LECTURE NOTES FOR 427: PART 2

CHARLES REZK

1. Rings

Recall that a ring is \((R, +, \cdot)\), consisting of a set \(R\) and two binary operations called “addition” and “multiplication”:

\[+: R \times R \to R, \quad \cdot: R \times R \to R, \]

- \((R, +)\) is an additive group,
- \((R, \cdot)\) is a monoid, and
- multiplication distributes over addition:

\[a(b + c) = (ab) + (ac), \quad (a + b)c = (ac) + (bc). \]

The identity for + is conventionally called 0, and the inverse of \(a\) under + is called \(-a\). The identity for \(\cdot\) is called 1.

A ring is said to be commutative if multiplication is commutative: \(ab = ba\) for all \(a, b \in R\).

We have already discussed several examples of rings, including matrix rings; fields, including complex numbers; quaternions. Here are some more.

1.1. Example (Rings of functions). For any set \(X\) and ring \(R\), let \(S := \mathcal{F}(X, R) = \{f: X \to R\}\) be the set of all functions. Then \(S\) is a ring, with operations given by “pointwise” addition and multiplication:

\[(f + g)(x) := f(x) + g(x), \quad (fg)(x) := f(x)g(x). \]

(Exercise: check that this is a ring.) For instance, the set \(\mathcal{F}(\mathbb{R}, \mathbb{R})\) of real valued functions on \(\mathbb{R}\) is a ring.

If \(S\) is a ring, a multiplicative inverse of an element \(a \in S\) is an element \(b \in S\) such that \(ab = 1 = ba\).

Clearly not all elements of a ring can have a multiplicative inverse. For instance, \(0 \in \mathbb{R}\) has none.

1.2. Exercise. If \(a \in S\) has a multiplicative inverse, then this inverse is unique. (Same as the proof for inverses in groups.)

We write \(S^\times \subseteq S\) for the set of elements which have multiplicative inverses.

1.3. Exercise. \((S^\times, \cdot)\) is a group.

Examples: \(\mathbb{R}^\times = \mathbb{R} \setminus \{0\}\), \(\mathbb{Z}^\times = \{\pm 1\}\), \((\mathbb{Z}/n)^\times = \Phi(n)\), \(M_{n\times n}(\mathbb{R})^\times = GL_n(\mathbb{R})\).

We say that a ring \(S\) is a division ring if \(S^\times = S \setminus \{0\}\), i.e., every non-zero element has a multiplicative inverse, and 0 does not have one.

A commutative division ring is called a field. For instance, \(\mathbb{R}\) is a field. Also \(\mathbb{Z}/p\) is a field when \(p\) is prime.

Let’s carefully construct some more examples of rings.
2. Subrings

A subring of a ring \(R \) is a subset \(S \subseteq R \) such that (i) the + and \(\cdot \) operations restrict to \(S \), and make \(S \) a ring in its own right, and (ii) \(R \) and \(S \) have the same multiplicative identity. Here is the subring criterion.

2.1. Proposition. A subset \(S \subseteq R \) of a ring is a subring if and only if

1. \(x,y \in S \) implies \(x + y \in S \), i.e., \(S \) is closed under addition,
2. \(x \in S \) implies \(-x \in S \),
3. \(x,y \in S \) implies \(xy \in S \),
4. \(1 \in S \), where \(1 \) denotes the multiplicative identity in \(R \).

Proof. Note that by (4) \(S \) is non-empty. Therefore together with (1) and (2) we see that \((S,+)\) is a subgroup of \((R,+)\). Property (3) implies that multiplication is a binary operation on \(S \). It is straightforward to check the remaining properties (that multiplication is associative, that 1 is a multiplicative identity, the distributive law) on \(S \), because they hold in \(R \). \(\square \)

2.2. Example. The integers \(\mathbb{Z} \) are a subring of \(\mathbb{R} \).

2.3. Example. The rational numbers \(\mathbb{Q} \) are a subring of \(\mathbb{R} \).

2.4. Example. The inclusion \(2\mathbb{Z} \subseteq \mathbb{Z} \) is not a subring. Although closed under the operations the subset does not have a multiplicative identity.

2.5. Example. Let \(S \subseteq M_{2\times2}(\mathbb{R}) \) be the subset consisting of \(2 \times 2 \) real matrices of the form
\[
\begin{pmatrix}
a & -b \\
b & a
\end{pmatrix}, \quad a, b \in \mathbb{R}.
\]
We can check that \(S \) is a subring of the ring of matrices. (Verify this.)

