(1) Let \(\{ A_i \}_{i \geq 0} \) be abelian groups. Define functors \(F, G : \mathbb{N}^{op} \to \text{Ab} \) as follows.

\[
F(k) := \bigoplus_{i \geq k} A_i, \quad f : F(k + 1) \to F(k) \text{ is inclusion}, \\
G(k) := \prod_{i \geq k} A_i, \quad g : G(k + 1) \to G(k) \text{ is inclusion}.
\]

Let \(H = \text{Cok}(\alpha) \), where \(\alpha : F \to G \) is the evident monomorphism of functors.

(a) Show that \(\lim H \approx \lim^1 F \).

(b) Show that \(\lim H \approx H(0) \).

(c) Exhibit a collection of abelian groups \(\{ A_i \} \) together with a non-zero element of \(\lim^1 F \).

(2) Let \(M \in R\text{-mod} \). Recall that \(- \otimes_R M : \text{mod}-R \to \text{Ab} \) preserves arbitrary direct sums, and therefore preserves finite products.

(a) Show that if \(M \) is finitely presented, then \(- \otimes_R M \) preserves arbitrary products.

(b) Show the converse: if \(M \in R\text{-mod} \) is such that \(- \otimes_R M \) preserves arbitrary products, then \(M \) is finitely presented. (Hint: to show \(M \) finitely generated, consider tensor product with \(\prod_{\alpha \in S} R \) for a suitably chosen indexing set \(S \); to show \(M \) finitely presented, use an exact sequence \(0 \to N \to R^p \to M \to 0 \) and show \(N \) must be finitely generated.)

(3) Let \(k \) be a field, and let \(R = k[x]/(x^2) \). Regard \(k \) as an \(R \)-module via \(k \approx R/(x) \).

Compute \(\text{Tor}_q^R(k, k) \) and \(\text{Ext}_q^R(k, k) \) for all \(q \geq 0 \), using projective resolutions.

(4) Let \(k \) be a field, and let \(R = k[x]/(x^3) \). Regard \(k \) as an \(R \)-module via \(k \approx R/(x) \). Let \(M = R/(x^2) \).

Compute \(\text{Tor}_q^R(k, k), \text{Tor}_q^R(M, k), \text{Ext}_q^R(k, k), \text{Ext}_q^R(M, k) \) using projective resolutions.

(5) Give an explicit example of (i) a complex \(P \in \text{Ch}_{\geq 0}(\text{Ab}) \) of projectives, (ii) a projective resolution \(Q \to H_0 P \) of the 0th homology of \(P \), and (iii) two chain maps \(f, g : Q \to P \) which induce isomorphisms in \(H_0 \), but which are not chain homotopic.