Recall the notion of a Principal Ideal Domain, and that \(\mathbb{Z} \) and \(F[x] \) are ones.

Gaussian integers. Here is one more example of a PID.

Recall the complex numbers: \(\mathbb{C} = \{ a + bi \mid a, b \in \mathbb{R} \} \), where \(i^2 = -1 \). The Gaussian integers are the subset
\[
\mathbb{Z}[i] := \{ a + bi \in \mathbb{C} \mid a, b \in \mathbb{Z} \}.
\]

If you plot them in the complex plane, you get the integer lattice.

It is not hard to see that \(\mathbb{Z}[i] \) is a domain (it is a subset of a field closed under addition, negation, and multiplication, and contains 0 and 1.)

This is in fact a PID: this is not obvious.

Divisibility in PIDs. Assume \(D \) is a PID. Definitions and propositions:

- Given \(f, g \in D \), say that \(g \) divides \(f \) if there exists \(d \in D \) such that \(fd = g \). Write "\(g \) divides \(f \)" for "\(g \) divides \(f \)".

 (Example: In \(D = \mathbb{R}[x] \), \(x + 1 \) divides \(x^2 + 4x + 3 \).) We also say "\(g \) is a factor of \(f \)."

- For \(f, g \in D \), a greatest common divisor is a \(d \in D \) which is a common divisor of \(f, g \) such that every common divisor of \(f, g \) divides \(d \).

 Note that \(Dg = (g) \), the ideal generated by \(g \), is exactly the set of elements which are divisible by \(g \). So

 \[
 g \mid f \iff f \in (g).
 \]

Proposition. Let \(D \) be a PID. For all \(f, g \in D \), a GCD \(d \) exists. Furthermore, there exist \(m, n \in D \) such that \(d = mf + ng \).

Proof. Because \(I = (f, g) \) is a principal ideal, there exists \(d \) such that \(I = (d) \), which implies \(d = mf + ng \), and also that \(d \) is a common factor of \(f \) and \(g \). We will show that \(d \) must be a GCD.

Since \(f, g \in I = Dd \), there exist \(s, t \) such that \(d = sf = tg \), so \(d \) is a common divisor of \(f, g \). If \(q \mid f \) and \(q \mid g \) is another common divisor, then \(q \mid mf + ng = d \): that is, if \(f, g \in Dq \), then \(d = mf + ng \in (q) \), so \(q \) divides \(d \). \(\square \)

Date: April 25, 2016.
Example. Let $f = x^2 + 2x + 1$ and $g = x^2 + 3x + 2$ in $\mathbb{R}[x]$. Then the GCD d is any generator of the ideal (f,g). I claim that we can take $d = x + 1$. In fact, it is clear that this is a common factor, since $f = (x + 1)^2$ and $g = (x + 1)(x + 2)$. To show that $x + 1$ is the GCD, note that
\[d = (1)f - (1)g. \]
Therefore any common factor of f, g also divides d.

Note: $3x + 3$ is also a GCD. GCDs aren’t quite unique.

- An element $f \in D$ is a unit if it has a multiplicative inverse in D. Exercise. $f \in F[x]$ is a unit if and only if it is a non-zero constant polynomial. I’ll write $\text{Units}(D)$ for the subset of units in D.

Example. $\text{Units}(\mathbb{Z}) = \{ \pm 1 \}$.

Example. $\text{Units}(F[x]) = \{ f \in F[x] \mid \deg f = 0 \} = F \setminus \{ 0 \}$, the set of non-zero constant polynomials.

Example. $\text{Units}(\mathbb{Z}[i]) = \{ \pm 1, \pm i \}$. This can be proved using the complex norm $N(a + bi) := a^2 + b^2$ and the fact that $N(\alpha \beta) = N(\alpha)N(\beta)$.

Exercise: if u is a unit and $f \mid u$, then f is also a unit: if $u = fg$, then $f(gu^{-1}) = 1$, so f has a multiplicative inverse.

Proposition. If D is a PID, then $(d) = (d')$ if and only if there exists a unit u such that $d' = ud$.

Proof. We have $d = fd'$ and $d' = gd$, so $d = fgd$ and $d' = fgd'$, whence $d(1 - fg) = 0 = d'(1 - fg)$. Either $fg = 1$, whence f and g are both units; otherwise, we must have $d = 0 = d'$.

In particular, the GCD of two elements is only defined up to multiplication by a unit.

Say that $f, g \in D$ are relatively prime if 1 is a GCD. In other words, the only common factors of

Irreducible elements. We still take D to be a PID.

- An element $f \in D$ is reducible if it can be written $f = gh$ with g, h both not units. An element $f \in D$ is irreducible if (i) it is not 0 or a unit, and (ii) $f = gh$ implies that either g or h is a unit.

Example. In $D = \mathbb{Z}$, this is almost exactly what we meant by prime, except primes in \mathbb{Z} were assumed positive. For each prime p in \mathbb{Z}, we get two irreducible elements $\pm p$.

Example. An element $f \in F[x]$ is irreducible if it is not constant, and cannot be factored into a product of polynomials of smaller degree.

For instance, in $\mathbb{R}[x]$, every linear polynomial $f = ax - b$ is irreducible ($a \neq 0$). Also, some quadratic polynomials $f = ax^2 + bx + c$ are irreducible ($a \neq 0$). Which ones?

Non-obvious fact: these are the only irreducible polynomials in $\mathbb{R}[x]$.