Methods of Mathematical Physics - 556 X1
Homework 3 Solutions

1. (Problem 2.1.1 from Keener.) Verify that ℓ^2 is an inner product space. Specifically, show that if $x, y \in \ell^2$, then

$$\langle x, y \rangle = \sum_{k=1}^{\infty} x_k y_k$$

is defined and satisfies the properties of an inner product. (Here we’re assuming that our sequences are real, so no need for the complex conjugate.)

Hint: Think about how we proved Bessel’s Inequality in class.

Solution. The hardest part of this will be to show that if $x, y \in \ell^2$, then $\langle x, y \rangle$ is finite and $x + y \in \ell^2$; verifying everything else will be straightforward. We have

$$\sum_{k=1}^{\infty} x_k y_k = \lim_{n \to \infty} \sum_{k=1}^{n} x_k y_k.$$

By the Cauchy-Schwarz inequality for the standard dot product on \mathbb{R}^n, we know that

$$\left(\sum_{k=1}^{n} |x_k y_k| \right)^2 \leq \sum_{k=1}^{n} x_k^2 \cdot \sum_{k=1}^{n} y_k^2 \leq \sum_{k=1}^{\infty} x_k^2 \cdot \sum_{k=1}^{\infty} y_k^2.$$

The right-hand side is finite, and moreover it is independent of n, and thus $\sum_{k=1}^{\infty} |x_k y_k|$ is a convergent sequence. Since we have taken absolute values, this means that the series $\sum_{k=1}^{\infty} x_k y_k$ is an absolutely convergent sequence, and thus converges as well. Moreover, note now that if $x, y \in \ell^2$, then

$$\sum_{k=1}^{\infty} (x_k + y_k)^2 = \sum_{k=1}^{\infty} x_k^2 + 2x_k y_k + y_k^2 < \infty,$$

so $x + y \in \ell^2$. Of course $\alpha x \in \ell^2$ for all $\alpha \in \mathbb{R}$ as well, and this makes ℓ^2 a vector space. Proving that the remaining axioms of an inner product are satisfied is straightforward at this point.

2. (Problem 2.1.3 from Keener.) Show that the sequence $x_n = \sum_{k=1}^{n} \frac{1}{k}$ is a Cauchy sequence. Since the reals are complete, this means it converges. To which number does this sequence converge?

Solution. We need to check that for any $\epsilon > 0$, there is an N such that $n, m > N$ means that

$$|x_n - x_m| < \epsilon.$$

But we have

$$|x_n - x_m| = \left| \sum_{k=m+1}^{n} \frac{1}{k} \right| \leq \sum_{k=m+1}^{n} \frac{1}{k^2}.$$

But we can replace a sum with an integral with only adding perhaps a constant (think of the Riemann sums, for example), and we have

$$\left| \sum_{k=m+1}^{n} \frac{1}{k^2} \right| \leq \int_{m}^{n} \frac{1}{x^2} dx = \frac{1}{m} - \frac{1}{n} = \frac{n - m}{nm} < \frac{1}{m}.$$

So if we choose $N = 1/\epsilon$, then if $m, n > N$ then $|x_n - x_m| < \epsilon$. Therefore this is a Cauchy sequence and thus converges. (Of course, replacing the factorial with a square threw away a lot — this sum converges much faster than k^{-2}.)
Finally, we know from calculus that
\[e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \]
so
\[\sum_{k=1}^{\infty} \frac{1}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!} - 1 = e - 1. \]

3. Show that the sequence \(x_n = \sum_{k=1}^{n} \frac{1}{k} \) is not a Cauchy sequence.

Solution. Let us try to bound \(|x_n - x_m|\), where we get
\[|x_n - x_m| = \left| \sum_{k=m+1}^{n} \frac{1}{k} \right| \geq \int_{m+1}^{n} \frac{1}{x} \, dx = \log \left(\frac{n}{m+1} \right). \]
Choose \(n = \alpha (m + 1) \), then this difference is at least \(\log \alpha \). This means that no matter how large \(m \) is, we can make this difference large by choose \(n \) large enough. Therefore the sequence is not Cauchy.