2.6. Example (Not a subring). Let \(T = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \mid a \in \mathbb{R} \} \). This is a subset of the ring \(S = M_{2\times2}(\mathbb{R}) \), which is closed under + and \(\cdot \), and in fact as such it is a ring in its own right: it’s multiplicative identity is \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \).

However, we will not consider it as a subring, because the multiplicative identity of \(T \) is not the same as the one for \(S = M_{2\times2}(\mathbb{R}) \), which is the identity matrix. (Note: other sources may differ here, and will consider \(T \) a subring. I won’t however.)

Compare with groups, where if \(H \subseteq G \) is a subset closed under multiplication, and \(H \) has an identity element for its product, then the identity element of \(H \) must be the same as that for \(G \). (The proof of this used the existence of inverses in groups, which we do not assume for multiplication in a ring.) Rings are just different.

2.7. Example. The set \(C(\mathbb{R},\mathbb{R}) \) of continuous functions \(f: \mathbb{R} \to \mathbb{R} \) is a subring \(C(\mathbb{R},\mathbb{R}) \subseteq \mathcal{F}(\mathbb{R},\mathbb{R}) \), commutative with identity. This is because of the fact that sums and products of continuous functions are continuous; it has identity because constant functions are continuous.

3. Homomorphisms and isomorphisms of rings

Let \(R \) and \(S \) be rings. A homomorphism \(\phi: R \to S \) is a function such that

- \(\phi(a + b) = \phi(a) + \phi(b) \) for all \(a,b \in R \),
- \(\phi(ab) = \phi(a)\phi(b) \) for all \(a,b \in \mathbb{R} \), and
- \(\phi(1) = 1 \).

Date: November 3, 2018.
Note: in groups we did not need a condition like (3) for the identity element, because it was true anyway. This is because it was implied by the property that a homomorphism preserve products, which was because elements of groups always have inverses.

Easy fact: if \(\phi \) is a homomorphism, then we also have:
\[
\phi(0) = 0, \quad \phi(-a) = -\phi(a),
\]
since \(\phi \) is also a homomorphism of groups \((R, +) \rightarrow (S, +)\).

3.1. Example (The homomorphism from integers). Let \(R \) be a ring. There is a unique homomorphism of abelian groups \(\phi: \mathbb{Z} \rightarrow R \) which sends the generator 1 of \(\mathbb{Z} \) to 1 \(\in R \). Thus, \(\phi(0) = 0 \) (since 0s are identity elements for additive groups); we have \(\phi(-1) = -1 \) since homomorphisms take inverses to inverses; if \(m > 0 \), we have
\[
\phi(m) = \phi(1 + \cdots + 1) = \phi(1) + \cdots + \phi(1) = m \cdot 1.
\]
Similarly, \(\phi(-m) = -m \cdot 1 \).

3.2. Remark. In practice, for any ring \(S \) we usually just write the integer \(m \) to also denote the element in \(S \) given by \(m \cdot 1 \) as above. This can be a little confusing. For instance, it is possible to have a non-zero integer \(n \) whose image in \(S \) is 0, for instance in the ring \(\mathbb{Z}/n \).

3.3. Example. Consider the projection map \(\phi: \mathbb{Z} \rightarrow \mathbb{Z}/n \), defined by \(\phi(x) := [x]_n \). This is a ring homomorphism.

We write \(R^\times \subseteq R \) for the subset of a ring consisting of elements which admit a multiplicative inverse. Note that \((R, \cdot)\) is a group. (But it is not a subgroup of \((R, +)\).)

3.4. Proposition. If \(a \) has a multiplicative inverse, then so does \(\phi(a) \), in which case \(\phi(a)^{-1} = \phi(a^{-1}) \).

Proof. Just verify that \(\phi(a)\phi(a^{-1}) = \phi(aa^{-1}) = \phi(1) = 1 \) and \(\phi(a^{-1})\phi(a) = \phi(a^{-1}a) = \phi(1) = 1 \). \(\Box \)

3.5. Corollary. If \(\phi: R \rightarrow S \) is a homomorphism of rings, then \(\phi \) restricts to a homomorphism \(R^\times \rightarrow S^\times \) of groups.

An isomorphism of rings is a homomorphism which is a bijection. You can show that the inverse map is also a bijection.

