LECTURE NOTES FOR 427: PART 2

CHARLES REZK

1. Rings

Recall that a ring is \((R, +, \cdot)\), consisting of a set \(R\) and two binary operations \(+: R \times R \to R, \quad \cdot : R \times R \to R,\) called “addition” and “multiplication”,

- \((R, +)\) is an additive group,
- \((R, \cdot)\) is a monoid, and
- multiplication distributes over addition:
 \[a(b + c) = (ab) + (ac), \quad (a + b)c = (ac) + (bc). \]

The identity for + is conventionally called 0, and the inverse of \(a\) under + is called \(-a\). The identity for \(\cdot\) is called 1.

A ring is said to be commutative if multiplication is commutative: \(ab = ba\) for all \(a, b \in R\).

We have already discussed several examples of rings, including matrix rings; fields, including complex numbers; quaternions. Here are some more.

1.1. Example (Rings of functions). For any set \(X\) and ring \(R\), let \(S := \mathcal{F}(X, R) = \{f : X \to R\}\) be the set of all functions. Then \(S\) is a ring, with operations given by “pointwise” addition and multiplication:

\[(f + g)(x) := f(x) + g(x), \quad (fg)(x) := f(x)g(x). \]

(Exercise: check that this is a ring.) For instance, the set \(\mathcal{F}(\mathbb{R}, \mathbb{R})\) of real valued functions on \(\mathbb{R}\) is a ring.

If \(S\) is a ring, a multiplicative inverse of an element \(a \in S\) is an element \(b \in S\) such that \(ab = 1 = ba\).

Clearly not all elements of a ring can have a multiplicative inverse. For instance, \(0 \in \mathbb{R}\) has none.

1.2. Exercise. If \(a \in S\) has a multiplicative inverse, then this inverse is unique. (Same as the proof for inverses in groups.)

We write \(S^\times \subseteq S\) for the set of elements which have multiplicative inverses.

1.3. Exercise. \((S^\times, \cdot)\) is a group.

Examples: \(\mathbb{R}^\times = \mathbb{R} \setminus \{0\}\), \(\mathbb{Z}^\times = \{\pm 1\}\), \((\mathbb{Z}/n)^\times = \Phi(n)\), \(M_{n \times n}(\mathbb{R})^\times = GL_n(\mathbb{R})\).

We say that a ring \(S\) is a division ring if \(S^\times = S \setminus \{0\}\), i.e., every non-zero element has a multiplicative inverse, and 0 does not have one.

A commutative division ring is called a field. For instance, \(\mathbb{R}\) is a field. Also \(\mathbb{Z}/p\) is a field when \(p\) is prime.

Let’s carefully construct some more examples of rings.
2. Subrings

A subring of a ring \(R \) is a subset \(S \subseteq R \) such that (i) the + and \(\cdot \) operations restrict to \(S \), and make \(S \) a ring in its own right, and (ii) \(R \) and \(S \) have the same multiplicative identity.

Here is the subring criterion.

2.1. Proposition. A subset \(S \subseteq R \) of a ring is a subring if and only if

1. \(x, y \in S \) implies \(x + y \in S \), i.e., \(S \) is closed under addition,
2. \(x \in S \) implies \(-x \in S \),
3. \(x, y \in S \) implies \(xy \in S \),
4. \(1 \in S \), where \(1 \) denotes the multiplicative identity in \(R \).

Proof. Note that by (4) \(S \) is non-empty. Therefore together with (1) and (2) we see that \((S, +)\) is a subgroup of \((R, +)\). Property (3) implies that multiplication is a binary operation on \(S \). It is straightforward to check the remaining properties (that multiplication is associative, that 1 is a multiplicative identity, the distributive law) on \(S \), because they hold in \(R \). \(\square \)

2.2. Example. The integers \(\mathbb{Z} \) are a subring of \(\mathbb{R} \).

2.3. Example. The rational numbers \(\mathbb{Q} \) are a subring of \(\mathbb{R} \).

2.4. Example. The inclusion \(2\mathbb{Z} \subseteq \mathbb{Z} \) is not a subring. Although closed under the operations the subset does not have a multiplicative identity.

2.5. Example. Let \(S \subseteq M_{2 \times 2}(\mathbb{R}) \) be the subset consisting of \(2 \times 2 \) real matrices of the form

\[
\begin{pmatrix} a & -b \\ b & a \end{pmatrix}, \quad a, b \in \mathbb{R}.
\]

We can check that \(S \) is a subring of the ring of matrices. (Verify this.)

2.6. Example (Not a subring). Let \(T = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \mid a \in \mathbb{R} \} \). This is a subset of the ring \(S = M_{2 \times 2}(\mathbb{R}) \), which is closed under + and \(\cdot \), and in fact as such it is a ring in its own right: its multiplicative identity is \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \).

However, we will not consider it as a subring, because the multiplicative identity of \(T \) is not the same as the one for \(S = M_{2 \times 2}(\mathbb{R}) \), which is the identity matrix. (Note: other sources may differ here, and will consider \(T \) a subring. I won’t however.)

Compare with groups, where if \(H \subseteq G \) is a subset closed under multiplication, and \(H \) has an identity element for its product, then the identity element of \(H \) must be the same as that for \(G \). (The proof of this used the existence of inverses in groups, which we do not assume for multiplication in a ring.) Rings are just different.

2.7. Example. The set \(C(\mathbb{R}, \mathbb{R}) \) of continuous functions \(f : \mathbb{R} \to \mathbb{R} \) is a subring \(C(\mathbb{R}, \mathbb{R}) \subseteq \mathcal{F}(\mathbb{R}, \mathbb{R}) \), commutative with identity. This is because of the fact that sums and products of continuous functions are continuous; it has identity because constant functions are continuous.

3. Homomorphisms and isomorphisms of rings

Let \(R \) and \(S \) be rings. A homomorphism \(\phi : R \to S \) is a function such that

- \(\phi(a + b) = \phi(a) + \phi(b) \) for all \(a, b \in R \),
- \(\phi(ab) = \phi(a)\phi(b) \) for all \(a, b \in \mathbb{R} \), and
- \(\phi(1) = 1 \).

Date: November 9, 2018.
Note: in groups we did not need a condition like (3) for the identity element, because it was true anyway. This is because it was implied by the property that a homomorphism preserve products, which was because elements of groups always have inverses.

Easy fact: if \(\phi \) is a homomorphism, then we also have:

\[
\phi(0) = 0, \quad \phi(-a) = -\phi(a),
\]

since \(\phi \) is also a homomorphism of groups \((R, +) \rightarrow (S, +)\).

