Due in class F 1 Nov. Feel free to ask for hints. Give proofs.
In the following, \(F \) is a subfield of \(\mathbb{C} \).

(1) (10 points) Let \(f \in F[X] \) be a separable polynomial of degree \(n \geq 1 \). Let \(\Sigma \subseteq \mathbb{C} \) be its splitting field, with Galois group \(\text{Aut}(\Sigma : F) \) of the extension.

Explain how a choice of labelling \(\alpha_1, \ldots, \alpha_n \) of the roots of \(f \) allows you to identify \(\text{Aut}(\Sigma : F) \) with a subgroup \(G \) of the symmetric group \(S_n \). In the following, this subgroup \(G \) will be called a Galois group of the polynomial \(f \).

Then show that for two different labellings of the roots of \(f \), the corresponding Galois groups are conjugate as subgroups of \(S_n \). (Two subgroups \(G, G' \subseteq H \) are conjugate if there exists \(h \in H \) such that \(hGh^{-1} = G' \).)

Solution. If the roots are labelled \(\alpha_1, \ldots, \alpha_n \), then any element \(\phi \in \text{Aut}(\Sigma : F) \) defines a permutation \(\sigma_\phi \) of the set \(\{1, \ldots, n\} \), by the formula
\[
\phi(\alpha_k) = \alpha_{\sigma_\phi(k)}.
\]
The assignment \(\phi \mapsto \sigma_\phi \) defines a homomorphism of groups \(\sigma : \text{Aut}(\Sigma : F) \rightarrow S_n \), since the identity map goes to the identity, and we have
\[
\psi(\phi(\alpha_k)) = \psi(\alpha_{\sigma_\phi(k)}) = \alpha_{\sigma_\psi(\sigma_\phi(k))},
\]
so that \(\sigma_\psi = \sigma_\psi \circ \sigma_\phi \).

The homomorphism \(\sigma \) is clearly injective, since if \(\sigma_\phi \) is the identity permutation then \(\phi(\alpha_k) = \alpha_k \) for all \(k = 1, \ldots, n \), and since \(\Sigma = F(\alpha_1, \ldots, \alpha_n) \) this implies that \(\phi \) is the identity. Thus \(\text{Aut}(\Sigma : F) \) is isomorphic to the subgroup \(G = \sigma(\text{Aut}(\Sigma : F)) \) of \(S_n \) which is the image of this homomorphism.

Suppose we have a different labelling \(\beta_1, \ldots, \beta_n \) of the roots, so that \(\beta_k = \alpha_{\gamma(k)} \) where \(\gamma \in S_n \). The homomorphism \(\tau : \text{Aut}(\Sigma : F) \rightarrow S_n \) defined by the new labelling is defined by \(\phi(\beta_k) = \beta_{\tau\gamma(k)} \). Its image is a subgroup \(G' = \tau(\text{Aut}(\Sigma : F)) \).

We compute
\[
\phi(\beta_k) = \phi(\alpha_{\gamma(k)}) = \alpha_{\sigma_\phi(\gamma(k))},
\]
so that \(\sigma_\phi \circ \gamma = \gamma \circ \tau_\phi \).

That is, \(\tau_\phi = \gamma^{-1} \circ \sigma_\phi \circ \gamma \). This shows that \(G' = \gamma^{-1}G\gamma \). \(\square \)
(2) (10 points) Consider a polynomial of the form \(f = X^4 + bX^2 + c \in F[X] \). Determine the values of \(b \) and \(c \) such that \(f \) is a separable polynomial.

Solution. The polynomial is separable if and only if \(c \neq 0 \) and \(b^2 - 4c \neq 0 \).

First proof. We have \(Df = 4X^3 + 2bX \), which factors as \(f = 2X(X^2 + \frac{b}{2}) \). For \(f \) to be relatively prime to \(Df \), we must have (i) \(f \) relatively prime to \(X \), and (ii) \(f \) relatively prime to \(X^2 + \frac{b}{2} \). For (i), \(X \nmid f \) iff \(c \neq 0 \). For (ii), apply the division algorithm to \(f \div (X^2 + \frac{b}{2}) \):

\[
X^4 + bX^2 + c = (X^2 + \frac{b}{2})(X^2 + \frac{b}{2}) + (4c - b^2)/4.
\]

Thus if \(b^2 - 4c = 0 \) then \(f \) and \(X^2 - \frac{b}{2} \) must be relatively prime, while if \(b^2 - 4c = 0 \) then \(X^2 - \frac{b}{2} \) divides \(f \).