3.6. Proposition. If \(\phi: R \rightarrow S \) is a homomorphism of rings, then \(\phi(R) \) is a subring of \(S \). If \(\phi \) is injective then it defines an isomorphism between \(R \) and \(\phi(R) \).

4. Polynomial rings

For any ring \(S \) we can construct a new ring \(P(S) \), whose elements are “polynomials in one variable with coefficients in \(S \)”. Let \(S \) be any ring. A sequence in \(S \) is a function
\[
a: \mathbb{Z}_{\geq 0} \rightarrow S.
\]
I’ll use the notation \(a_n \in S \) for the value of this function at \(n \), i.e., I’m thinking of \(a \) as an infinite sequence.

We define a new ring \(P(S) \) as follows.
- Elements of \(P(S) \) are sequences \(a: \mathbb{Z}_{\geq 0} \rightarrow S \) for which there exists \(N \in \mathbb{Z}_{\geq 0} \) such that \(a_k = 0 \) for all \(k > N \). only finitely many of the values \(a_k \) are non-zero.
- Addition of elements in \(P(S) \) is defined by the “pointwise addition” rule:
\[
(a + b)_n := a_n + b_n.
\]
We need to make sure these operations are well-defined, because of the requirement that sequences are eventually 0. For instance, given \(a, b \in P(S) \) there is an \(N \) such that \(a_k = b_k = 0 \) for all \(k > N \). Then clearly \((a+b)_k = 0 \) for \(k > N \), while \((ab)_k = 0 \) for \(k > 2N \).

4.1. Exercise (Tedious). With this structure \(P(S) \) is a ring. I’ll just note some features of this:

- The additive identity is the zero sequence: \(0_n = 0 \) for all \(n \).
- Additive inverses are computed “termwise”: \((−a)_n = −(a_n) \).
- The multiplicative identity is the sequence \(1 \) defined by \(1_0 = 1, 1_k = 0 \) for \(k > 0 \).
- If \(S \) is commutative, so is \(P(S) \).
- Associativity of multiplication is the hardest part to prove, but is is not too bad if you are good at multiple summations:

\[
((ab)c)_n = \sum_{i=0}^{n} (ab)_i c_{n-i}
\]

\[
= \sum_{i=0}^{n} \sum_{j=0}^{i} a_j b_{i-j} c_{n-i},
\]

\[
(a(bc))_n = \sum_{k=0}^{n} a_k (bc)_{n-k}
\]

\[
= \sum_{k=0}^{n} \sum_{\ell} a_k b_{\ell} c_{n-k-\ell}.
\]

These work out to the same thing, once you reindex the sums (so that \(k = j \) and \(\ell = i - j \), whence \(n - k - \ell = n - i \)). You will actually understand this better by working it out for small values of \(n \), like 1 or 2 or 3.

We use the following notation when dealing with a polynomial ring.

- Given \(c \in S \), we use the same symbol \(c \) to denote the element of \(P(S) \) defined by the sequence:

\(c_0 := c, \quad c_k := 0 \) if \(k \geq 1 \).

- Let \(S' \subseteq P(S) \) be the set of all \(f \in P(S) \) such that \(f_k = 0 \) if \(k \geq 1 \). Then the above defines a bijection \(S \to S' \), and this bijection is an isomorphism of rings.

- We write \(X \in P(S) \) for the sequence

\(X_1 = 1, \quad X_k = 0 \) if \(k \neq 1 \).

- Note that \(X^n \), the product of \(X \) with itself \(n \) times, is the sequence

\(X_n = 1, \quad X_k = 0 \) if \(k \neq n \).

- Using this notation, we can use the ring structure on \(P(S) \) rewrite any sequence \(a \in P(S) \) as an expression

\(f = a_0 + a_1 X + a_2 X^2 + \cdots + a_n X^n, \quad a_0, \ldots, a_n \in S, \)

assuming \(a_k = 0 \) for \(k > n \). We often choose to denote such an expression as “\(f(X) \)”, rather than “\(a \)”.

\(\text{M 5 Nov} \)
In other words, $P(S)$ is the ring of polynomials in one unknown with coefficients in S.

Warning. Polynomials are not defined as functions, and they are not the same thing as functions. I’ll talk about this later.

Another notation for $P(S)$ is $S[X]$. (This is convenient when we want to name the “variable”.)

4.2. **Exercise (On PS ?).** If D is a domain, then $D[X]$ is a domain.