3.1. Example (The homomorphism from integers). Let \(R \) be a ring. There is a unique homomorphism of abelian groups \(\phi : \mathbb{Z} \rightarrow R \) which sends the generator 1 of \(\mathbb{Z} \) to 1 \(\in R \). Thus, \(\phi(0) = 0 \) (since 0s are identity elements for additive groups); we have \(\phi(-1) = -1 \) since homomorphisms take inverses to inverses; if \(m > 0 \), we have

\[
\phi(m) = \phi(1 + \cdots + 1) = \underbrace{\phi(1) + \cdots + \phi(1)}_{m\text{-times}} = m1.
\]

Similarly, \(\phi(-m) = -m1 \).

3.2. Remark. In practice, for any ring \(S \) we usually just write the integer \(m \) to also denote the element in \(S \) given by \(m1 \) as above. This can be a little confusing. For instance, it is possible to have a non-zero integer \(n \) whose image in \(S \) is 0, for instance in the ring \(\mathbb{Z}/n \).

3.3. Example. Consider the projection map \(\phi : \mathbb{Z} \rightarrow \mathbb{Z}/n \), defined by \(\phi(x) := [x]_n \). This is a ring homomorphism.

We write \(R^x \subseteq R \) for the subset of a ring consisting of elements which admit a multiplicative inverse. Note that \((R, \cdot)\) is a group. (But it is not a subgroup of \((R, +)\).)

3.4. Proposition. If \(a \) has a multiplicative inverse, then so does \(\phi(a) \), in which case \(\phi(a)^{-1} = \phi(a^{-1}) \).

Proof. Just verify that \(\phi(a)\phi(a^{-1}) = \phi(aa^{-1}) = \phi(1) = 1 \) and \(\phi(a^{-1})\phi(a) = \phi(a^{-1}a) = \phi(1) = 1 \)

3.5. Corollary. If \(\phi : R \rightarrow S \) is a homomorphism of rings, then \(\phi \) restricts to a homomorphism \(R^x \rightarrow S^x \) of groups.

An isomorphism of rings is a homomorphism which is a bijection. You can show that the inverse map is also a bijection.

3.6. Proposition. If \(\phi : R \rightarrow S \) is a homomorphism of rings, then \(\phi(R) \) is a subring of \(S \). If \(\phi \) is injective then it defines an isomorphism between \(R \) and \(\phi(R) \).

4. Polynomial rings

For any ring \(S \) we can construct a new ring \(P(S) \), whose elements are “polynomials in one variable with coefficients in \(S \)”. Let \(S \) be any ring. A sequence in \(S \) is a function

\[
a : \mathbb{Z}_{\geq 0} \rightarrow S.
\]

I’ll use the notation \(a_n \in S \) for the value of this function at \(n \), i.e., I’m thinking of \(a \) as an infinite sequence.

We define a new ring \(P(S) \) as follows.

- Elements of \(P(S) \) are sequences \(a : \mathbb{Z}_{\geq 0} \rightarrow S \) for which there exists \(N \in \mathbb{Z}_{\geq 0} \) such that \(a_k = 0 \) for all \(k > N \). only finitely many of the values \(a_k \) are non-zero.
- Addition of elements in \(P(S) \) is defined by the “pointwise addition” rule:

\[
(a + b)_n := a_n + b_n.
\]
We need to make sure these operations are well-defined, because of the requirement that sequences in \(P(S) \) are eventually 0. For instance, given \(a, b \in P(S) \) there is an \(N \) such that \(a_k = b_k = 0 \) for all \(k > N \). Then clearly \((a + b)_k = 0\) for \(k > N\), while \((ab)_k = 0\) for \(k > 2N\).

4.1. Exercise (Tedious). With this structure \(P(S) \) is a ring. I’ll just note some features of this:

- The additive identity is the zero sequence: \(0_n = 0 \) for all \(n \).
- Additive inverses are computed “termwise”: \((-a)_n = -(a_n)\).
- The multiplicative identity is the sequence \(1 \) defined by \(1_0 = 1, 1_k = 0 \) for \(k > 0 \).
- If \(S \) is commutative, so is \(P(S) \).
- Associativity of multiplication is the hardest part to prove, but is is not too bad if you are good at multiple summations:

\[
(ab)_n := \sum_{i=0}^{n} a_i b_{n-i} = a_n b_0 + a_{n-1} b_1 + \cdots + a_1 b_{n-1} + a_0 b_n.
\]

E.g., \((ab)_0 = a_0 b_0\), \((ab)_1 = a_1 b_0 + a_0 b_1\), \((ab)_2 = a_2 b_0 + a_1 b_1 + a_0 b_2\), etc.

We use the following notation when dealing with a polynomial ring.

- Given \(c \in S \), we use the same symbol \(c \) to denote the element of \(P(S) \) defined by the sequence:

\[
c_0 := c, \quad c_k := 0 \quad \text{if} \ k \geq 1.
\]

- Let \(S' \subseteq P(S) \) be the set of all \(f \in P(S) \) such that \(f_k = 0 \) if \(k \geq 1 \). Then the above defines a bijection \(S \rightarrow S' \), and this bijection is an isomorphism of rings.
- We write \(X \in P(S) \) for the sequence

\[
X_1 = 1, \quad X_k = 0 \quad \text{if} \ k \neq 1.
\]

- Note that \(X^n \), the product of \(X \) with itself \(n \) times, is the sequence

\[
X_n = 1, \quad X_k = 0 \quad \text{if} \ k \neq n.
\]

- Using this notation, we can use the ring structure on \(P(S) \) rewrite any sequence \(a \in P(S) \) as an expression

\[
f = a_0 + a_1 X + a_2 X^2 + \cdots + a_n X^n, \quad a_0, \ldots, a_n \in S,
\]

assuming \(a_k = 0 \) for \(k > n \). We often choose to denote such an expression as “\(f(X) \)”, rather than “\(a \)”.

\[\text{M 5 Nov}\]
In other words, \(P(S) \) is the ring of **polynomials** in one unknown with coefficients in \(S \).

Warning. Polynomials are not defined as functions, and they are not the same thing as functions. I’ll talk about this later.

Another notation for \(P(S) \) is \(S[X] \). (This is convenient when we want to name the “variable”.)

4.2. Exercise (On PS 11). If \(D \) is a domain, then \(D[X] \) is a domain.

This is also important because we can iterate the construction. Thus we may consider \(P(P(S)) \), aka \((S[X])[Y] \). Elements \(f \) in this ring are expressions

\[
f = g_0 + g_1 Y + g_2 Y^2 + \cdots + g_n Y^n,
\]

where each \(g_k \in S[X] \), so are expressions

\[
g_k = a_{0k} + a_{1k}X + a_{2k}X^2 + \cdots a_{2m}X^m
\]

with \(a_{ij} \in S \). Using the distributive law, we can always rewrite this as

\[
f = \sum_{i=0}^m \sum_{j=0}^n a_{ij}X^m Y^n.
\]

We write \(S[X,Y] \) for \((S[X])[Y] \), and call it the ring of polynomials in two variables. As we will see soon, the order of the variables isn’t really important: \((S[X])[Y] \) and \((S[Y])[X] \) are the “same” ring (really, they are canonically isomorphic).

