Due in class M 16 Oct.

(1) Determine all the normal subgroups of S_4. (Hint: use the same method I used in class for S_5.)

(2) Let G act on a set X. For $x \in X$ define

$$\text{Stab}(x) := \{ g \in G \mid g \cdot x = x \}.$$

Prove that Stab(x) is a subgroup of G.

(3) Let G act on a set X, and suppose $y = g \cdot x$ for some $x, y \in X$ and $g \in G$. Show that

the function

$$\text{conj}_y: \text{Stab}(x) \to \text{Stab}(y)$$

is well-defined, and gives an isomorphism between the subgroups Stab(x) and Stab(y).

(Thus, elements in the same orbit of the action have *conjugate* stabilizer subgroups, which are therefore isomorphic as groups.)

(4) (Orbit-Stabilizer Theorem.) Let G act on a set X, and suppose $x \in X$. Let $H := \text{Stab}(x)$.

(a) Show that the formula

$$\phi(gH) := g \cdot x$$

gives a well-defined function $G/H \to G \cdot x$, from the set of left H-cosets to the G-orbit containing x.

(b) Show that the function is actually a bijection.

(c) Conclude that

$$[G: \text{Stab}(x)] = |G \cdot x|,$$

i.e., the index of the stabilizer subgroup of x is equal to the size of the orbit containing x.

In particular, if G is finite, we see that $|G \cdot x|$ must divide $|G|$.

(5) Consider the “tautological” action of $G = S_n$ on $X = \{1, \ldots, n\}$.

(a) Describe all orbit(s) of this action.

(b) Describe the subgroup $H = \text{Stab}(n)$, the stabilizer of the element n. Prove that $H \approx S_{n-1}$.

(6) Consider the action of $SO(3)$ on \mathbb{R}^3 given by matrix multiplication. As noted in class, the orbits of this action are the sets

$$S_r = \{ x \in \mathbb{R}^3 \mid |x| = r \}, \quad r \geq 0.$$

(a) Show that Stab$(0) = SO(3)$. How does this relate to the orbit-stabilizer theorem?

(b) Let $x = (r, 0, 0)$ for some $r > 0$. Describe the subgroup Stab$(x) \leq SO(3)$, and show that it is isomorphic to $SO(2)$. (Note: you should see that you get the same subgroup for all choices of $r > 0$.)
(c) Show that $\text{Stab}(x) \approx SO(2)$ for every non-zero vector x.

Department of Mathematics, University of Illinois, Urbana, IL

E-mail address: rezk@illinois.edu