Friday, 12 September

Say A has **enough projectives** if for every object M there exists an epimorphism $P \to M$ with P projective.

R-modules have enough projectives. For instance, for any M, the map

$$\bigoplus_{x \in M} Re_x \to M, \quad \sum r_i e_{x_i} \mapsto \sum r_i x_i$$

is an epimorphism from a free module.

0.1. **Resolutions.** Given M in A, a (left) resolution of M is a chain complex C in $\text{Ch}(A)$ with $C_n = 0$ for $n < 0$, together with a map $\epsilon: C_0 \to M$ making

$$\cdots \to C_2 \to C_1 \xrightarrow{d_{C,1}} C_0 \xrightarrow{\epsilon} M \to 0$$

an exact sequence.

We will identify regard A with the full subcategory of $\text{Ch}(A)$ consisting of chain complexes C with $C_n = 0$ for $n \geq 0$. A chain map $C \to D$ between two such complexes is exactly described by the a map $C_0 \to D_0$ of objects in A. Thus, we have a fully faithful functor $A \to \text{Ch}(A)$. I will often use this inclusion functor without comment.

Also note that any chain homotopy involving chain complexes concentrated in degree 0 satisfies $h = 0$, and thus the composite $A \to \text{Ch}(A) \to \text{K}(A)$ is also fully faithful. That is, A can be identified with a full subcategory of the homotopy category of chain complexes.

Under this identification $A \subseteq \text{Ch}(A)$, a left-resolution of M is exactly a quasi-isomorphism

$$\epsilon: C \to M$$

where $C \in \text{Ch}_{\geq 0}(A)$. This is how I will usually write it.

We say that $P \in \text{Ch}_{\geq 0}(A)$ is a complex of projectives if each P_n is projective. (Warning: This does not imply that P is a projective object in $\text{Ch}(A)$.)

0.2. **Exercise.** What are the projective objects of $\text{Ch}(A)$?

We say $\epsilon: P \to M$ is a **projective resolution** if P is a complex of projectives and ϵ is a resolution.

0.3. **Proposition.** If A has enough projectives, then every object of A admits a projective resolution.

Proof. Easy. Given $M \in A$, choose epi $\epsilon: P_0 \to M$; choose epi $\tilde{d}: P_1 \to \text{Ker} \epsilon$ and set $d_{P,1} = (\text{ker} \epsilon)\tilde{d}: P_1 \to P_0$; inductively choose epi $\tilde{d}: P_n \to \text{Ker} d_{P,n-1}$ and set $d_{P,n} = (\text{ker} d_{P,n-1})\tilde{d}$. \hfill \square

0.4. **Lemma** (Key lemma). Let $M \in A$. Let $\eta: Q \to M$ be a resolution, let $\epsilon: P \to M$ be a map of complexes, and suppose that P is a complex of projectives and $P_n = 0$ for $n < 0$. Then there exists

Date: September 12, 2014.
a chain map \(f : P \to Q \) such that \(\eta f = \epsilon \); furthermore, such \(f \) is unique up to chain homotopy.

\[
\begin{array}{c}
Q \\
\downarrow \eta \\
\end{array}
\quad
\begin{array}{c}
P \\
\downarrow \epsilon \\
M \\
\end{array}
\]

Proof. Usual proof. Emphasise the use of the fact that if \(P \) is a projective object in \(\mathcal{A} \) then \(\text{Hom}(P,-) \) is exact.

Thus, we construct \(f_n \) inductively, given \(f_k \) for \(k < n \) such that \(\text{d}_Q f_{n-1} = f_{n-2} \text{d}_P \), using the exact sequence

\[
\text{Hom}(P_n, Q_n) \xrightarrow{\text{d}_Q} \text{Hom}(P_n, Q_{n-1}) \xrightarrow{\text{d}_Q} \text{Hom}(P_n, Q_{n-2})
\]

\[
f_n - - - - - - \rightarrow \text{d}_Q f_n = f_{n-1} \text{d}_P \rightarrow \text{d}_Q f_{n-1} \text{d}_P = f_{n-1} \text{d}_P \text{d}_P = 0
\]

Given \(f, f' \) such that \(\eta f = \epsilon = \eta f' \), build a chain homotopy by iteratively solving \(\text{d}_Q h_n = f_n - f'_n - h_{n-1} \text{d}_Q \) for \(h_n \) using

\[
\text{Hom}(P_n, Q_{n+1}) \xrightarrow{\text{d}_Q} \text{Hom}(P_n, Q_n) \xrightarrow{\text{d}_Q} \text{Hom}(P_n, Q_{n-1})
\]

\[
h_n - - - - - - \rightarrow \text{d}_Q h_n = f_n - f'_n - h_{n-1} \text{d}_Q \rightarrow \text{d}_Q (f_n - f'_n - h_{n-1} \text{d}_Q) = 0
\]

since \(\text{d}_Q (f_n - f'_n - h_{n-1} \text{d}_Q) = \text{d}_Q (f_n - f'_n) - (f_n - f'_n) \text{d}_Q + h_{n-1} \text{d}_Q \text{d}_Q = 0 \). \(\square \)

