Solution to Problem 3 from Homework 1

Problem Statement

Show that the neighborhood defined in Example 1.5 for the MST problem is exact.

Comments Before Solution:

Before you even start, you need to know what the MST problem is (See Example 1.2 on page 5). Given an integer \(n > 0 \) (also denoted as \(n \in \mathbb{Z}^+ \) in your text), assume we have an \(n \times n \) symmetric distance matrix \(d = \{d_{ij}\} \), \(d_{ij} \in \mathbb{Z}^+ \) (for all entries \(d_{ij} \) of the symmetric distance matrix). The problem is to find a spanning tree (a connected acyclic undirected subgraph of a graph \(G \) with the same vertex set as \(G \)): one where all edges are in \(\mathbb{Z}^+ \), on the \(n \) vertices of a graph \(G \) that has a minimal total length of its edges. So our feasible set \(F \) for a graph \(G = (V, E) \) is the set of all spanning trees \(F \) where \(V(G) = n \) and the cost function is \(c : (V, E) \rightarrow \sum_{i,j \in E(G)} d_{ij} \).

Expanded Problem Statement

Show that the neighborhood defined in Example 1.5 for the MST is exact; e.g. if \(f \) is a spanning tree of a graph \(G \) with \(n \) vertices that is a local optimum, we can define the neighborhood \(N(f) \) as the set

\[
\{g : g \in F \text{ and } g \text{ can be obtained from } f \text{ as follows}\}:
\]

add an edge \(e \) to the tree \(f \), producing a cycle,

and then delete any edge on the cycle.

You can’t do this problem unless you know what exact means and what \(N(f) \) is—this was a big problem in a lot of your solutions.

Solution: Assume for contradiction that we have a spanning tree \(f \) of a graph \(G \) with satisfying \(V(f) = V(G) \), that is a local optimum in the neighborhood \(N(f) \), \(f \in F \), but not a global optimum. Let \(T \) be a globally optimal spanning tree with the maximum possible edges in common with \(f \) (we may assume this as we are given in the problem statement that \(G \) is a finite graph, as it has \(n \) vertices). Let \(e \in E(G) \) be an edge with minimum weight from set of edges that are in \(T \) but not in \(f \) (again, we can assume such an edge exists as \(G \) is a finite graph). Removing \(e \) from \(T \) splits \(T \) into two smaller trees \(T_1 \) and \(T_2 \).

We can under our assumptions construct a new neighbor \(T' \) of \(f \) by (1) adding an edge \(e \) to \(f \) resulting in a cycle \(c \). This cycle must contain an edge \(e' \neq e \) connecting a vertex in \(T_1 \) with a vertex in \(T_2 \), where \(T_1 \) and \(T_2 \) are two subtrees of \(T \). We finish making \(T' \) by (2) connecting \(T_1 \) and \(T_2 \) with the edge \(e' \).

As \(f \) is a local optimum, we know that the cost of \(T' \) is at least the cost of \(f \). Hence in the symmetric distance matrix, \(d(e) \geq d(e') \). Yet we can connect \(T_1 \) and \(T_2 \) by adding the edge \(e' \) to create a spanning tree that is of at least as minimal as \(T \) and has at least one more edge in common with \(f \). This is a contradiction, because all the entries of the matrix \(d \) are positive integers, in other words in \(\mathbb{Z}^+ \). Hence \(N(f) \) is exact.