These problems are about the relationship between vector spaces over \mathbb{R} and vector spaces over \mathbb{C}. Note that every vector space over \mathbb{C} is automatically a vector space over \mathbb{R}, by “forgetting” about the fact that you can multiply by non-real scalars. This means that if V and W are vector spaces over \mathbb{C}, we speak of a map $f : V \to W$ being \mathbb{C}-linear or \mathbb{R}-linear. Every \mathbb{C}-linear map is \mathbb{R}-linear, but not conversely.

Recall that if $z = a + bi$ is a complex number, with $a, b \in \mathbb{R}$, then we write $\text{Re}(z) = a$ and $\text{Im}(z) = b$ for the real and imaginary parts of z.

Define functions $\text{Re}, \text{Im} : \mathbb{C}^n \times 1 \to \mathbb{C}^n \times 1$ by

$$\text{Re} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \overset{\text{def}}{=} \begin{bmatrix} \text{Re}(x_1) \\ \vdots \\ \text{Re}(x_n) \end{bmatrix}, \quad \text{Im} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \overset{\text{def}}{=} \begin{bmatrix} \text{Im}(x_1) \\ \vdots \\ \text{Im}(x_n) \end{bmatrix}.$$

(1) Show that Re, Im, and $i \text{Im}$ are \mathbb{R}-linear maps, and that they are not \mathbb{C}-linear maps.

(2) Show that $\text{Re} \text{Re} = \text{Re}$, that $(i \text{Im})(i \text{Im}) = i \text{Im}$, that $\text{id} = \text{Re} + i \text{Im}$, and that $\text{Re}(i \text{Im}) = 0 = (i \text{Im}) \text{Re}$. Describe the nullspaces and rangespaces of Re, Im, and $i \text{Im}$. (These will be \mathbb{R}-subspaces of $\mathbb{C}^{n \times 1}$.

(3) Let $A \in \mathbb{C}^{m \times n}$ be a matrix with complex entries, and write $L_A : \mathbb{C}^n \times 1 \to \mathbb{C}^m \times 1$ for the corresponding \mathbb{C}-linear operator defined by $L_A(x) = Ax$. Show that $A \in \mathbb{R}^{m \times n}$ if and only if $L_A \text{Re} = \text{Re} L_A$, if and only if $L_A \text{Im} = \text{Im} L_A$. (Hint: apply the operators to standard basis vectors.)

In the next several problems, we will suppose that $A \in \mathbb{R}^{n \times n}$ is a square real matrix, and that $L_A : \mathbb{C}^n \times 1 \to \mathbb{C}^n \times 1$ is the associated complex-linear map defined by $L_A(x) = Ax$.

(4) Let $\lambda \in \mathbb{R}$. Show that $E_{L_A}(\lambda)$ is invariant (as an \mathbb{R}-vector subspace) under both Re and Im.

(5) Show that if $A \in \mathbb{R}^{n \times n}$ is such that L_A has a complex eigenvector with real eigenvalue λ, then it has a real eigenvector with the same eigenvalue λ. (Hint: use (4).)

(6) Give an example of $A \in \mathbb{C}^{2 \times 2}$ which has real eigenvalues, but no real eigenvectors. (Hint: build a diagonalizable matrix by making a suitable choice of eigenvectors and eigenvalues.)
Recall that if \(z = a + bi \in \mathbb{C} \), with \(a, b \in \mathbb{R} \), then its **conjugate** is \(\overline{z} = a - bi \).

Let \(\text{Conj} = \text{Re} - i \text{Im} : \mathbb{C}^{n \times 1} \to \mathbb{C}^{n \times 1} \). Note that \(\text{Conj} \) is \(\mathbb{R} \)-linear; it is not \(\mathbb{C} \)-linear.

(7) Show that \(\text{Conj} : \mathbb{C}^{n \times 1} \to \mathbb{C}^{n \times 1} \) is a \(\mathbb{C} \)-antilinear involution. (A function \(f : V \to W \) between \(\mathbb{C} \)-vector spaces is **\(\mathbb{C} \)-antilinear** if
\[
 f(c_1 v_1 + c_2 v_2) = c_1 \overline{f(v_1)} + c_2 \overline{f(v_2)}
\]
for all \(v_1, v_2 \in V \) and \(c_1, c_2 \in \mathbb{C} \). A function \(f : V \to V \) is an **involution** if \(ff = \text{id} \).)

(8) Show that if \(T : \mathbb{C}^{n \times 1} \to \mathbb{C}^{n \times 1} \) is a \(\mathbb{C} \)-linear map such that \(T \text{Conj} = \text{Conj}T \), then \(\text{Conj} \) takes \(\mathcal{E}_T(\lambda) \) **isomorphically** into \(\mathcal{E}_T(\overline{\lambda}) \) for all \(\lambda \in \mathbb{C} \).

(9) Show that if \(A \in \mathbb{R}^{n \times n} \), then \(L_A \text{Conj} = \text{Conj} L_A \). Conclude that if \(A \in \mathbb{R}^{n \times n} \) and \(\lambda \in \mathbb{C} \) is an eigenvalue of \(A \), then \(\overline{\lambda} \) is also an eigenvalue of \(A \). (Use (8); don’t use determinants here.)

Thus, we have shown that the non-real eigenvalues of real matrices come in conjugate pairs, without using determinants. The standard example is \(A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \), with eigenvalues \(e^{\pm i \theta} = \cos \theta \pm i \sin \theta \).

(10) Given an example of \(A \in \mathbb{C}^{2 \times 2} \) and \(\lambda \in \mathbb{C} \) such that \(\lambda \) is an eigenvalue of \(A \), but \(\overline{\lambda} \) is not an eigenvalue of \(\mathbb{C} \).