Second proof. The quadratic formula gives roots

\[
X = \pm \sqrt{-b \pm \sqrt{b^2 - 4c}}.
\]

Clearly if either \(c = 0 \) or \(b^2 - 4c = 0 \) then there are repeated roots. So we need to prove the converse: if \(c \neq 0 \) and \(b^2 - 4c \neq 0 \), then there are four distinct roots here.

Let’s be more careful about how we name these roots. Make a choice \(\gamma \in \mathbb{C} \) such that \(\gamma^2 = b^2 - 4c \). Then make choices \(\alpha, \beta \in \mathbb{C} \) such that \(\alpha^2 = (-b + \gamma)/2 \) and \(\beta^2 = (-b - \gamma)/2 \). Then \(\pm \alpha, \pm \beta \) are roots of \(f \). Note that

\[
\alpha^2 + \beta^2 = -b, \quad \alpha^2 \beta^2 = c.
\]

If \(b^2 - 4c \neq 0 \), then \(\gamma \neq 0 \), and therefore \(\alpha^2 \neq \beta^2 \), which implies that \(\pm \alpha \neq \pm \beta \) (for any choice of sign). If \(c = 0 \), then \(\alpha^2 \neq 0 \) and \(\beta^2 \neq 0 \), and thus \(\alpha \neq -\alpha \) and \(\beta \neq -\beta \). Therefore the elements \(\alpha, -\alpha, \beta, -\beta \) are pairwise distinct.

\[
\square
\]

(3) (20 points) Consider a separable polynomial \(f = X^4 + bX^2 + c \in F[X] \). Pick a labelling of its roots and consider the Galois group \(G \leq S_4 \). Show that \(G \) must be conjugate to a subgroup of \(D_4 \leq S_4 \), where this group is defined by

\[
D_4 = \{ e, r, r^2, r^3, s, sr, sr^2, sr^3 \}, \quad r = (1 \ 2 \ 3 \ 4), \quad s = (2 \ 4).
\]

(This is isomorphic to a group of symmetries of a square, with vertices labelled 1 2 3 4 sequentially.)

Solution. As in the second proof of part (2), we have four distinct roots \(\pm \alpha, \pm \beta \), where

\[
\alpha^2 + \beta^2 = -b, \quad \alpha^2 \beta^2 = c.
\]

Note that \(\alpha^2 \neq \beta^2 \), since \(\alpha \neq \pm \beta \).

By part (1), changing the labelling of the roots replaces \(G \) with a conjugate subgroup of \(S_4 \). So to prove the claim, I just need to find a choice of labelling which identifies elements of \(\text{Aut}(\Sigma : F) \) with elements of \(D_4 \). Set

\[
\alpha_1 = \alpha, \quad \alpha_2 = \beta, \quad \alpha_3 = -\alpha, \quad \alpha_4 = -\beta.
\]

The identities involving the roots constrain the types of permutations of the roots elements \(\phi \in \text{Aut}(\Sigma : F) \) can give. For instance, \(\alpha_3 = -\alpha_1 \) and \(\alpha_4 = -\alpha_2 \) say that
\(\phi \) can either (i) preserve each of the sets \(\{\pm \alpha\}, \{\pm \beta\} \), or (ii) switch the two sets between each other.

Therefore there are at most eight possibilities, which as elements of the symmetric group may be written

\[
e, \quad (2\ 4), \quad (1\ 3), \quad (1\ 3)(2\ 4), \quad (1\ 2)(3\ 4), \quad (1\ 2\ 3\ 4), \quad (1\ 4\ 3\ 2), \quad (1\ 4)(2\ 3).
\]

You can prove this formally by a case analysis based on where \(\sigma \) goes: \(\sigma(\alpha) \) determines \(\sigma(-\alpha) \), and leaves only two possibilities for \(\sigma(\beta) \), which then determines \(\sigma(-\beta) \).

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\sigma & e & s & sr^2 & r^2 & sr^3 & r & sr \\
\hline
\sigma(\alpha_1) = \sigma(\alpha) & \alpha & \alpha & -\alpha & -\alpha & \beta & \beta & -\beta \\
\sigma(\alpha_2) = \sigma(\beta) & \beta & -\beta & \beta & -\beta & \alpha & -\alpha & \alpha \\
\sigma(\alpha_3) = \sigma(-\alpha) & -\alpha & -\alpha & \alpha & \alpha & -\beta & \beta & \beta \\
\sigma(\alpha_4) = \sigma(-\beta) & -\beta & \beta & -\beta & \beta & \alpha & \alpha & -\alpha \\
\hline
\end{array}
\]

Setting \(r = (1\ 2\ 3\ 4) \) and \(s = (2\ 4) \), we get the expressions in the bottom row of the chart. This is clearly all the elements of the subgroup \(D_4 \), as you can see by verifying that \(r^4 = e = s^2 \) and \(rs = sr^3 \).