4. Consider the Hilbert space \(L^2 \). Prove that the list of vectors
\[\{ \cos(nx) \}_{n=0}^{\infty} \cup \{ \sin(nx) \}_{n=1}^{\infty} \]
is an infinite orthogonal list in \(L^2 \) with respect to the inner product
\[(f, g) = \int_{0}^{2\pi} f(x) g(x) \, dx. \]

Hint: You will need some trigonometric identities to solve this problem, e.g. you will need to compute integrals like
\[\int_{0}^{2\pi} \cos(mx) \cos(nx) \, dx. \]
Recall that we can use Euler’s formula to get, for example,
\[\cos((m + n)x) = \text{Re}(e^{i(m+n)x}) = \text{Re}(e^{imx}e^{inx}) = \text{Re}((\cos(mx) + i \sin(mx))(\cos(nx) + i \sin(nx))) = \cos(mx) \cos(nx) - \sin(mx) \sin(nx). \]
If you recombine these formulas in a clever way, you can do all of the integrals.

Solution. We need to show that
\[\int_{0}^{2\pi} \cos(mx) \cos(nx) \, dx = \delta_{mn} C_m, \]
\[\int_{0}^{2\pi} \sin(mx) \sin(nx) \, dx = \delta_{mn} S_m, \]
\[\int_{0}^{2\pi} \cos(mx) \sin(nx) \, dx = 0, \]
where \(C_m \) and \(S_m \) are some constants, and then we are done.

Use the formula above for \(\cos((m+n)x) \), and note then that
\[\cos((m-n)x) = \cos(mx) \cos(nx) + \sin(mx) \sin(nx) \]
(cosine is even and sine is odd!) and then we have
\[\cos((m+n)x) + \cos((m-n)x) = 2 \cos(mx) \cos(nx). \]
Therefore
\[\int_{0}^{2\pi} \cos(nx) \cos(mx) \, dx = \frac{1}{2} \int_{0}^{2\pi} \cos((m+n)x) + \cos((m-n)x) \, dx = \frac{1}{2}(2\pi\delta_{m+n,0} + 2\pi\delta_{m-n,0}). \]

Since \(m, n \geq 0 \), we can only have \(m + n = 0 \) if \(m = n = 0 \). Then we have
\[\int_{0}^{2\pi} \cos(nx) \cos(mx) \, dx = \begin{cases} \frac{2\pi}{2}, & m = n = 0, \\ \pi, & m = n \neq 0, \\ 0, & m \neq n. \end{cases} \]

Similarly, we have
\[\sin(mx) \sin(nx) = \frac{1}{2}(\cos((m-n)x) - \cos((m+n)x)), \]
and thus
\[\int_{0}^{2\pi} \sin(nx) \sin(mx) \, dx = \frac{1}{2} \int_{0}^{2\pi} \cos((m-n)x) - \cos((m+n)x) \, dx = \frac{1}{2}(2\pi\delta_{m-n,0} - 2\pi\delta_{m+n,0}). \]

Since \(m, n > 0 \), we cannot have \(m + n = 0 \). Then
\[\int_{0}^{2\pi} \sin(nx) \sin(mx) \, dx = \begin{cases} \pi, & m = n, \\ 0, & m \neq n. \end{cases} \]

Finally, we need the other Euler’s formula, namely
\[\sin((m+n)x) = \text{Im}(e^{i(m+n)x}) = \text{Im}(e^{inx}e^{inx}) = \text{Im}((\cos(mx) + i \sin(mx))(\cos(nx) + i \sin(nx))) = \sin(mx)\cos(nx) + \cos(mx)\sin(nx). \]

This gives
\[\sin((m+n)x) + \sin((m-n)x) = 2\sin(mx)\cos(nx), \]
so
\[\int_{0}^{2\pi} \sin(mx) \cos(nx) \, dx = \frac{1}{2} \int_{0}^{2\pi} \sin((m+n)x) + \sin((m-n)x) \, dx = 0 \]
(recall that \(\sin(0x) = 0 \) for all \(x \) and thus its integral is 0 as well).

5. (Problem 2.2.1 from Keener.) Find the best quadratic polynomial fit to the function \(f(x) = |x| \), where we choose as inner product
\[\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)\omega(x) \, dx, \]
for each of the weights \(\omega(x) = 1, \sqrt{1-x^2}, (1-x^2)^{-1/2} \).

Hint: You might find it convenient to compute some orthogonal polynomials for each weight and then compute the answer in terms of these polynomials — and we already did most of the work here on the last homework!

Solution. See attached Mathematica notebook/pdf.