You can go on to define \(S[X,Y,Z] \), etc.

5. Center of a ring

Given a ring \(S \) let

\[
\text{Cent}(S) := \{ a \in S \mid ab = ba \text{ for all } b \in S \},
\]

called the **center** of \(S \).

5.1. Exercise (On PS ?). The set \(R = \text{Cent}(S) \) is a subring of \(S \). As a ring \(R \) is commutative.

Note that if \(S \) is commutative, then \(\text{Center}(S) = S \).

5.2. Example. The center of the quaternion algebra \(\mathbb{H} \) is the subset \(\mathbb{R}1 = \{ \lambda 1 \mid \lambda \in \mathbb{R} \} \) of scalar quaternions. It’s straightforward to check that scalar quaternions are in the center. To see these are the only ones, check commutativity with \(i \), \(j \), and \(k \). For instance, commutativity with \(i \) gives

\[
(a1 + bi + cj + dk)i = -b1 + ai + dk - cj,
\]

which means that if \(x = a1 + bi + cj + dk \) is in the center then \(c = 0 = d \). Checking commutativity with \(j \) gives \(b = 0 \).

5.3. Exercise (On PS 11). Let \(S = M_{n \times n}(F) \) where \(F \) is a field (e.g., \(F = \mathbb{R} \)). Then

\[
\text{Center}(S) = \{ \lambda I \mid \lambda \in F \},
\]

the set of diagonal matrices. Thus \(\text{Center}(S) \approx F \).
6. Homomorphisms Out of a Polynomial Ring

The following proposition tells you how to construct homomorphisms out of a polynomial ring $S[X]$.

6.1. **Proposition.** Let S and T be rings. Suppose given

1. a ring homomorphism $\phi: S \to T$, and
2. an element $c \in T$, such that
3. $\phi(s)c = c\phi(s)$ for all $s \in S$.

Then there exists a unique ring homomorphism

$$
\psi: S[X] \to T
$$

such that (i) $\psi(X) = c$ and (ii) $\psi(s) = \phi(s)$ for all $s \in S \subseteq S[X]$.

Note that if T is commutative, then (3) is automatically true.

Proof. **Existence.** We define ψ by the following rule. If $f \in S[X]$ is given by $f = \sum_{i=0}^{n} a_i X^i$ with $a_i \in S$, then set

$$
\psi(f) := \sum_{i=0}^{n} \phi(a_i)c^i.
$$

Verify directly that this is a ring homomorphism: i.e., that it preserves addition, multiplication, and multiplicative identity.

I’ll do the case of multiplication, which is the only part that needs hypothesis (3). Let $f = \sum_{i} a_i X^i$ and $g = \sum_{j} b_j X^j$. We have

$$
\psi(fg) = \psi\left(\left(\sum_{i} a_i X^i\right)\left(\sum_{j} b_j X^j\right)\right)
= \psi\left(\sum_{n} \left(\sum_{i} a_i b_{n-i}\right)X^n\right)
= \sum_{n} \phi\left(\sum_{i} a_i b_{n-i}\right)c^n
= \sum_{n} \left(\sum_{i} \phi(a_i)\phi(b_{n-i})\right)c^n
$$

while

$$
\psi(f)\psi(g) = \psi\left(\sum_{i} a_i X^i\right)\psi\left(\sum_{j} b_j X^j\right)
= \left(\sum_{i} \phi(a_i)c^i\right)\left(\sum_{j} \phi(b_j)c^j\right)
= \sum_{n} \left(\sum_{i} \phi(a_i)c^i\phi(b_j)c^j\right)
= \sum_{n} \sum_{i=0}^{n} \phi(a_i)\phi(b_j)c^n
$$

ϕ is a homomorphism,
Uniqueness. Conversely, given any ring homomorphism \(\psi : S[X] \to T \) such that \(\psi(s) = \phi(s) \) for \(s \in S \), and \(\psi(X) = c \), the properties of ring homomorphisms force the formula that we used as the construction of \(\psi \): ring homomorphisms recover the formula:

\[
\psi(\sum a_i X^i) = \sum \psi(a_i) X^i = \sum \psi(a_i) \psi(X)^i = \sum \phi(a_i) c^i.
\]

\(\Box \)

6.2. Example (Evaluating a polynomial on an element). Let \(S \) be a commutative ring (e.g., a field), and let \(\phi : S \to S \) be the identity map. Then for any \(c \in S \) we get a homomorphism \(\epsilon_c : S[X] \to S \) defined by

\[
\epsilon_c(\sum a_i X^i) := \sum a_i c^i.
\]

This is the evaluation at \(c \) function.

6.3. Example (Evaluating a polynomial on a matrix). Let \(F \) be a field, and let \(S = M_{n \times n}(F) \). Fix a matrix \(A \in S \). Let \(\phi : F \to M_{n \times n}(F) \) be the homomorphism defined by \(\phi(c) = cI \); note that the image of \(\phi \) is in the center of \(S \), and so every \(\phi(c) \) commutes with \(A \).

Then the proposition gives a homomorphism \(\psi_A : F[X] \to S \), which sends

\[
c_0 + c_1 X + \cdots + c_n X^n \mapsto c_0 I + c_1 A + c_2 A^2 + \cdots + c_n A^n.
\]

In other words, the function \(\psi_A \) is the one that “plugs the matrix \(A \) into a polynomial”. We usually write \(f(A) \) for \(\psi_A(f) \).

The fact that \(\psi_A \) is a ring homomorphism implies that \((f + g)(A) = f(A) + g(A) \) and \((fg)(A) = f(A)g(A) \), which are formulas you have likely used without thinking about it.

6.4. Example (The function defined by a polynomial). Fix a commutative ring \(S \), and let \(T = \mathcal{F}(S,S) \), which is also commutative. Let \(\phi : S \to T \) be the map that sends \(a \in S \) to the constant function \((x \mapsto a) \). Let \(c = id \), the identity function of \(S \). Then the proposition tells us that we get a ring homomorphism \(\psi : S[X] \to T \), defined by

\[
\psi(p)(c) = \sum_{k=0}^n a_k c^k \quad \text{if} \quad p = \sum_{k=0}^n a_k X^k, \quad a_k \in S.
\]

6.5. Example (Polynomial functions on \(\mathbb{Z}/p \)). Let \(S = \mathbb{Z}/p \) where \(p \) is a prime number. Let \(p = X^p - X \) in \(S[X] \). Then I claim that \(\psi(p) = 0 \). This amounts to showing that \(c^p - c = 0 \) for all \(c \in \mathbb{Z}/p \), which is Fermat’s little theorem.