(4) (20 points) Classify up to conjugacy in \(S_4 \) all subgroups of \(S_4 \) which are conjugate (by an element of \(S_4 \)) to a subgroup of the group \(D_4 \) of the previous problem. Give a representative subgroup of \(D_4 \) for each of these conjugacy classes. (Hint: there are exactly 7 such classes.)

Solution. Since by definition the subgroups we are interested in are conjugate to subgroups of \(D_4 \), all we need to do is classify the subgroups of \(D_4 \) up to conjugacy in \(S_4 \). The group \(D_4 \) has exactly 10 subgroups, but some of these turn out to be conjugate to each other in \(S_4 \). Here is a list of representatives.

(a) \(G = \{e\} \).

(b) \(G = \langle s \rangle = \{e, (2\ 4)\} \). (Note that this is conjugate in \(S_4 \) to \(\langle sr^2 \rangle \) since \(s = (2\ 4) \) and \(sr^2 = (1\ 3) \) are both 2-cycles.)

(c) \(G = \langle r^2 \rangle = \{e, (1\ 3)(2\ 4)\} \). (Note that this is conjugate in \(S_4 \) to \(\langle sr \rangle \) and to \(\langle sr^3 \rangle \), since \(r^2 = (1\ 3)(2\ 4) \), \(sr = (1\ 4)(2\ 3) \), and \(sr^3 = (1\ 2)(3\ 4) \) are all products of two disjoint 2-cycles.)

(d) \(G = \langle r \rangle = \{e, (1\ 2\ 3\ 4), (1\ 3)(2\ 4), (1\ 4\ 3\ 2)\} \). (This is isomorphic to \(\mathbb{Z}/4 \).)

(e) \(G = \langle s, r^2 \rangle = \{e, (2\ 4), (1\ 3)(2\ 4), (1\ 3)\} \). (This is isomorphic to \(\mathbb{Z}/2 \times \mathbb{Z}/2 \).)

(f) \(G = \langle sr, r^2 \rangle = \{e, (1\ 4)(2\ 3), (1\ 3)(2\ 4), (1\ 2)(3\ 4)\} \). (This is also isomorphic to \(\mathbb{Z}/2 \times \mathbb{Z}/2 \).)

(g) \(G = D_4 \).

To see that these represent distinct conjugacy classes in \(S_4 \), it suffices to apply the conjugacy formula for cycles in symmetric groups: \(\sigma(a_1 \cdots a_k)\sigma^{-1} = (a_{\sigma(1)} \cdots a_{\sigma(k)}) \).

By inspection we see that no two of the representative subgroups listed above have matching cycle-decomposition-types for all of their elements.

Note: There are eight conjugacy classes of subgroups in \(D_4 \), but only seven when viewed as conjugacy classes in \(S_4 \). The sets \(\{\langle sr \rangle, \langle sr^3 \rangle\} \) and \(\{\langle r^2 \rangle \} \) are distinct conjugacy classes of subgroups of \(D_4 \), but lie in the same conjugacy class of subgroups of \(S_4 \).
(5) (20 points) Consider an irreducible polynomial \(f = X^4 + bX^2 + c \in \text{Irred}(F) \). Show that its Galois group \(G \) is isomorphic to \(\mathbb{Z}/2 \times \mathbb{Z}/2 \) if and only if \(c = u^2 \) for some \(u \in F \), and is isomorphic to \(\mathbb{Z}/4 \) if and only if \((b^2 - 4c)/c = v^2 \) for some \(v \in F \).

Solution. Because \(f \) is irreducible it must be separable, since we are in characteristic 0. As proved earlier there exists a labelling of the roots of the form

\[
\alpha_1 = \alpha, \quad \alpha_2 = \beta, \quad \alpha_3 = -\alpha, \quad \alpha_4 = -\beta,
\]

so that \(\alpha^2 + \beta^2 = -b \) and \(\alpha^2\beta^2 = c \), and with this labelling Galois group \(G \) is a subgroup of \(D_4 \).

Since \(f \) is irreducible, the Galois group \(G \) must act transitively on the roots, i.e., \(G\alpha = \{ \pm\alpha, \pm\beta \} \). This means that \(G \) must fall in one of the cases (d), (f), or (g) of the solution to part (4), since these are the only cases where the subgroup \(G \) acts transitively on the roots.

