Polynomials. A real polynomial of one variable is a function \(f: \mathbb{R} \to \mathbb{R} \) of the form \(f(x) = c_k x^k + \cdots + c_0 = \sum_{i=0}^{k} c_i x^i \), for some \(k \geq 0 \). The degree of \(f \) is the largest integer \(d \) such that \(c_d \neq 0 \).

What is degree of \(f(x) = 0 \)? With this definition, it is undefined: there is no largest integer such that \(c_d \neq 0 \) when all \(c_d = 0 \).

A root (or zero) of a polynomial \(f \) is an \(a \in \mathbb{R} \) such that \(f(a) = 0 \).

Here is a standard fact about polynomials.

Lemma 0.1. If \(f \) is a (non-zero) polynomial of degree \(d \), then \(a \in \mathbb{R} \) is a zero of \(f \) if and only if \(f(x) = (x - a) h(x) \) for some polynomial \(h \) of degree \(d - 1 \).

Proof. (Biconditional, so we prove both directions.)

If \(f(x) = (x - a) h(x) \) for some \(h \), then clearly \(f(a) = 0 \).

Conversely, suppose \(f(a) = 0 \). Since \(f \) is non-zero, this implies \(d \geq 1 \). Writing \(f(x) = \sum_{i=0}^{d} c_i x^i = c_0 + \sum_{i=1}^{d} c_i x^i \), we have

\[
 f(x) = f(x) - f(a) = \sum_{i=1}^{d} c_i (x^i - a^i).
\]

We use the identity

\[
 x^n - a^n = (x - a)(x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \cdots + xa^{n-2} + a^{n-1}) = \sum_{j=1}^{n} x^{n-j}a^{j-1},
\]

which is valid for any \(x, a \in \mathbb{R} \). This has the form

\[
 x^n - a^n = (x - a) h_n(x),
\]

where \(h_n(x) = \sum_{j=1}^{n} x^{n-j}a^{j-1} \) is a polynomial of degree \(n - 1 \) in \(x \).

Putting this in, we get

\[
 f(x) = f(x) - f(a) = \sum_{i=1}^{d} c_i (x^i - a^i) = (x - a) \sum_{i=1}^{d} c_i h_i(x).
\]

The expression \(h(x) = \sum_{i=1}^{d} c_i h_i(x) = c_d x^{d-1} + (\text{lower degree terms}) \) is a polynomial of degree \(d - 1 \). Thus we have shown that if \(a \) is a root, then \(f(x) = (x - a) h(x) \). \(\square \)

Theorem 0.2. Every (non-zero) polynomial of degree \(d \) has at most \(d \) zeroes.
Proof. Induction on \(d \). Let \(f \) be a (non-zero) polynomial of degree \(d \).

Basis step. If \(d = 0 \), then \(f(x) = c_0 \neq 0 \), which has no zeroes.

Induction step. Let \(d \geq 1 \). If \(f \) has no zeroes, we are done. If \(a \) is a zero of \(f \), we have \(f(x) = (x - a)h(x) \) for some polynomial \(h \) of degree \(d - 1 \), which by induction has at most \(d - 1 \) zeroes. A zero of \(f(x) \) must be either a zero of \(h(x) \), or a zero of \((x - a) \), which has only one zero \(a \).

Note that it is possible that \(a \) is also a zero of \(h(x) \), in which case \(\#(\text{zeroes of } f) = \#(\text{zeroes of } h) \). If not, then \(\#(\text{zeroes of } f) = \#(\text{zeroes of } h) \).

Remark 0.3. In the above statement and proofs, I did not really specify a field. Thus, it is true not only for \(F = \mathbb{R} \), but also for \(F = \mathbb{C} \), and in fact for any other field, such as \(F = \mathbb{F}_2 = \{0, 1\} \).

Corollary 0.4. Two real polynomials \(f \) and \(g \) are equal as functions \(\mathbb{R} \to \mathbb{R} \) if and only if their corresponding coefficients are equal.

Proof. If the coefficients of \(f \) and \(g \) are equal, then it is obvious they are the same function.

Conversely, suppose \(f(x) = g(x) \) for all \(x \in \mathbb{R} \). Then \(h := f - g \) is the constant function \(h(x) = 0 \) for all \(x \in \mathbb{R} \). However, it is also a polynomial function \(h(x) = \sum a_i x^i - \sum b_i x^i = \sum (a_i - b_i) x^i \). But we showed that if \(h \) is a non-zero polynomial, it has only finitely many roots (in fact, no more than the degree of \(h \)). Since \(h \) has every real number as a root, it must be the zero polynomial (i.e., with coefficients all \(= 0 \)). This implies that \(f \) and \(g \) are the same polynomial.

Remark 0.5. The above statement actually holds for any infinite field, such as \(\mathbb{R}, \mathbb{Q}, \) or \(\mathbb{C} \).

It is actually false for any finite field \(F \). For instance, consider the field \(\mathbb{F}_2 = \{0, 1\} \), and the polynomial function \(f(x) = x^2 + x \). Then \(f(0) = 0^2 + 0 = 0 \) and \(f(1) = 1^2 + 1 = 0 \), so \(f \equiv 0 \) as a function \(\mathbb{F}_2 \to \mathbb{F}_2 \).

Strong induction, pp. 63–68. Strong induction is a variant of ordinary induction, which is more powerful than ordinary induction.

Theorem 0.6 (Strong Induction). Let \(P(n) \) be a sequence of mathematical statements, for \(n \in \mathbb{N} \). If (a) and (b) below hold, then \(P(n) \) is true for all \(n \in \mathbb{N} \).

(a) \(P(1) \) is true.

(b) For \(k \geq 2 \), if \(P(i) \) is true for all \(i < k \), then \(P(k) \) is true.

Proof. Let \(Q(n) \) be the statement \(\text{“} P(i) \text{” is true for all } i \in \mathbb{N} \text{ with } 1 \leq i < n \text{”} \).

Game of Nim. Game for two players. Start with two equal sized piles of coins. Players take alternate turns; a turn consists of removing any positive number of coins from one of the two piles. The player who removes the last coin wins. (Examples.)

Proposition 0.7. Player 2 always has a winning strategy.

Proof. Let \(\text{Nim}(n) \) denote the game of Nim with two piles of \(n \) coins each. We claim that the second player always has a winning strategy in \(\text{Nim}(n) \). We prove this using strong induction, so that \(P(n) \) is the statement \(\text{“} \text{Player 2 has a winning strategy in } \text{Nim}(n) \text{”} \).

Basis step. In \(\text{Nim}(1) \), player 1 must remove one coin from one of the piles. Then player 2 must remove the remaining coin, and wins.
Induction step. Suppose that player 2 has a winning strategy for Nim(i), for all $i < k$. In Nim(n), player 1 must take a certain number of coins, say j where $1 \leq j \leq k$, from one of the piles. Then player 2 can respond by taking j coins from the other pile. If $j = k$, then player 2 wins; if $j < k$, then what remains is a game of Nim($n - j$) in which player 1 moves first, for which player 2 has a winning strategy, by induction.

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL
E-mail address: rezk@math.uiuc.edu