Due in class M 25 Sep. Revised to fix problem (4). Revised again to fix problem (10).

1. Let $G \subseteq GL_2(\mathbb{R})$ be the set of all matrices of the form $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ where $a \in \{\pm 1\}$ and $b \in \mathbb{Z}$.

 (a) Prove that G is a subgroup of $GL_2(\mathbb{R})$.

 (b) Let $R := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $A := \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. For each element of G, show how to write it as a product of copies of R and A and/or their inverses. Conclude that $G = \langle R, A \rangle$.

 (c) Compute the order of every element of G.

2. Let $\phi : G \to H$ be a homomorphism of groups.

 (a) Prove that $\phi(e_G) = e_H$, and that $\phi(a^{-1}) = \phi(a)^{-1}$ for all $a \in G$.

 (b) Prove that $\phi(a^n) = \phi(a)^n$ for all $n \geq 1$.

 (c) Prove that if K is a subgroup of G, then the image set $\phi(K) = \{ \phi(k) | k \in K \}$ is a subgroup of H.

 (d) Prove that if ϕ is an isomorphism, then its inverse function is also an isomorphism.

3. Give an example of an isomorphism between D_3 and $GL_2(\mathbb{Z}/2)$. (To prove it, it is good enough to compare the two multiplication tables.)

4. Let $G = \mathbb{R} \setminus \{-1\}$, and define a binary operation on G by $x * y := x + y + xy$.

 (a) Prove that $(G, *)$ is a group.

 (b) Give an isomorphism between $(G, *)$ and $\mathbb{R}^\times = (\mathbb{R} \setminus \{0\}, \cdot)$.

5. Fix $c > 0$ and let $G = (\{-c, c\}, *)$ with group law $x * y = (x + y)/(1 + c^{-2}xy)$. (This group appeared on a previous PS.) Produce an isomorphism of groups

 $\phi : G \to (\mathbb{R}, +)$.

 (Feel free to ask for a hint.)

6. Let $n = 2m$ be an even integer ≥ 4. For each such n, give an example of a subgroup of D_n which is isomorphic to D_m.

7. Let G be a group with subgroups $A, B \leq G$. Let $H = A \times B$ be the product group of the two subgroups. Let $\phi : H \to G$ be the function $\phi(a, b) := ab$. Suppose:

 (a) $ab = ba$ for all $a \in A$ and $b \in B$,

 (b) $AB = G$, where $AB := \{ ab | a \in A, b \in B \}$, and

 (c) $A \cap B = \{e\}$.

 Prove that ϕ is an isomorphism of groups.

8. Let $SL_n(\mathbb{R}) = \{ A \in GL_n(\mathbb{R}) | \det(A) = 1 \}$. This is a subgroup of $GL_n(\mathbb{R})$, called the **special linear group**. (In fact, $SL_n(\mathbb{R}) = \ker \det$.)
Show that if \(n \) is odd, then \(GL_n(\mathbb{R}) \approx \mathbb{R}^\times \times SL_n(\mathbb{R}) \). (Hint: use the previous exercise, and the subgroup \(H = \{ \lambda I \mid \lambda \in \mathbb{R}^\times \} \) of \(GL_n(\mathbb{R}) \), which is isomorphic to \(\mathbb{R}^\times \).

Also, explain why your proof doesn’t work when \(n \) is even.

(9) In each of the following cases, give an example of an isomorphism.

(a) \(\Phi(5) \approx \mathbb{Z}/4 \).
(b) \(\Phi(7) \approx \mathbb{Z}/6 \).
(c) \(\Phi(16) \approx \mathbb{Z}/2 \times \mathbb{Z}/4 \).
(d) \(\Phi(24) \approx \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \).

(10) Fix \(n \geq 3 \) and consider the group \(G = \Phi(2^n) \) (=modular units modulo \(2^n \) under multiplication). Let \(H \subseteq \Phi(2^n) \) be the subset of elements that can be written as \([x]_{2^n}\) for an integer \(x \) such that \(x \equiv 1 \mod 4 \).

(a) Prove that \(H \) is a subgroup of \(\Phi(2^n) \), and that \(|H| = 2^{n-2}\).
(b) Let \(a = 5 = 1 + 4 \). Show that \(a^{2^k} = 1 + 2^{k+2}y \) for some odd integer \(y \).
(c) Show that \(\text{order}([5]_{2^n}) = 2^{n-2} \) in \(G \) (use part (b) to do this). Conclude that \(H = \langle [5]_{2^n} \rangle \).
(d) Show that \(G \approx H \times K \), where \(K = \{ [1]_{2^n}, [-1]_{2^n} \} \leq G \). This proves that \(\Phi(2^n) \approx \mathbb{Z}/2^{n-2} \times \mathbb{Z}/2 \).