Case (f) happens if and only if \(\alpha\beta \in F \), since the products of two disjoint 2-cycles in \(D_4 \) fix this element, but the 4-cycles in \(D_4 \) send \(\alpha\beta \mapsto -\alpha\beta \). If \(\alpha\beta \in F \), then certainly \(c = \alpha^2\beta^2 = (\alpha\beta)^2 \) is a square of an element of \(F \). Conversely, if \(c = u^2 \) for some \(u \in F \), then \(c = (\alpha\beta)^2 \) implies \(\alpha\beta = \pm u \), so \(\alpha\beta \in F \).

Case (d) happens if and only if \(\epsilon := \alpha/\beta - \beta/\alpha = (\alpha^2 - \beta^2)/(\alpha\beta) \in F \), since the 4-cycles in \(D_4 \) fix this element, but \((1\ 2)(3\ 4) \) and \((1\ 4)(2\ 3) \) send \(\epsilon \mapsto -\epsilon \). Compute that

\[
e^2 = \frac{(\alpha^2 - \beta^2)^2}{(\alpha\beta)^2} = \frac{\alpha^4 - 2\alpha^2\beta^2 + \beta^4}{\alpha^2\beta^2} = \frac{(\alpha^2 + \beta^2)^2 - 4\alpha^2\beta^2}{\alpha^2\beta^2} = \frac{b^2 - 4c}{c}.
\]

If \(\epsilon \in F \), then certainly \((b^2 - 4c)/c = \epsilon^2 \) is a square of an element of \(F \). Conversely, if \((b^2 - 4c)/c = \epsilon^2 \) for some \(v \in F \), then \((b^2 - 4c)/c = \epsilon^2 \) implies \(\epsilon = \pm v \), so \(\epsilon \in F \).

Remark. Irreducibility is important here. The same ideas prove that (for any separable \(f \), not necessarily irreducible), that \(c \) is a square in \(F \) iff \(G \) is conjugate (in \(S_4 \)) to a subgroup of \(\langle sr, r^2 \rangle \), and that, \((b^2 - 4c)/c \) is a square in \(F \) iff \(G \) conjugate (in \(S_4 \)) to a subgroup of \(\langle r \rangle \).

\(\Box \)

(6) (20 points) For each of the 7 representative subgroups you described in part (4), find a separable polynomial of the form \(f = X^4 + bX^2 + c \in \mathbb{Q}[X] \), together with a labelling of its roots, which has the given subgroup as its Galois group.

Solution.

(a) \(G = \{ e \} \). Any polynomial of this form which splits over \(\mathbb{Q} \) works, e.g., \(f = (X^2 - 1)(X^2 - 4) = X^4 - 5X^2 + 4 \), with any labelling of the roots \(\pm 1, \pm 2 \).

(b) \(G = \langle s \rangle = \langle (2\ 4) \rangle \). Any polynomial of this form which factors over \(\mathbb{Q} \) into an irreducible quadratic and two linear terms works, e.g., \(f = (X^2 - 1)(X^2 + 1) = X^4 - 1 \), with roots labelled in order: \(1, i, -1, -i \).

(c) \(G = \langle r^2 \rangle = \langle (1\ 3)(2\ 4) \rangle \). For example, \(f = (X^2 + 1)(X^2 + 4) = X^4 + 5X^2 + 4 \), with roots labelled in order: \(i, 2i, -i, 2i \).

Any product of two irreducible quadratics which have the same splitting field works.

Another good example is \(X^4 + X^2 + 1 \), with roots \(\pm \omega, \pm \omega^2 \), which you can list in the order: \(\omega, \omega^2, -\omega, -\omega^2 \). Note that none of the roots are squareroots of elements of \(\mathbb{Q} \), but the polynomial still factors over \(\mathbb{Q} \) as \((X^2 + X + 1)(X^2 - X + 1) \).
(d) \(G = \langle r \rangle = \langle (1\ 2\ 3\ 4) \rangle \). For example, \(f = X^4 + 5X^2 + 5 \), with roots labelled in order: \(\zeta - \zeta^{-1}, \zeta^2 - \zeta^{-2}, \zeta^{-1} - \zeta, \zeta^2 - \zeta^2 \), where \(\zeta = e^{2\pi i/5} \). The splitting field \(\Sigma : \mathbb{Q} \) is generated by \(\zeta \), and \(r \in G \) sends \(\zeta \mapsto \zeta^2 \). You can also write the roots as \(\pm \sqrt{-\frac{5\pm\sqrt{5}}{2}} \), which you can list in the order: \(i\sqrt{\frac{5+\sqrt{5}}{2}}, i\sqrt{\frac{5-\sqrt{5}}{2}}, -i\sqrt{\frac{5+\sqrt{5}}{2}}, -i\sqrt{\frac{5-\sqrt{5}}{2}} \), where in each case the squareroot is a positive real number.