Proof of Fermat’s little theorem: either \(c = 0 \) or \(c \neq 0 \). If \(c = 0 \) then obviously \(0^p = 0 = 0 \). If \(c \neq 0 \) then \(c \) has a multiplicative inverse, i.e., is in the group \(\Phi(p) = (\mathbb{Z}/p)^\times \). Since this group has order \(p - 1 \) we must have \(c^{p-1} = 1 \), and thus \(c^p = c \).

Here’s another proof that \(\psi \) is not injective: \(\mathbb{Z}/p[X] \) is an infinite set (countably infinite), but \(\mathcal{F}(\mathbb{Z}/p, \mathbb{Z}/p) \) is a finite set (size \(p^p \)).

This has the following consequence: different polynomials over \(\mathbb{Z}/p \) can give the same function. This is why I insist that polynomials are not just a kind of function.

7. Ideals

An ideal of a ring \(R \) is a subset \(I \subseteq R \) such that

1. \(I \) is a subgroup of \((R,+)\),
2. if \(r, r' \in R \) and \(x \in I \), then \(r xr' \in I \). (You can write this condition as \(RIR \subseteq I \).)

Note that an ideal, under our definition of ring, is not usually a subring. (This differs from books where rings are allowed to not have a multiplicative identity.)

Note that since \(1 \in R \), the condition implies \(r x, x r \in I \) if \(x \in I, r \in R \).

Warning. The notion of ideal we have defined is sometimes called a two-sided ideal, to distinguish it from the notions of left-ideal and right-ideal.
7.1. **Example.** In any ring R, the subsets R and $\{0\}$ are ideals of R.

7.2. **Example.** In $R = \mathbb{Z}$, the subsets $\mathbb{Z}n = \{nx \mid x \in \mathbb{Z}\}$ are ideals for every n.

The **kernel** of a ring homomorphism $\phi: R \to S$ is the set $\text{Ker} \phi := \{ r \in R \mid \phi(r) = 0 \}$. In other words, it is the same as the kernel of ϕ thought of as a homomorphism of abelian groups.

7.3. **Proposition.** The kernel $\text{Ker} \phi \subseteq R$ of a ring homomorphism $\phi: R \to S$ is an ideal of R.

Proof. Straightforward.

This implies that a ring homomorphism ϕ is injective iff $\text{Ker} \phi = \{0\}$ (because ϕ is also a homomorphism of abelian groups).

7.4. **Exercise (On PS ?).** Let F be a field, $c \in F$ an element. Let $I := \{ f \in F[X] \mid f(c) = 0 \}$. Show that I is an ideal of $F[X]$.

8. **Quotient Rings**

Given an ideal I of a ring R, there is a **quotient ring** R/I. Elements of R/I are cosets $a + I = \{ a + x \mid x \in I \} \subseteq R$ of the additive group $(R, +)$ with respect to the subgroup $(I, +)$. Thus, it is automatic that R/I is an abelian group, with

$$(a + I) + (b + I) = (a + b) + I.$$

Note. Sometimes I will use the notation $\overline{a} \in R/I$ for the coset $a + I$.

8.1. **Proposition.** If $I \subseteq R$ is an ideal, then R/I is a ring, with addition as above and multiplication defined by

$$(a + I)(b + I) := ab + I.$$

If R has multiplicative identity 1, then R/I has multiplicative identity $1 + I$.

Furthermore, the obvious projection map $\pi: R \to R/I$ defined by $\pi(a) := a + I$ is a ring homomorphism.

Proof. Check that the formula for product is well defined. Suppose $a + I = a' + I$ and $b + I = b' + I$, which implies

$$a' = a + x, \quad b' = b + y, \quad x, y \in I.$$

Then

$$a'b' = (a + x)(b + y) = ab + (ay + xb + xy) \in ab + I,$$

since $ay + xb + xy \in I$. Therefore $a'b' + I = ab + I$.

Checking the various axioms for R/I to be a ring is straightforward, using that they are true for R. □

8.2. **Example.** $\mathbb{Z}/n = \mathbb{Z}/(n)$, the quotient of integers by the ideal $(n) = \mathbb{Z}n$. We already know this is a quotient group (under addition). In fact, it is a quotient ring.

8.3. **Example.** Let $R \subseteq M_{n \times n}(F)$ be the set of **upper triangular matrices**: so $A = (A_{ij}) \in R$ if and only if $a_{ij} = 0$ when $i > j$. For example, if $n = 2$ then $R = \{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \mid a, b, d \in F \}$. It is easy to check that R is a subring of the matrix ring: if $i > j$, then $I \subseteq R$, and

$$(A + B)_{i,j} = A_{i,j} + B_{i,j}, \quad (-A)_{i,j} = -A_{i,j}, \quad (AB)_{i,j} = \sum_{k=1}^{n} A_{i,k}B_{k,j},$$

and since $i > j$ then for each $k = 1, \ldots, n$ either $i > k$ or $k > j$. (I.e., you can’t have $k \geq i > j \geq k$.)

Now let $J \subseteq R$ be the set of **strictly upper triangular matrices**: so $A = (A_{ij}) \in J$ if and
only if \(a_{ij} = 0 \) when \(i \geq j \). For example, if \(n = 2 \) then \(R = \{ \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} \mid b \in F \} \).

You can check that \(J \) is an ideal in \(R \).

The quotient ring \(R/J \approx R^n = \underbrace{R \times \cdots \times R}_{\text{n copies}} \).

9. IDEALS GENERATED BY SUBSETS

Observation. We have the following equivalent formulation of the definition of an ideal \(I \) in \(R \).

1. \((1')\) 0 \in I, and if \(x, y \in I \) then \(x + y \in I \).
2. If \(r, r' \in R \) and \(x \in I \), then \(rrx' \in I \).

(\(1') \) replaces (1), which said that \((I, +) \) is a subgroup of \((R, +)\). This is because \(-1 \in R \), so \(x \in I \) and (2) implies \(-x = (-1)x \in I \).

Let \(R \) be a ring and \(S \subseteq R \) a subset. The ideal generated by \(S \) is

\[
(S) := \bigcap_{S \subseteq J \leq R} J
\]

the intersection of all ideals of \(R \) which contain the subset \(S \). That this is an ideal is because of the following.

9.1. **Proposition.** If \(\{ J_i \} \) is any collection of ideals in \(R \), then \(J = \bigcap_i J_i \) is an ideal.

Proof. Straightforward.

We also have an explicit description of \((S)\).

