ i_\alpha \) are continuous for all \(\alpha \).

Collapsing to a point. Given a space \(X \) and a subspace \(A \subseteq X \), we define a space \(X/A \) as the equivalence classes of an equivalence relation \(X/\{\ast\} \), where we identify \(a \sim \ast \) for all \(a \in A \). Topologize \(X/A \) as the quotient of \(X/\{\ast\} \), which is given the coproduct topology.

A continuous map \(f: X/A \to T \) amounts to choosing a continuous map \(g: X \to T \) and a point \(t_0 \in T \) such that \(g(a) = t_0 \) for all \(a \in A \).

Note that if \(A = \emptyset \), then \(X/A = X/\{\ast\} \), and is not a quotient of \(X \). We often write \(X_+ \) for this. One way to think of this, we always want \(X/A \) to have a basepoint.

Pushouts. The pushout of \(Y \leftarrow A \to X \). Note that \(X/A \) is an example of a pushout \(\ast \leftarrow A \to X \).

Examples. Circle as interval with ends glued together. Wedge of two circles. Möbius band. Projective plane as Möbius band glued to disc.

Homeomorphism. A homeomorphism is a continuous map with continuous inverse.

Example. \(x/\sqrt{1-x^2} \colon (-1,1) \to \mathbb{R} \), with inverse \(y/\sqrt{1+y^2} \colon \mathbb{R} \to (-1,1) \). (Not same as continuous bijection, e.g., \([0,1) \to S^1\).)

Connected and discrete. A space \(X \) is **connected** if the only subsets which are both open and closed are \(\emptyset \) and \(X \).

Examples. \(\mathbb{R} \) and \(I = [0,1] \) are connected. \(\mathbb{R} \setminus \{0\} \) is not connected.

A space \(Y \) is **discrete** if every subset is open and closed. One way to characterize connectedness is: \(X \) is connected if every continuous map \(f: X \to Y \) to a discrete space \(Y \) is constant.

Compactness. A space \(X \) is **compact** if every open cover admits a finite subcover. The important fact we need is the Bolzano-Weierstrass theorem: the compact subspaces of \(\mathbb{R}^n \) are precisely the closed and bounded subspaces.

Important fact. If \(f: X \to Y \) is a continuous map and \(X \) is compact, then \(f(X) \), with the subspace topology in \(Y \), is a compact space.

This leads to the maximum principle.

Lebesgue number lemma. This is usually stated in terms of metric spaces. We need: if \(X \subseteq \mathbb{R}^n \) is compact, and \(\{ U_\alpha \} \) is an open cover of \(X \), then there exists \(\delta > 0 \) such that every subset of diameter \(< \delta \) is contained in the open cover. (Proof: consider all \(B_\epsilon(x;X) \) with \(x \in X \) which are contained in some element of the cover, and use compactness of \(X \).)

Example: maps out of intervals. Let \(I = [0,1] \) be the unit interval. If \(Y \) is a space with open cover \(\{ U_\alpha \} \), and \(f: I \to Y \) is continuous, then there exists \(N \geq 1 \) such that \(f \) sends each subinterval of the form \([(a-1)/N, a/N] \), where \(a \in \{1, \ldots, N \} \), into one of the \(U_\alpha \).

Neighborhoods of compact sets of \(\mathbb{R}^n \).

Lemma 1.1. If \(K \subseteq U \subseteq \mathbb{R}^n \) where \(K \) is a compact subspace of \(\mathbb{R}^n \) and \(U \) is open in \(\mathbb{R}^n \), then there exists an \(\epsilon > 0 \) such that \(K \subseteq V_\epsilon \subseteq U \), where \(V_\epsilon = \bigcup_{x \in K} B_\epsilon(x) \).

Proof. Consider all \(B_{2\delta}(x) \) such that \(x \in K \) and \(B_{2\delta}(x) \subseteq U \). Since \(K \) is compact, we can choose \(x_1, \ldots, x_n \in K \) and \(\delta_1, \ldots, \delta_n \) such that \(K \subseteq \bigcup B_{\delta_i}(x_i) \) and \(B_{2\delta_i}(x_i) \subseteq U \).
Let \(\epsilon = \min(\delta_i) \). If \(y \in V_\epsilon \), then there exists \(x \in K \) and \(i \in \{1, \ldots, n\} \) such that \(|y - x| < \epsilon \) and \(|x - x_i| < \epsilon \), whence \(|y - x| < 2\epsilon \leq 2\delta_i \). Thus \(y \in B_{2\delta_i}(x_i) \subseteq U \), \(V_\epsilon \subseteq U \). \(\square \)

Spheres and disks. Let \(D^n = \{ x \in \mathbb{R}^n \mid ||x|| \leq 1 \} \), and let \(S^{n-1} = \{ x \in \mathbb{R}^n \mid ||x|| = 1 \} \), given with subspace topologies. Note that \(S^{n-1} \) is closed in \(D^n \).

We want to construct a homeomorphism \(D^n / S^{n-1} \approx S^n \). Since \(S^n \) is defined as a subspace, and \(D^n / S^{n-1} \) is defined as a quotient space, it makes most sense to start by building a map \(f: D^n / S^{n-1} \to S^n \).

Let \(X = D^n / S^{n-1} \), and let \(q: D^n \to X \) be the quotient map. As a set, \(X \) looks like \((D^n - S^{n-1}) \sqcup \{ \ast \} \). There is an evident continuous map \(\tilde{f}: D^n \to S^n \subseteq \mathbb{R} \times \mathbb{R}^n = \mathbb{R}^{n+1} \), given by

\[
\tilde{f}(x) = (\cos \pi ||x||, (\sin \pi ||x||)/||x|| : x)
\]

and \(\tilde{f}(0) = (1, 0) \) (since \((1/t) \sin \pi t \) extends to a continuous function at \(t = 0 \)). Since \(\tilde{f}(S^{n-1}) = \{(-1, 0)\} \), it factors uniquely through a continuous bijection \(f: X \to S^n \).

Claim. \(f \) is a homeomorphism.

We must show that \(f^{-1} \) is continuous; equivalently, that \(f \) takes open sets to open sets. It is enough to have

Proposition 1.2. Let \(U \subseteq X = D^n / S^{n-1} \), and let \(\tilde{U} = q^{-1}U \subseteq D^n \). Then \(U \) is open in \(X \) if and only if (i) \(\tilde{U} - S^{n-1} \) is open in \(D^n \), and (ii) either \(\tilde{U} \cap S^{n-1} = \emptyset \), or there exists \(\epsilon > 0 \) such that \(V_\epsilon \subseteq \tilde{U} \), where \(V_\epsilon = \{ x \in D^n \mid ||x|| > 1 - \epsilon \} \).

Proof. It is clear that if \(\tilde{U} \) satisfies (i) and (ii), then it is open, and therefore \(U \) is open. Conversely, suppose \(U \) is open, and thus \(\tilde{U} \) is open; clearly \(\tilde{U} \cap (D^n - S^{n-1}) \) is open. If \(\tilde{U} \cap S^{n-1} \neq \emptyset \), then \(S^{n-1} \subseteq \tilde{U} \). Thus, there exists suitable \(\epsilon \) since \(S^{n-1} \) is compact. \(\square \)

It is clear that the restriction \(D^n - S^n \to S^n \setminus \{(-1, 0)\} \) of \(f \) is a homeomorphism, since you can describe its inverse explicitly. By the above proposition, it then suffices to show that \(f \) takes \(q(V_\epsilon) \subset D^n / S^{n-1} \) to an open set of \(S^n \), which is clear.

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL
E-mail address: rezk@math.uiuc.edu