Proposition. If S is a finite set, $A \subseteq S$ is a subset, then A is finite with $|A| \leq |S|$. If in addition $|A| = |S|$, then $A = S$.

Proof. Since S is finite, there is a bijection $f: S \to [m]$ for some $m \geq 0$. The map f induces a bijective correspondence between A and the image $f(A) \subseteq S$. So without loss of generality, we can assume $S = [m]$, and $A \subseteq [m]$.

Prove this by induction on m. If $m = 0$, $S = [0] = \emptyset$, so $A = \emptyset$. In general, if $A \subseteq [m]$, let $B = A \cap [m-1]$. Thus, by induction B is finite with $|B| \leq m - 1$. If $m \not\in A$, then $A = B$, whence $|A| = |B|$, while if $m \in A$, then $A = B \cup \{m\}$ and $A \cap \{m\} = \emptyset$, so $|A| = |B| + 1$. In either case, $|A| \leq m$, and we can have equality only if $|B| = m - 1$ and $m \in A$.

□

Corollary. If S is a set, and $A \subseteq S$ is a subset such that A is infinite, then S is also infinite.

Corollary. If S is a finite set, and $A \subsetneq S$ is a proper subset, then there does not exist a bijection between A and S.

Turning this around, this says that if S is a set which can be put into a bijective correspondence with a some proper subset A, then S must be infinite.

A set is countably infinite if there is a bijection $f: A \to \mathbb{N}$; if infinite and but no such bijection, it is not countably infinite.

Example: \mathbb{Z}.

There are non-countably infinite sets. The easiest examples are power sets of any infinite set.

Here’s a simpler example, which gives an example of a non-countably infinite set, namely the power set of \mathbb{N}.

Proposition. Let S be any set, and let $T = \mathcal{P}S$ be the power set of S. Then there does not exist a bijection between S and T.

Proof. Suppose there is a bijection $f: S \to T$; we will derive a contradiction. The bijection associates to each element $x \in S$ a subset $f(x) = A_x \subseteq S$. We define a new subset $B \subseteq S$, by

$$B = \{ x \in S \mid x \not\in A_x \}.$$

Since $B \in T$ and f is a bijection, there exists $y \in S$ such that $A_y = B$. But now consider the question of whether y is in this set. If $y \in B$, then by definition $y \not\in A_y$, which is impossible since $A_y = B$. But if $y \not\in B$, then by definition $y \in A_y$, which is again impossible since $A_y = B$. We have found a contradiction, so no bijection f exists. □
Applied to finite sets, this gives a proof that \(n < 2^n \) for all \(n \in \mathbb{N} \cup \{0\} \).

Applied to \(S = \mathbb{N} \), this says that \(T = \mathcal{P}\mathbb{N} \) is not countable!

Remark: this actually proves that there is no surjection \(S \to \mathcal{P}S \) for any set \(S \).

Theorem (Cantor). \(\mathbb{R} \) is not countably infinite.

Proof of Cantor’s theorem. Suppose given a bijection \(f : \mathbb{N} \to \mathbb{R} \). Define a number \(x \in \mathbb{R} \) as follows. It will have a decimal expansion of the form

\[
0.a_1a_2a_3\ldots
\]

where each \(a_i \in \{0, 1, \ldots, 9\} \). We define it by picking \(a_n \) to be different than the \(n \)th digit after the decimal point of \(f(n) \). To be explicit:

- If \(f(n) = \pm m.b_1b_2b_3\ldots \), with \(m \in \mathbb{N} \cup \{0\} \) and \(b_i \in \{0, 1, \ldots, 9\} \), set

\[
a_i := \begin{cases}
1 & \text{if } b_i \in \{0, 2, \ldots, 9\}, \\
2 & \text{if } b_i = 1.
\end{cases}
\]

Then for all \(n \in \mathbb{N} \), \(f(n) \neq x \). Thus \(x \) is not in the image of \(f \), contradicting the hypothesis that \(f \) is a bijection. \(\square \)

Remark: you need to be a little careful with decimal expansions, because some numbers have two decimal expansions, e.g., 0.1234999… is the same as 0.1235000…. I made sure that \(x \) would never be such a number, so the issue won’t be a problem.

More examples of countable infinite. \(\mathbb{Z} \times \mathbb{Z}, \mathbb{N} \times \mathbb{N} \) are countably infinite.

For instance, \(f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \) by \(f(a,b) = 2^{a-1}(2b-1) \).

\(\mathbb{Q} \). This is countably infinite.

A countable union of countable sets is countable.

An **algebraic number** is an \(a \in \mathbb{R} \) which is the root of some polynomial \(f(x) = \sum c_i x^i \) with rational coefficients. E.g., \(\sqrt{2} \) is algebraic. The set \(A \) of algebraic numbers is countably infinite. As a consequence, we learn that there must exist non-algebraic numbers: \(\pi \) and \(e \) are examples, but they are difficult to prove.

The set of all functions \(F(\mathbb{N}, S) = \{ f : \mathbb{N} \to S \} \) is not countably infinite as long as \(S \) has at least two different elements. This is another example of the Cantor argument.

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL

E-mail address: rezk@math.uiuc.edu