9.2. **Proposition.** We have that

\[
(S) = \{0\} \cup \{ a_1s_1b_1 + \cdots + a_ks_kb_k \mid \text{for all } k \geq 1, a_i, b_i \in R, s_i \in S \}.
\]

Proof. First, note that if \(J \leq R \) is any ideal and \(S \subseteq R \), then the RHS is a subset of \(J \), by the closure properties of the ideal \(J \).

Next, check that the RHS is an ideal: Show \((1')\) 0 is in it and it is closed under addition (immediate), and (2) if \(r, r' \in R \) and \(x \in (S) \) then \(rrx' \in S \): if \(x = a_1s_1b_1 + \cdots + a_ks_kb_k \) then

\[
rrx' = (ra_1)s_1(b_1r') + \cdots + (ra_k)s_k(b_kr').
\]

Note. The ideal \((S)\) contains the subgroup \((S)\) of \((R, +)\) generated by \(S \), but is usually bigger than it.

When \(R \) is a commutative ring, this simplifies a bit.

9.3. **Proposition.** If \(R \) is commutative, then

\[
(S) = \{0\} \cup \{ a_1s_1 + \cdots + a_ks_k \mid \text{for all } k \geq 1, a_i \in R, s_i \in S \}.
\]

Proof. \(\text{asb} = (ab)s \).

A principal ideal is an ideal which can be generated by a single element. For \(x \in R \) we write \((x) := (\{x\})\). Thus

\[
(x) = \{ a_1xb_1 + \cdots + a_nxb_n \mid a_i, b_i \in R \}.
\]

When \(R \) is commutative, we can always rearrange:

\[
a_1xb_1 + \cdots + a_nxb_n = (a_1b_1)x + \cdots + (a_nb_n)x = (a_1b_1 + \cdots + a_nb_n)x.
\]

Thus, for commutative \(R \), principal ideals have the form

\[
(x) = Rx = \{ rx \mid r \in R \}.
\]

Sometimes I’ll write \(Rx \) (or \(xR \)) for principal ideals in commutative rings.
We are going to say a lot about principal ideals in commutative rings. Here is an important fact: principal ideals in commutative rings correspond to elements “up to units”.

9.4. Exercise (On PS ?). Let R be a commutative ring, and let $a, b \in R$. Then $(a) = (b)$ if and only if there exists a unit $u \in R^\times$ such that $b = ua$, $a = u^{-1}b$.

10. IDEALS IN POLYNOMIAL RINGS

We recall some exercises from the homework. Let R be a domain, and let $P = R[X]$ the polynomial ring. We defined the **degree function**

$$\deg: R[X] \to \mathbb{Z}_{\geq 0} \cup \{-\infty\}$$

which had the properties

- $\deg(f) = -\infty$ if and only if $f = 0$.
- $\deg(f) = 1$ if and only if f is non-zero and “constant”.
- $\deg(fg) = \deg(f) + \deg(g)$.
- $\deg(f + g) \leq \max\{\deg(f), \deg(g)\}$.

As a consequence, $R[X]$ is a domain: if $f \neq 0$ and $g \neq 0$, then $fg \neq 0$ since $\deg(fg) = \deg(f)\deg(g)$.

In the following, I’ll assume $R = F$ is a field. The following is a statement of “polynomial long division” for polynomials with coefficients in a field.

10.1. **Proposition** (Division algorithm for polynomials). Let $f, g \in F[X]$ with $g \neq 0$. Then there exists a unique pair $q, r \in F[X]$ such that

- $f = gq + r$ and
- $\deg(r) < \deg(g)$.

In other words, “$f \div g$” has quotient q and remainder r, where $\deg(r) < \deg(g)$.

Before proving this, let’s think about some consequences.

10.2. **Example** (Important). Let F be a field, $c \in F$ an element, and $f \in F[X]$. Then, $f(c) = 0$ implies that $f = (X - c)f_1$ for some polynomial $f_1 \in F[X]$.

Proof. Use polynomial division for $f \div g$ with $g = X - c$, giving

$$f = gq + r = (X - c)q + r,$$

$\deg(r) < \deg(g) = 1$.

Because “evaluation at c” is a ring homomorphism $F[X] \to F$, this implies

$$0 = f(c) = g(c)q(c) + r(c) = (c - c)q(c) + r(c) = r(c).$$

But $\deg(r) < 1$, so $r \in F \subseteq F[X]$ is a constant polynomial. So $r(c) = 0$ means $r = 0$, so we get

$$f = (X - c)q$$

as desired.

10.3. **Corollary.** If F is a field and $f \in F[X]$ is a polynomial of degree $n \geq 0$, then f has at most n distinct roots in F.

Proof. By induction on degree. **Basis step.** If $\deg(f) = 0$, then f is a non-zero constant polynomial so has no roots.

Induction step. Suppose $\deg(f) = n \geq 1$. If f has no roots we are done. If $c \in F$ is a root, then $f = (X - c)g$ with $\deg(g) = n - 1$. By induction, g has at most $n - 1$ roots, so f has at most n roots.
A **monic polynomial** is a polynomial with coefficient of the leading degree term equal to 1. That is, \(f = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \). Note that the zero polynomial cannot be a monic polynomial; however, the constant polynomial 1 is monic.

We can classify all ideals in \(F[X] \). The proof is very much like the classification of subgroups/ideals in \(\mathbb{Z} \).

10.4. **Proposition.** Let \(F \) be a field. Then all ideals in \(F[X] \) are principal. In particular, every ideal \(I \leq F[X] \) is of the form \(I = (f) = R[X]f \) for exactly one polynomial \(f \) which is either 0 or a monic polynomial.

Proof. The subset \((0) = \{0\} \) is an ideal, and 0 is the only single element which generates it.

Suppose \(I \leq K[X] \) such that \(I \neq \{0\} \). Since \(I \) contains non-zero elements, it must contain a non-zero element \(f \) of minimal degree \(d \geq 0 \) (by the Well-Ordering Principle of \(\mathbb{Z}_{\geq 0} \)). We are going to show that every \(h \in I \) is of the form \(f(q) \) for some \(q \in F[X] \), i.e., that \(I = (f) \).

The proof is the division algorithm. Given \(h \in I \) consider the division algorithm for \(h \div f \): there exist \(q, r \in F[X] \) with \(\deg(r) < \deg(f) \) such that \(h = f(q) + r \). But by hypothesis \(\deg(f) \) is minimal for non-zero elements, so \(r = 0 \), so \(h = f(q) \in (f) \).