This is also important because we can iterate the construction. Thus we may consider $P(P(S))$, aka $(S[X])[Y]$. Elements f in this ring are expressions

$$f = g_0 + g_1 Y + g_2 Y^2 + \cdots + g_n Y^n,$$

where each $g_k \in S[X]$, so are expressions

$$g_k = a_{0k} + a_{1k} X + a_{2k} X^2 + \cdots a_{mk} X^m$$

with $a_{ij} \in S$. Using the distributive law, we can always rewrite this as

$$f = \sum_{i=0}^{m} \sum_{j=0}^{n} a_{ij} X^m Y^n.$$

We write $S[X, Y]$ for $(S[X])[Y]$, and call it the ring of polynomials in two variables. As we will see soon, the order of the variables isn’t really important: $(S[X])[Y]$ and $(S[Y])[X]$ are the “same” ring (really, they are canonically isomorphic).

You can go on to define $S[X, Y, Z]$, etc.

5. **Center of a ring**

Given a ring S let

$$\text{Cent}(S) := \{ a \in S \mid ab = ba \text{ for all } b \in S \},$$

called the center of S.

5.1. **Exercise (On PS ?).** The set $R = \text{Cent}(S)$ is a subring of S. As a ring R is commutative.

Note that if S is commutative, then $\text{Center}(S) = S$.

5.2. **Example.** The center of the quaternion algebra \mathbb{H} is the subset $\mathbb{R}1 = \{ \lambda 1 \mid \lambda \in \mathbb{R} \}$ of scalar quaternions. It’s straightforward to check that scalar quaternions are in the center. To see these are the only ones, check commutativity with i, j, and k. For instance, commutativity with i gives

$$(a1 + bi + cj + dk)i = -b1 + ai + dk - cj,$$

$$i(a1 + bi + cj + dk) = -b1 + ai - dk + ck,$$

which means that if $x = a1 + bi + cj + dk$ is in the center then $c = 0 = d$. Checking commutativity with j gives $b = 0$.

5.3. **Exercise (On PS ?).** Let $S = M_{n \times n}(F)$ where F is a field (e.g., $F = \mathbb{R}$). Then

$$\text{Center}(S) = \{ \lambda I \mid \lambda \in F \},$$

the set of diagonal matrices. Thus $\text{Center}(S) \approx F$.

6. HOMOMORPHISMS OUT OF A POLYNOMIAL RING

The following proposition tells you how to construct homomorphisms out of a polynomial ring $S[X]$.

6.1. Proposition. Let S and T be rings. Suppose given

1. a ring homomorphism $\phi: S \to T$, and
2. an element $c \in T$, such that
3. $\phi(s)c = c\phi(s)$ for all $s \in S$.

Then there exists a unique ring homomorphism

$$\psi: S[X] \to T$$

such that (i) $\psi(X) = c$ and (ii) $\psi(s) = \phi(s)$ for all $s \in S \subseteq S[X]$.

Note that if T is commutative, then (3) is automatically true.

$$\begin{array}{ccc}
S & \to & S[X] \\
\phi & \downarrow & \uparrow \\
& T \quad \ni \quad X & \\
& \downarrow & \\
& c & \\
\end{array}$$

Proof. Existence. We define ψ by the following rule. If $f \in S[X]$ is given by $f = \sum_{i=0}^{n} a_i X^i$ with $a_i \in S$, then set

$$\psi(f) := \sum_{i=0}^{n} \phi(a_i)c^i.$$

Verify directly that this is a ring homomorphism: i.e., that it preserves addition, multiplication, and multiplicative identity.

I’ll do the case of multiplication, which is the only part that needs hypothesis (3). Let $f = \sum_{i} a_i X^i$ and $g = \sum_{j} b_j X^j$. We have

$$\psi(fg) = \psi\left(\left(\sum_{i} a_i X^i\right)\left(\sum_{j} b_j X^j\right)\right)$$

$$= \psi\left(\sum_{\substack{n \atop i=0}} \phi\left(\sum_{\substack{n \atop i=0}} a_i b_{n-i} X^n\right)\right)$$

$$= \sum_{n \atop i=0} \phi\left(\sum_{\substack{n \atop i=0}} a_i b_{n-i}\right)c^n$$

