Due in class F 5 Oct.
Note: clarified statement of (4) [W 3 Oct].

(1) Let \mathbb{Q} be the rationals, as a group under addition.
 (a) Show that any finitely generated subgroup of \mathbb{Q} is contained in a cyclic subgroup.
 (Hint: Write a sum of fractions in terms of a common denominator. Think about
 a special case like $\langle \frac{1}{2}, \frac{2}{3} \rangle$.)
 (b) Show that \mathbb{Q} is not a cyclic group.
 (c) Use the above to show that \mathbb{Q} is not finitely generated.

(2) Give a formula for the number of k-cycles in S_n ($1 \leq k \leq n$), and show why your
 formula is correct.

(3) Describe all possible cycle types in S_5, and count the number of permutations of each
 type.

(4) Let $\sigma \in S_n$. Show that if $\sigma^d = id$ for some $d \geq 1$, then the decomposition of σ
 into disjoint cycles can only involve cycles whose order divides d.

(5) Let X be a finite set of size $n = |X|$. Let $\sigma \in \text{Sym}(X)$ be a permutation of X with
 the property that $\sigma^p = id$ for some prime number p. Define
 $$X^\sigma := \{ x \in X \mid \sigma(x) = x \}.$$
 Show that
 $$|X^\sigma| \equiv |X| \mod p.$$