Given \(I = (f) \), write \(f = cX^d + \text{(lower degree)} \) with \(c \neq 0 \). Then \(f' = c^{-1}f \) is monic and \(I = (f) = (f') \). This is the only monic polynomial of degree \(d \) in \(I \), since if there are two such \(f', f'' \), then \(\deg(f' - f'') < d \) so \(f' = f'' \). \(\square \)

10.5. **Exercise.** Given a field \(F \) and \(c \in F \), let \(I = \{ f \in F[X] \mid f(c) = 0 \} \). What is the monic polynomial which generates \(I? \)

Proof of the division algorithm. Uniqueness. I'll do uniqueness first. Suppose there are two solutions, i.e.,

\[
\begin{align*}
f &= gq_1 + r_1 = gq_2 + r_2, \\
\deg(r_1), \deg(r_2) &< \deg(g).
\end{align*}
\]

Then taking differences gives

\[
\begin{align*}
g(q_2 - q_1) &= r_1 - r_2, \\
\deg(r_1 - r_2) &< \max\{\deg(r_1), \deg(r_2)\} < \deg(g).
\end{align*}
\]

Set \(q = q_2 - q_1 \) and \(r = r_1 - r_2 \), so this becomes \(gq = r \). If \(r \neq 0 \), then also \(q \neq 0 \), and we would have \(\deg(r) = \deg(g) + \deg(q) \). Since \(\deg(q) \geq 0 \) this contradicts \(\deg(r) < \deg(g) \), so this is impossible. Thus we must have \(r = 0 \) and thus \(q = 0 \), whence \(r_1 = r_2 \) and \(q_1 = q_2 \).

Existence. Suppose \(\deg(g) = n \geq 0 \).

In general, prove this by induction on \(\deg(f) = m \): assume the proposition has been proved for \(fs \) with degree \(< m \).

If \(\deg(f) = -\infty \) then \(f = 0 \), so just take \(q = r = 0 \).

If \(\deg(f) < \deg(g) \), set \(q = 0 \) and \(r = f \), so that

\[
f = 0g + r.
\]

Now suppose \(\deg(f) \geq \deg(g) \). That is, \(\deg(f) = m \geq n \). Write

\[
\begin{align*}
f &= a_mX^m + \cdots, \\
g &= b_nX^n + \cdots, \\
a_m, b_n &\in F \setminus \{0\},
\end{align*}
\]

and let

\[
u = \frac{a_mX^m}{b_nX^n} = a_mb_n^{-1}X^{m-n},
\]

(the fraction in quotes isn't generally well-defined because \(b_nX^n \) may not have a multiplicative inverse, but the expression of the right is defined since \(b_n \neq 0 \) and \(m \geq n \)). Thus

\[
(b_nX^n)u = a_mX^m.
\]

Now let \(f' := f - gu \). Looking at the terms of highest degree (= \(m \)) we have

\[
f' = f - gu = (a_mX^m + \cdots) - (b_nX^n + \cdots)(a_mb_n^{-1}X^{m-n} + \cdots) = 0X^m + \text{(lower deg)}.
\]
Therefore \(f' \) has degree strictly less than \(m \), so \(\deg(f') < \deg(f) \). By the induction on degree we know that there exist \(q' \) and \(r' \) such that

\[
f' = gq' + r', \quad \deg(r') < \deg(g).
\]

Then

\[
f = f' + gu = gq' + r' + gu = g(q' + u) + r'
\]

so \(q' + u \) and \(r' = r \) is a solution.

\[
\square
\]

11. Quotient rings of polynomials

An important example are quotients of polynomial rings by principal ideals.

11.1. Example. Let \(S = \mathbb{Q}[X]/J \) where \(J = (f) = (X^2 - 2) \). Any element of \(S \) has the form

\[
g + J = (a_nX^n + \cdots + a_1X + a_0) + J, \quad a_n, \ldots, a_n \in \mathbb{Q},
\]

but not uniquely. We can use the division algorithm to find a “canonical form”: a canonical form for \(g + J \) is an expression \(r + J \) such that \(r + J = g + J \) and \(\deg(r) < \deg(f) \). The division algorithm for “\(g \div f' \)” tells us that there is a unique canonical form, given by the remainder.

For instance, doing \((X^3 + 4X^2 + 5X - 3) \div f \) gives

\[
X^3 + 4X^2 + 5X - 3 = (X + 4)(X^2 - 2) + (7X + 5) = Xf + (7X + 5)
\]

so

\[
(X^3 - 2X^2 + 5X - 3) + J = (7X + 5) + J.
\]

11.2. Remark. Here is another way to think about this. Still assuming \(f = X^2 - 2 \in \mathbb{Q}[X] \) and \(J = (X^2 - 2) \subseteq \mathbb{Q}[X] \), note that for \(n \geq 2 \),

\[
X^n = X^2X^{n-2} = (X^2 - 2)X^{n-2} + 2X^{n-2} + 2X^{n-2} + J.
\]

In other words, “modulo \(J \)” we replaced an instance of “\(X^{2n} \)” with “2”. So by induction, we have

\[
X^{2k} + J = 2^k + J, \quad X^{2k+1} + J = 2^k X + J.
\]

In general, every element of \(S \) is represented uniquely as

\[
a + bX + J, \quad a, b \in \mathbb{Q}.
\]

In particular, the set \(\{a + J \mid a \in \mathbb{Q}\} \) is a subring of \(S \) which is isomorphic to \(\mathbb{Q} \).

Addition of canonical forms gives a canonical form:

\[
((a + bX) + J) + ((a' + b'X) + J) = ((a + a') + (b + b')X) + J.
\]

Multiplication doesn’t automatically give a canonical form, so we have to work:

\[
((a + bX) + J)((a' + b'X) + J) = (a + bX)(a' + b'X) + J
\]

\[
= (aa' + (ab' + a'b)X + bb'X^2) + J
\]

\[
= (aa' + (ab' + a'b)X + bb'X^2 - bb'(X^2 - 2)) + J
\]

\[
= ((aa' + 2) + (ab' + a'b)X) + J.
\]

In practice we use the following notational tricks to deal with this:

- Given \(a \in \mathbb{Q} \), we use the same symbol “\(a \)” to represent the element \(a + J \in S \).
- We pick a symbol like \(X \) or \(\alpha \) to represent the coset \(X + J \in S \).
- Then any element \(u \in S \) can be written uniquely as

\[
u = a + b\alpha, \quad a, b \in \mathbb{Q}.
\]
• The symbol α satisfies the “reduction rule” $\omega^2 = 2$. We use this rule whenever we need to put expressions in “canonical form”:

$$\omega^3 + 4\omega^2 + 5\omega - 3 = 2\omega + 4(2) + 5\omega - 3 = 7\omega + 5.$$

11.3. Example (Continued). Let $T \subseteq \mathbb{R}$ denote the following subset of \mathbb{R}:

$$T := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$$

Exercise: T is a subring of \mathbb{R}.