Consequences:

- Given a projective resolution \(\epsilon : P \to M \), any chain map \(f : P \to M \) such that \(f \epsilon = \epsilon \) is chain homotopic to \(1_P \).
- Any two projective resolutions of an object are chain homotopy equivalent.
- Given projective resolutions \(\epsilon : P \to M \), \(\eta : Q \to N \), and a map \(f : M \to N \), there exists a chain map \(g : P \to Q \) such that \(\eta g = f \epsilon \).
- Furthermore, the chain map \(f \) with such properties is unique up to chain homotopy.
- Using the notation of the previous statement, we have a bijection

\[
\text{Hom}_{\mathcal{K}(\mathcal{A})}(P, Q) \approx \text{Hom}_{\mathcal{A}}(M, N).
\]

0.5. **Remark.** Note that if \(P \in \text{Ch}_{\geq 0}(\mathcal{A}) \) is a bounded below chain complex with \(H_n(P) \approx 0 \) for \(n \neq 0 \), then \(P \) is tautologically a resolution of \(H_0(P) \).

Let \(\mathcal{P}(\mathcal{A}) \subset \mathcal{K}(\mathcal{A}) \) denote the full subcategory of the homotopy category \(\mathcal{K}(\mathcal{A}) \) consisting of chain complexes \(P \) which are degree-wise projective, with \(P_n = 0 \) for \(n < 0 \) and \(H_n(P) \approx 0 \) for \(n \neq 0 \). If \(\mathcal{A} \) has enough projectives, then

\[
H_0 : \mathcal{P}(\mathcal{A}) \to \mathcal{A}
\]

is an equivalence of categories.

Thus, we have two different subcategories of \(\mathcal{K}(\mathcal{A}) \) which are equivalent to \(\mathcal{A} \). Classical homological algebra basically amounts to the game: “replace \(\mathcal{A} \) with \(\mathcal{P}(\mathcal{A}) \) and see what happens”.

0.6. **Exercise.** Let \(\epsilon : P \to M \) be a projective resolution. Show that \(\epsilon \) is a chain homotopy equivalence if and only if \(M \) is a projective object in \(\mathcal{A} \).
0.7. **Examples.** If \(\mathcal{A} \) has the property that every object is projective, then every object is a projective resolution of itself.

0.8. **Example.** If \(R \) is a field, or a division ring, then every object of \(R\text{-mod} \) is projective. This is true more generally of semi-simple rings.

1. **Left derived functors**

Let \(F: \mathcal{A} \to \mathcal{B} \) be an additive functor between two abelian categories, and assume that \(\mathcal{A} \) has enough projectives. We associate **left derived functors**

\[
L_i F: \mathcal{A} \to \mathcal{B}, \quad i \geq 0
\]

as follows. First, for each \(M \) in \(\mathcal{A} \) make a choice of projective resolution \(P \to M \). Then define

\[
(L_i F)(M) := H_i(F(P)).
\]

This is evidently a functor, using the fact that any \(f: M \to N \) lifts to a chain map \(\tilde{f}: P \to Q \) between projective resolutions, uniquely up to chain homotopy.

In particular, note that if two maps \(f, g: P \to Q \) are related by a chain homotopy, then so are \(F(f), F(g): F(P) \to F(Q) \). That is, since \(ds + sd = f - g \), then \(F(d)F(s) + F(s)F(d) = F(f) - F(g) \); this uses in a strong way the fact that \(F \) is additive.

Furthermore, each \(L_i F \) is an additive functor. Given \(f, g: M \to N \) with lifts \(\tilde{f}, \tilde{g}: P \to Q \) to projective resolutions, check that \(\tilde{f} + \tilde{g} \) is a lift of \(f + g \), and thus \(H_i F(\tilde{f} + \tilde{g}) = H_i F(\tilde{f}) + H_i F(\tilde{g}) \) since both \(F \) and \(H_i \) are additive.

Note that if we chose a different projective resolution \(P' \to M \), we get a canonical isomorphism \(H_* F(P) \approx H_* F(P') \), induced by any chain map \(P \to P' \) covering \(1_M \), so it does not matter which resolution we chose.

Department of Mathematics, University of Illinois, Urbana, IL

E-mail address: rezk@math.uiuc.edu