Observe that \(f \in \text{Irred}(\mathbb{Q}) \) (by Eisenstein), and that \((b^2 - 4c)/c = 1^2 \) is a square of an element of \(\mathbb{Q} \).

(e) \(G = \langle s, r^2 \rangle = \langle (2\ 4), (1\ 3) \rangle \). For example, \(f = (X^2 + 1)(X^2 - 2) = X^4 - X^2 - 2 \) with roots labelled in order: \(i, \sqrt{2}, -i, -\sqrt{2} \).

Any product of two irreducible quadratics which have different splitting fields works.

(f) \(G = \langle sr, r^2 \rangle = \langle (1\ 2)(3\ 4), (1\ 4)(2\ 3) \rangle \). For example, \(f = X^4 - 2X^2 + 9 \) with roots labelled in order: \(\sqrt{2} + i, \sqrt{2} - i, -\sqrt{2} - i, -\sqrt{2} + i \).

Observe that \(f \in \text{Irred}(\mathbb{Q}) \), and that \(c = 3^2 \) is a square of an element of \(\mathbb{Q} \). To prove that \(f \) is irreducible: clearly none of the roots are in \(\mathbb{Q} \), so it suffices to show there is no irreducible quadratic which is a factor. Such a quadratic would have the form \((X - u)(X - v) = X^2 - (u + v)X + uv \) where \(u, v \) are two distinct roots, and its easy to check by explicit calculation that there is no such pair with both \(u + v, uv \in \mathbb{Q} \).

Another good examples of \(f \) is \(X^4 + 1 \) with roots \((\pm 1 \pm i)/\sqrt{2} \), which you can list in order: \((1 + i)/\sqrt{2}, (1 - i)/\sqrt{2}, (-1 - i)/\sqrt{2}, (-1 + i)/\sqrt{2} \).

(g) \(G = D_4 \). For example, \(f = X^4 - 2 \) with roots labelled in order: \(\sqrt{2}, i\sqrt{2}, -\sqrt{2}, -i\sqrt{2} \).

Observe that \(f \in \text{Irred}(\mathbb{Q}) \) (e.g., by Eisenstein), and that neither \((b^2 - 4c)/c = -4 \) nor \(c = -2 \) are squares of elements of \(\mathbb{Q} \).

\(\square \)

Additional remark about factorization of quartics. To show \(f = X^4 + bX^2 + c \in F[X] \) is irreducible, it suffices to show

1. \(f \) has no root in \(F \), and
2. \(f \neq gh \) for any monic quadratics \(g, h \in F[X] \).

If \(f \) is separable, then we know the roots of \(f \) have form \(\{\pm \alpha, \pm \beta\} \), with \(\alpha^2 + \beta^2 = -b \) and \(\alpha^2\beta^2 = c \). Then \(f = (X - \alpha)(X + \alpha)(X - \beta)(X + \beta) \), so there are exactly three ways to factor \(f \) into monic quadratics (up to reordering):

(a) \(f = (X^2 - \alpha^2)(X^2 - \beta^2) \).
(b) \(f = (X^2 - (\alpha + \beta)X + \alpha\beta)(X^2 + (\alpha + \beta) + \alpha\beta) \).
(c) \(f = (X^2 - (\alpha - \beta)X - \alpha\beta)(X^2 + (\beta - \alpha)X - \alpha\beta) \).

These are factorizations over \(F \) iff (in each case):

1. \(\alpha^2 \in F \iff \beta^2 \in F \).
2. \(\alpha\beta, \alpha + \beta \in F \).
3. \(\alpha\beta, \alpha - \beta \in F \).
For instance, \(f = X^4 + X^2 + 1 \in \mathbb{Q}[X] \) has roots \(\pm \omega, \pm \omega^2 \), so it factors as in (b) or (c) (depending on how you label the roots), but not as in (a). On the other hand, \(g = X^4 + 5X^2 + 4 \in \mathbb{Q}[X] \) has roots \(\pm i, \pm 2i \), so it factors as in (a) but not as in (b) or (c).