We can define a function $\phi: S \to T$ by

$$\phi(g + J) := g(\sqrt{2}).$$

That this is well defined relies on the following observation: if $g + J = g' + J$, then $g' = g + hJ$, and therefore

$$g'(\sqrt{2}) = g(\sqrt{2}) + h(\sqrt{2})f(\sqrt{2}) = g(\sqrt{2}) + f(0) = g(\sqrt{2}),$$

since $\sqrt{2}$ is a root of the polynomial $f = x^2 - 2$.

As we will soon see, ϕ is an isomorphism of rings.

11.4. Example. Let $S = \mathbb{R}[X]/(X^2 + 1)$. If we define $i := X$, then $i^2 = -1$, and an element of S has a unique representation $a + bi$ with $a, b \in \mathbb{R}$. Of course, $S \approx \mathbb{C}$.

Here is the general principle about canonical form for elements in a quotient of a polynomial ring on one variable:

11.5. Proposition. Given $S = F[X]/J$ with $J = (f)$ for a monic polynomial $f = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$, then every element of S can be written uniquely as

$$c_0 + c_1X + \cdots + c_{n-1}X^{n-1}, \quad c_0, \ldots, c_{n-1} \in F,$$

where we identify elements $c \in F$ with elements $c + J \in S$, and $X = X + J$.

Furthermore, any expression $c_0 + c_1X + \cdots + c_mX^m$ can be reduced to a canonical form by repeated applications of replacing X^n with $-(a_0 + a_1X + \cdots + a_{n-1}X^{n-1})$.

Proof. Division algorithm. The process for finding canonical forms for elements in S is exactly the division algorithm in $R[X]$ for f. \qed

It is not necessarily the case that $F[X]/(f)$ will be a field.

11.6. Example. Let $S = \mathbb{Q}[X]/(X^2 - 4)$. Then the elements $\alpha = X - 2$ and $\beta = X + 2$ are non-zero in S, but satisfy $\alpha\beta = 0$, because $\alpha\beta = (X - 2)(X + 2) = X^2 - 4 = 0$.

You can think of it this way: the ring S is obtained from \mathbb{Q} by “formally adjoining” an element X which is a square root of 4, since $X^2 = 4$. But \mathbb{Q} already has a square root of 4 (in fact two: ± 2), so S has “too many” square roots of 4 if it is going to be a field. (In a field, there are at most d roots of a polynomial of degree d.)

11.7. Example. Let $S = \mathbb{Q}[X]/J$ with $J = (f) = (X^3 - 2)$. Write $\omega := [X] = X + J \in S$, and identify elements $a \in \mathbb{Q}$ with $a + J \in S$. Then every element of S can be written uniquely as

$$a + b\omega + c\omega^2, \quad a, b, c \in \mathbb{Q}.$$

You can carry out calculations using the “reduction” formula $\omega^3 = 2$.

Exercise: S is a field. (This is not obvious, and we will return to this.)
12. Homomorphism theorems

12.1. Theorem (Homomorphism theorem for rings). Let $\phi: R \to S$ be a surjective homomorphism of rings with $I = \ker \phi$. Let $\pi: R \to R/I$ be the quotient homomorphism. Then there exists a unique ring isomorphism $\bar{\phi}: R/I \to S$ such that $\bar{\phi}(\pi(r)) = \phi(r)$ for all $r \in R$.

Proof. If you understand the proof of the homomorphism theorem of groups, then you understand the proof of the homomorphism theorem for rings. □

If $\phi: R \to S$ isn’t surjective, its image $S' := \phi(R) \subseteq S$ is a subring, and you can apply the homomorphism theorem to $R \to S'$, so $S' = \phi(R) \approx R/I$.

12.2. Example. Let $\phi: \mathbb{R}[x] \to \mathbb{C}$ be the homomorphism defined by evaluation at $i \in \mathbb{C}$, and using the usual inclusion $\mathbb{R} \subset \mathbb{C}$. Thus $\phi(g) := g(i)$. This is surjective because $a + bi = \phi(a + bx)$.

$\ker \phi$ is set of all polynomials g such that $g(i) = 0$. Clearly $x^2 + 1 \in \ker(\phi)$, therefore $(x^2 + 1) \subseteq \ker(\phi)$.

Given an arbitrary $g \in \mathbb{R}[x]$, by polynomial division we have $g = (x^2 + 1)q + (a + bx)$ for some $q \in \mathbb{R}[x]$. We have

$$\phi(g) = \phi(x^2 + 1)\phi(q) + (a + bx) = a + bi.$$

This is 0 iff $a = 0 = b$, so we see that $\ker(\phi) = (x^2 + 1)$.

The homomorphism theorem gives a unital isomorphism $\mathbb{R}[x]/(x^2 + 1) \approx \mathbb{C}$ of rings.

12.3. Example. Let $\psi: \mathbb{R}[X] \to \mathbb{C}$ be the homomorphism defined by evaluation at $\omega = e^{2\pi i/3} = (-1 + i\sqrt{3})/2$.

This is surjective. Both $\mathbb{R}[X]$ and \mathbb{C} are, in particular, real vector spaces over \mathbb{R}, and ψ is, in particular, an \mathbb{R}-linear map. The set $\{\psi(1) = 1, \psi(x) = \omega\}$ in \mathbb{C} is linearly independent over \mathbb{R}. Since $\dim_{\mathbb{R}} \mathbb{C} = 2$, this means ψ is surjective.

Write $\ker(\psi) = (f)$. The homomorphism theorem gives an isomorphism

$$\mathbb{R}[X]/(f) \sim \mathbb{C}$$

of rings. By counting dimensions, we see that deg $f = 2$. The set (f) is the collection of all polynomials over \mathbb{R} which have ω as a root.

There is a degree 2 polynomial with ω as a root, for instance $f = X^2 + X + 1$. We get an isomorphism $\mathbb{R}[x]/(X^2 + X + 1) \approx \mathbb{C}$ of rings.

13. Domains

Let R be a commutative ring with 1.

An domain (sometimes called an integral domain) is a commutative ring R with 1 such that $1 \neq 0$, and such that $xy = 0$ implies either $x = 0$ or $y = 0$.

As we have noted, this is the same as: a commutative ring R such that $R \setminus \{0\}$ is non-empty and closed under multiplication.

13.1. Example. Examples of domains are \mathbb{Z}, fields F.

Also, the polynomial ring $D[x]$ with D a domain (because $\deg(fg) = \deg(f)\deg(g)$).

13.2. Proposition. Any subring of a domain is a domain.

Proof. Easy. □

For instance, the Gaussian integers

$$\mathbb{Z}[i] := \{a + bi \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}.$$

13.3. Example. Let $f_1, f_2 \in F[x]$ be two non-constant polynomials, and let $g = f_1f_2$ and $I = (g)$.

The ring $F[x]/I$ is not a domain, since $\overline{f_1} = f_1 + I, \overline{f_2} = f_2 + I$ are non-zero, but $\overline{f_1}\overline{f_2} = 0$.

