Geometric sum.

Proposition 0.1. If \(q \in \mathbb{R}, \) and \(q \neq 1, \) then \(\sum_{i=0}^{n-1} q^i = \frac{q^n - 1}{q - 1} \) for \(n \in \mathbb{N}. \)

Proof. Basis step. If \(n = 1, \) we have \(\sum_{i=0}^{n-1} q^i = 1 \) and \(\frac{q^n - 1}{q - 1} = 1. \) Induction step. Assume \(\sum_{i=0}^{n-1} q^i = (q^n - 1)/(q - 1), \) we want to show \(\sum_{i=0}^{n} q^i = (q^{n+1} - 1)/(q - 1). \) We have

\[
\sum_{i=0}^{n} q^i = \left(\sum_{i=0}^{n-1} q^i \right) + q^n \\
= \frac{q^n - 1}{q - 1} + q^n \\
= \frac{(q^n - 1) + q^n(q - 1)}{q - 1} = \frac{q^{n+1} - 1}{q - 1}
\]

as desired.

Proposition 0.2. If \(a \in \mathbb{R} \) such that \(0 \leq a \leq 1, \) and \(n \in \mathbb{N}, \) then \((1-a)^n \geq 1 - na. \)

Proof. Basis step is clear. Induction step:

\[
(1-a)^{n+1} = (1-a)^n(1-a) \\
\geq (1-na)(1-a) \quad \text{by induction, since } 1-a \geq 0 \\
= 1 - (n+1)a + na^2 \\
\geq 1 - (n+1)a \quad \text{since } na^2 \geq 0.
\]

Note: It seems that we never used the hypothesis that \(0 \leq a \) here.

Applications of induction, pp. 58–62.

Date: February 12, 2016.
Handshake problem. A handshake party is a party with n married couples, one of which is the host and hostess. The rules are

- spouses do not shake hands with each other,
- the $2n - 1$ people other than the host shake hands of different numbers of people.

The question is: how many hands does the hostess shake?

Give examples of small parties ($n = 2, 3$). Note that the hand shake numbers seem to pair up $(0, 2n - 2), (1, 2n - 2)$, etc. The hostess always ends up shaking $n - 1$ hands.

To prove this, first observe: a person can shake anywhere between 0 and $2n - 2$ hands, which gives $2n - 1$ different possibilities. Since there are $2n - 1$ people other than the host, we see that for every integer i such that $0 \leq i \leq 2n - 2$, there is exactly one person other than the host who shakes exactly i hands. Write P_i for this person, and H for the host, so the party can be written

$$S = \{H, P_0, \ldots, P_{2n-2}\}.$$

We will prove that the hostess is P_{n-1} by induction. Thus, let $Q(n)$ be the statement that “in a handshake party of n couples, the hostess shakes $n - 1$ hands”.

Basis step. If $n = 1$, then $S = \{H, P_0\}$. In particular, there is only the host and hostess, and no one shakes hands.

Induction step. Suppose that the claim holds for a handshake party with n couples (where $n \geq 1$); we want to show the claim for n couples. Let $S = \{H, P_0, \ldots, P_{2n}\}$ be a party with $n + 1$ couples, where P_i labels the person who shakes hands with exactly i people. We want to show that the hostess is P_{n+1}.

In the party S, the person P_{2n} shakes hands with all other people except one; that other person must be P_0, and must be the spouse of P_{2n}. Thus P_0 and P_{2n} are a couple in this party.

Remove this couple $\{P_0, P_{2n}\}$ from the party. The smaller party consists of $T = \{H, P_1, \ldots, P_{2n-1}\}$, but the labelling is now misleading: the new the handshake numbers all need to be decreased by 1, since all these people shook P_{2n}’s hand. Thus, P_i has handshake number $i - 1$ in the new party. The new party is still a handshake party, since the numbers are all decreased by the same amount 1. By induction, the hostess is the person who shakes $n - 1$ hands in the party T, i.e., the person we labelled P_n.

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL

E-mail address: rezk@math.uiuc.edu