SETS AND FUNCTIONS, PP. 6–10. I’ll review the basic concepts introduced in Chapter 1 briefly, but I will come back to some of them when I talk about Chapter 2.

A Set is a collection of objects, e.g.,
- set of integers $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$,
- set of even integers $\{\ldots, -2, 0, 2, \ldots\}$,
- set of positive integers less than 10, $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

There is only one kind of fundamental question you can ask about a set, called membership: given an object x and a set S, “is x an element of S”? Answer must be yes or no.

Every other question about a set must reduce to questions about membership.

Notation
\[
x \in S \quad \text{means "} x \text{ is an element of } S \text{"}
\]
\[
x \notin S \quad \text{means "} x \text{ is not an element of } S \text{"}
\]

“\in” looks sort of like an “E”, indicating “element”.

Examples.
- Setbuilder notation: $S := \{1, 7, 23\}$.
 Means: $1 \in S$, $7 \in S$, $23 \in S$. If x is not one of 1, 7, 23, then $x \notin S$.
- Duplication is irrelevant: $\{1, 2, 3, 1, \sqrt{4}\} = \{1, 2, 3\}$.
- Empty set $\{\} = \emptyset$. “$x \notin \emptyset$” no matter what x is.
- Sets can have sets as members: $S := \{1, 2, \{3, 4, 5\}, \{2\}\}$.
 Here, the set $T = \{3, 4, 5\}$ satisfies $T \in S$.

Standard sets: \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, $[n] = \{1, \ldots, n\}$.

Definition. Equality of sets. Two sets are equal when they have the same elements. That is, $S = T$ if “$x \in S$” exactly when “$x \in T$”.

Definition. Subsets. We say S is a subset of T if every element of S is also an element of T. That is, $S \subseteq T$ if “$x \in S$” implies “$x \in T$”.

Puzzle. If $S = \{1, 2, \{3\}\}$, is $2 \in S$? $3 \in S$? $\{3\} \in S$? How about $\{\} \in \{}$? Is $\{3\} \subseteq S$? Is $\{} \subseteq S$?
Definition. Specification. If \(A \) is a set, and \(P(x) \) is a mathematical statement about \(x \), then
\[
\{ x \in A \mid P(x) \}
\]
defines a set.

Examples.
- \(S = \{ x \in \mathbb{R} \mid x^2 = 4 \} \). (equal to \(\{ 2, -2 \} \))
- \(S = \{ x \in \mathbb{R} \mid x^2 \leq 4 \} \).
- \(S = \{ x \in \mathbb{R} \mid x^7 - 3x^5 - 2x - 5 = 0 \} \).

Power set. Example: power set of \([3] \).

Example. \(\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \). Intervals.

Set operations, pp. 9–10. (These will be covered again, in discussion of logic.)
Union \(S \cup T \), intersection \(S \cap T \), set difference \(S \setminus T \) (or \(S - T \)).
Venn diagrams.
Notion of disjoint sets.
Example. \(A = (A \setminus B) \cup (A \cap B) \), and \((A \setminus B) \cap (A \cap B) = \emptyset \).
Example. If \(E \) and \(O \) represent sets of even and odd integers, then \(E \cup O = \mathbb{Z} \), and \(E \cap O = \emptyset \).

Functions, pp. 10–15. (Key idea is to stress notion of well-definedness.)
A function \(f \) from a set \(A \) to a set \(B \) is a rule which assigns to each \(a \in A \) a single element \(f(a) \in B \). The set \(A \) is called the domain of \(f \), and \(B \) is called the target (or codomain) of \(f \). Write \(f: A \rightarrow B \).

Draw a blob picture.
The image of a function is \(\{ f(a) \in B \mid a \in A \} \), the subset of \(B \) which are actual outputs. (Example: \(f: \mathbb{R} \rightarrow \mathbb{R}, f(x) = x^2 \). Note that there are elements of the target not in the image; this is OK.)

Important. The domain and target is part of the information of a function. Examples.
- \(f: \mathbb{R} \rightarrow \mathbb{R} \) given by \(f(x) = x^2 \).
- \(g: \mathbb{R} \rightarrow [0, +\infty) \) given by \(g(x) = x^2 \).
- \(h: [0, +\infty) \rightarrow \mathbb{R} \) given by \(h(x) = x^2 \).

All three functions have the same image, but only \(f \) and \(g \) have the same domain, and only \(f \) and \(h \) have the same target. Thus, \(f, g, h \) are different functions.

Well-definedness. When you define a function \(f: A \rightarrow B \), you must be sure that the function you are specifying is well-defined. Typically, you will specify your function by giving a “rule”, that for every \(x \in A \) tells you what \(f(x) \in B \) should be. Being well-defined includes the following.

1. You must be sure that for every \(a \in A \), your rule actually gives an output. For instance,

\[
\begin{align*}
 f: \mathbb{R} \rightarrow \mathbb{R} & \text{ by } f(x) := 1/x \\
\end{align*}
\]

is not well-defined (so not actually a function), because the rule does not make sense when \(x = 0 \).
In this case you can fix this by adding to the rule:

\[
f(x) := \begin{cases}
1/x & \text{if } x \neq 0, \\
47 & \text{if } x = 0
\end{cases}
\]

is a well-defined function \(\mathbb{R} \to \mathbb{R} \).

(2) You must be sure that the outputs of your rule are actually elements of the target. For instance,

\[
f : \mathbb{N} \to \mathbb{N} \text{ by } f(n) := n/2
\]

is not well-defined, though it would be well-defined as \(\mathbb{N} \to \mathbb{Q} \).

(3) You must be sure that your rule is unambiguous, and gives a single value as output for each input. For instance, consider \(S := \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \} \), the set consisting of points on the unit circle. Any element of \(S \) can be written \((\cos \theta, \sin \theta)\) for some \(\theta \in \mathbb{R} \), so you might try to define

\[
f : S \to \mathbb{R} \text{ by } f(\cos \theta, \sin \theta) := \theta.
\]

But this is not well-defined, since \((\cos \theta, \sin \theta) = (\cos(\theta + 2\pi n), \sin(\theta + 2\pi n))\) for any \(n \in \mathbb{Z} \). There are multiple choices of \(\theta \) for each point, and they give different outputs.

You can fix this by observing that for \((x, y) \in S\) there is a unique \(\theta \in [0, 2\pi) \) such that \((x, y) = (\cos \theta, \sin \theta)\), and using this fact to define your function. Thus, you end up with \(f : S \to \mathbb{R} \) whose image is \([0, 2\pi)\).

Why are we so careful about domain and target? We might want to make a statement about all functions \(A \to B \) of a certain type.

Theorem (Maximum principle). Let \(f : [a, b] \to \mathbb{R} \) be a continuous function. Then \(f \) attains its maximum value; that is, there exists \(c \in [a, b] \) such that \(f(c) \geq f(x) \) for all \(x \in [a, b] \).

The point is that this is completely false for functions on other kinds of domains, for instance \(f : [-1, 1] \setminus \{0\} \to \mathbb{R} \) defined by \(f(x) := 1/x \).

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL
E-mail address: rezk@math.uiuc.edu