For instance, $\mathbb{Q}[X]/(g)$ with $g = X^2 - 4 = (X - 2)(X + 2)$.
Domains have cancellation of non-zero elements.

13.4. **Proposition** (Cancellation). If \(R \) is a domain, and \(a, b, c \in R \) such that \(a \neq 0 \), then \(ab = ac \) implies \(b = c \).

Proof. \(a(b - c) = 0 \) implies either \(a = 0 \) or \(b - c = 0 \). \(\square \)

14. **Fields of fractions**

Every domain is a subring of a field, called its **field of fractions**.

Given a domain \(R \), consider the set

\[
S := \{ (a, b) \in R \times R \mid b \neq 0 \}.
\]

Define a relation on \(S \) by

\[
(a, b) \sim (a', b') \quad \text{iff} \quad ab' = ba'.
\]

(Remember that in \(\mathbb{Q} \), we have \(a/b = a'/b' \) if and only if \(ab' = ba' \).)

14.1. **Lemma.** This is an equivalence relation on \(S \).

Proof.

- **Reflexive.** To see that \((a, b) \sim (a, b)\), note that \(ab = ba \).
- **Symmetric.** If \((a, b) \sim (a', b')\), then \(ab' = ba' \). But this means \(a'b = b'a \), so \((a', b') \sim (a, b)\).
- **Transitive.** If \((a, b) \sim (a', b')\) and \((a', b') \sim (a'', b'')\), then

\[
ab' = ba', \quad a'b'' = b'a''.
\]

We can combine these to get

\[
ab'b'' = (ab')b'' = (ba')b'' = b(a'b'') = b(b'a'') = bb'a''.
\]

Because the ring is commutative, we can rewrite this as \(b'(ab'') = b'(ba'') \). Because \(b' \neq 0 \) and \(R \) is a domain, we can cancel to get \(ab'' = ba'' \), which implies \((a, b) \sim (a'', b'')\).

\(\square \)

Let \(F = \text{Frac}(R) := \) the set of equivalence classe under this relation. We write \("(a/b)" \) in \(\text{Frac}(R) \) for the equivalence class of \((a, b)\). Note that the equivalence relation then says that \((a/b) = (a'/b')\) iff \(ab' = ba' \).

14.2. **Exercise.** If \(c \in R \setminus \{0\} \), then \((ac/bc) = (a/b)\).

Define operations \(+\) and \(\cdot\) on \(F \) by

\[
(a/b) + (c/d) := ((ad + bc)/bd), \quad (a/b)(c/d) = (ac/bd).
\]

Check that these are compatible with the equivalence relation (Exercise!), and so are well-defined operations on \(F \).

14.3. **Proposition.** If \(R \) is a domain, then \(F = \text{Frac}(R) \) is a field. The function \(\phi : R \to F \) given by \(\phi(a) := (a/1) \) defines an isomorphism of rings from \(R \) to the subring \(\phi(R) = \{ (a/1) \mid a \in \mathbb{R} \} \) of \(F \).

Proof. This is just straightforward, and is partially an exercise. Note: the 0 element is \((0/1)\), the 1 element is \((1/1)\).

I’ll do multiplicative inverses (or leave as exercise?) If \(x \in F \) is not equal to 0, write \(x = (a/b) \). Because \(x \neq 0 \), we have \((a/b) \neq (0/1)\), i.e., \(a1 \neq b0 \), i.e., \(a \neq 0 \). So set \(y = (b/a) \in F \) (this makes sense exactly because \(a \neq 0 \), and check that \((a/b)(b/a) = (ab/ab) = (1/1) = 1 \).

Typically we identify \(R \) with its image in \(F = \text{Frac}(R) \), so we can say that the domain \(R \) is a subring of its fraction field.
14.4. Example. If $R = \mathbb{Z}$, then $\text{Frac}(\mathbb{Z}) = \mathbb{Q}$.

14.5. Example. If $R = F[X]$, then $F(X) := \text{Frac}(F[X])$ is called the field of rational functions in one variable. Elements are f/g where f, g are polynomials.

Note that polynomial long division of the form $f ÷ g$ for $g \neq 0$ gives $f = gq + r$ with $\deg(r) < \deg(g)$, which in $F(X)$ gives

$$
\frac{f}{g} = q + \frac{r}{g}.
$$

14.6. Example. $\text{Frac}(\mathbb{Z}[i]) = \mathbb{Q}[i]$. To see this, note that every element in $\mathbb{Q}[i]$ is a ratio of elements in $\mathbb{Z}[i]$. In fact, if $x \in \mathbb{Q}[i]$ we can write it as $x = (a/b) + (c/d)i$ with $a, b, c, d \in \mathbb{Z}$. Then

$$
x = (bd)^{-1}(ad + bci), \quad bd, ad + bci \in \mathbb{Z}[i].
$$

The claim follows from the following proposition.

14.7. Proposition. Let F be a field, and $F \subseteq R$ a subring (which is thus a domain). If every element of F has the form ab^{-1} with $a, b \in R$, $b \neq 0$, then F is isomorphic to the fraction field of R.

Proof. (Don’t spend much time on this.)

(1) Define a function $\phi : \text{Frac}(R) \to F$ by $\phi((a/b)) := ab^{-1}$. First check that this is well-defined: if $(a/b) = (a'/b')$ represent the same element in $\text{Frac}(R)$, then $ab' = ba'$ in R, and thus $a' = ab'b^{-1}$ in F, whence $a'b^{-1} = (ab'b^{-1})b'^{-1} = ab^{-1}$.

(2) Check that ϕ is a ring homomorphism. This is a straightforward exercise:

$$
\phi((a/b) + (a'/b')) = \phi((ab' + ba')/ab) = (ab' + ba')(bb')^{-1} = ab^{-1} + a'b^{-1} = \phi((a/b)) + \phi((a'/b')),
$$

$$
\phi((a/b)(a'/b')) = \phi((aa'/bb')) = aa'(bb')^{-1} = (ab^{-1})(a'b^{-1}) = \phi((a/b))\phi((a'/b')),
$$

$$
\phi((1/1)) = 1.
$$

(3) The function ϕ is surjective, because of the hypothesis that every element of F has the form ab^{-1} with $a, b \in R$. To see that ϕ is surjective, consider $\text{Ker } \phi$ which is an ideal in F. Since F has only two ideals, and $1 \notin \text{Ker } \phi$, we have $\text{Ker } \phi = \{0\}$ so ϕ is injective.

\[\]