$$= \sum_{n \atop i=0} \phi(a_i)\phi(b_{n-i})c^n$$

ϕ is a homomorphism,

while

$$\psi(f)\psi(g) = \psi\left(\sum_{i} a_i X^i\right)\psi\left(\sum_{j} b_j X^j\right)$$

$$= \left(\sum_{i} \phi(a_i)c^i\right)\left(\sum_{j} \phi(b_j)c^j\right)$$

$$= \sum_{n \atop i=0} \phi(a_i)c^i\phi(b_j)c^j$$

$$= \sum_{n \atop i=0} \sum_{j} \phi(a_i)\phi(b_j)c^n$$

condition (3).
Uniqueness. Conversely, given any ring homomorphism \(\psi: S[X] \to T \) such that \(\psi(s) = \phi(s) \) for \(s \in S \), and \(\psi(X) = c \), the properties of ring homomorphisms force the formula that we used as the construction of \(\psi \): ring homomorphisms recover the formula:

\[
\psi(\sum a_i X^i) = \sum \psi(a_i) \psi(X)^i = \sum \phi(a_i) c^i.
\]

\(\square \)

6.2. Example (Evaluating a polynomial on an element). Let \(S \) be a commutative ring (e.g., a field), and let \(\phi: S \to S \) be the identity map. Then for any \(c \in S \) we get a homomorphism \(\epsilon_c: S[X] \to S \) defined by

\[
\epsilon_c(\sum a_i X^i) := \sum a_i c^i.
\]

This is the evaluation at \(c \) function.

6.3. Example (Evaluating a polynomial on a matrix). Let \(F \) be a field, and let \(S = M_{n \times n}(F) \). Fix a matrix \(A \in S \). Let \(\phi: F \to M_{n \times n}(F) \) be the homomorphism defined by \(\phi(c) = cI \); note that the image of \(\phi \) is in the center of \(S \), and so every \(\phi(c) \) commutes with \(A \).

Then the proposition gives a homomorphism \(\psi_A: F[X] \to S \), which sends

\[
c_0 + c_1 X + \cdots + c_n X^n \mapsto c_0 I + c_1 A + c_2 A^2 + \cdots + c_n A^n.
\]

In other words, the function \(\psi_A \) is the one that “plugs the matrix \(A \) into a polynomial”. We usually write \(f(A) \) for \(\psi_A(f) \).

The fact that \(\psi_A \) is a ring homomorphism implies that \((f + g)(A) = f(A) + g(A)\) and \((fg)(A) = f(A)g(A)\), which are formulas you have likely used without thinking about it.

6.4. Example (The function defined by a polynomial). Fix a commutative ring \(S \), and let \(T = F(S, S) \), which is also commutative. Let \(\phi: S \to T \) be the map that sends \(a \in S \) to the constant function \((x \mapsto a) \). Let \(\epsilon = \text{id} \), the identity function of \(S \). Then the proposition tells us that we get a ring homomorphism \(\psi: S[X] \to T \), defined by

\[
\psi(p)(c) = \sum_{k=0}^{n} a_k c^k \quad \text{if} \quad p = \sum_{k=0}^{n} a_k X^k, \ a_k \in S.
\]

6.5. Example (Polynomial functions on \(\mathbb{Z}/p \)). Let \(S = \mathbb{Z}/p \) where \(p \) is a prime number. Let \(p = X^p - X \) in \(S[X] \). Then I claim that \(\psi(p) = 0 \). This amounts to showing that \(c^p - c = 0 \) for all \(c \in \mathbb{Z}/p \), which is Fermat’s little theorem.

Proof of Fermat’s little theorem: either \(c = 0 \) or \(c \neq 0 \). If \(c = 0 \) then obviously \(0^p - 0 = 0 \). If \(c \neq 0 \) then \(c \) has a multiplicative inverse, i.e., is in the group \(\Phi(p) = (\mathbb{Z}/p)^\times \). Since this group has order \(p - 1 \) we must have \(c^{p-1} = 1 \), and thus \(c^p = c \).

Here’s another proof that \(\psi \) is not injective: \(\mathbb{Z}/p[X] \) is an infinite set (countably infinite), but \(F(\mathbb{Z}/p, \mathbb{Z}/p) \) is a finite set (size \(p^p \)).

This has the following consequence: different polynomials over \(\mathbb{Z}/p \) can give the same function. This is why I insist that polynomials are not just a kind of function.

Department of Mathematics, University of Illinois, Urbana, IL

E-mail address: rezk@math.uiuc.edu