MATH 427: PS 11

CHARLES REZK

Due in class W 29 Nov.

(1) Let \(R = \mathbb{Z}[\sqrt{-5}] \), and let \(a = 6 \) and \(b = 2 + 2\sqrt{-5} \). Show that \(\{a, b\} \) does not have a GCD in \(R \). (Hint: both \(p = 2 \) and \(q = 1 + \sqrt{-5} \) are common factors of \(a \) and \(b \), so show that there is no common factor \(g \) divisible by both \(a \) and \(b \). Use the norm function to do this.)

(2) Let \(R = \mathbb{Z}[i] \) and consider the ideal \(J = (3) \) in \(R \). Show that \(F := R/J \) is a field with nine elements.

In the following exercises, let \(R = \mathbb{Z}[\sqrt{2}] = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Z} \} \). This is a subring of the real numbers.

(3) Define \(N : R \to \mathbb{Z} \) by \(N(a + b\sqrt{2}) := (a + b\sqrt{2})(a - b\sqrt{2}) = a^2 - 2b^2 \), for \(a, b \in \mathbb{Z} \). Show that (i) \(N(1) = 1 \), (ii) \(N(xy) = N(x)N(y) \), and (iii) \(N(x) = 0 \) if and only if \(x = 0 \). (Your proof in (iii) will need to use the fact that \(\sqrt{2} \) is irrational.)

(4) Show that \(x \in R^\times \) if and only if \(N(x) \in \{1, -1\} \).

(5) Show that \(R^\times \) is an infinite set.

In the following exercises \(F \) is a finite field, with \(|F| = q \).

(6) Show that \(F^\times \) contains an element of order 2 if and only if \(q \) is odd, and show that if such an element exists it is unique. (Hint: we proved in class that any finite group of even order has an element of order 2. The uniqueness statement is something you proved on PS 11.)

(7) Let \(\phi : F^\times \to F^\times \) be the function defined by \(\phi(a) = a^2 \). If \(q \) is odd show that \(|\text{Ker } \phi| = 2 \) and that \(G := \phi(F^\times) \) is a subgroup of index 2 in \(F^\times \).

(8) Show that if \(q \equiv 1 \mod 4 \), then \(-1 \in G \).

(9) Show that if \(q \) is odd, then \(q \equiv 1 \mod 4 \) if and only if there exists an element \(a \in F \) such that \(a^2 = -1 \).

(10) Use the previous exercise to prove Lagrange’s theorem: if \(p \) is a prime number such that \(p \equiv 1 \mod 4 \), then there exists an integer \(m \) such that \(p | (m^2 + 1) \).

Department of Mathematics, University of Illinois, Urbana, IL

E-mail address: rezk@illinois.edu