6. (Problem 2.2.9 from Keener.) Suppose that \(\{\phi_n(x)\}_{n=0}^{\infty} \) is a set of orthonormal polynomials, where we choose the inner product
\[\langle f, g \rangle = \int_{a}^{b} f(x)g(x)\omega(x) \, dx, \]
\((\omega(x) > 0) \) and assume that \(\phi_n(x) \) is a polynomial of degree \(n \) with leading coefficient \(k_n \) (specifically, we mean that
\[\phi_n(x) = k_n x^n + \text{terms of power} \ n - 1 \text{ or less}. \]

Then show:
(a) If f is a polynomial of degree less than n, then $\langle \phi_n, f \rangle = 0$.

(b) Show that every polynomial of degree n can be written in the form

$$\sum_{i=0}^{n} \alpha_i \phi_i$$

for some numbers α_i.

(c) the polynomials satisfy a recurrence relation of the form

$$\phi_{n+1}(x) = (A_n x + B_n) \phi_n(x) - C_n \phi_{n-1}(x),$$

for every n, where $A_n = k_{n+1}/k_n$. Compute B_n, C_n in terms of A_n, A_{n-1}, ϕ_n.

Hint: What do we know about $\phi_{n+1}(x) - A_n x \phi_n(x)$? Use part (b), take the inner product with ϕ_j, what do you get? Also, notice that for this inner product, $\langle xf, g \rangle = \langle f, xg \rangle$.

Solution. It’s slightly more efficient to do (b) first and then (a). To prove (b), we will use induction.

If $n = 0$, then $\phi_0 = k_0$, and if f is degree 0, then $f \equiv \beta$ for some $\beta \in \mathbb{R}$, so we have

$$f = \frac{\beta}{k_0} \phi_0.$$

(I’ll also work out the $n = 1$ case directly to give more of the idea.)

Let $n = 1$, so we have $\phi_0 = k_0, \phi_1 = k_1 x + C$. Now, if f is degree one then

$$f(x) = \beta_1 x + \beta_0.$$

Then if we have

$$f(x) = \alpha_0 \phi_0 + \alpha_1 \phi_1,$$

then

$$f(x) = \alpha_0 k_0 + \alpha_1 (k_1 x + C) = \alpha_1 k_1 x + (\alpha_1 C + \alpha_0 k_0),$$

so we choose α_0, α_1 to solve the two-by-two system

$$\begin{align*}
\alpha_1 k_1 &= \beta_1, \\
\alpha_1 C + \alpha_0 k_0 &= \beta_0.
\end{align*}$$

Now, we use induction. Let us assume that for any polynomial f of degree n, we can write f as a linear combination of $\{\phi_0, \ldots, \phi_n\}$. Now assume f is degree $n + 1$, where

$$f(x) = \beta_{n+1} x^{n+1} + \ldots$$

Then

$$g(x) := f(x) - \frac{\beta_{n+1}}{k_{n+1}} \phi_{n+1}$$

is a polynomial of degree n (since we picked constants to kill off the first term). By the induction hypothesis, we can then write

$$g(x) = \sum_{i=0}^{n} \alpha_i \phi_i,$$

so then

$$f(x) = \frac{\beta_{n+1}}{k_{n+1}} \phi_{n+1} + \sum_{i=0}^{n} \alpha_i \phi_i,$$

which is a linear combination of $\{\phi_0, \ldots, \phi_{n+1}\}$, and we are done.
Now, to prove part (a), assume \(f \) is a polynomial of degree \(k < n \). Then

\[
f(x) = \sum_{i=0}^{k} \alpha_i \phi_i,
\]

so

\[
\langle f, \phi_n \rangle = \left\langle \sum_{i=0}^{k} \alpha_i \phi_i, \phi_n \right\rangle = \sum_{i=0}^{k} \alpha_i \langle \phi_i, \phi_n \rangle = 0.
\]

Finally, we do part (c). Basically, we use the ideas above, plus a clever trick or two. First of all, we know by assumption that

\[
\phi_{n+1} = k_{n+1} x^{n+1} + O(x^n),
\]

\[
\phi_n = k_n x^n + O(x^{n-1}).
\]

From this, we know

\[
f(x) := \phi_{n+1} - \frac{k_{n+1}}{k_n} x \phi_n
\]

is a polynomial of degree \(n \). We then know, from part (b) above, that

\[
f(x) = \sum_{i=0}^{n} \alpha_i \phi_i
\]

for some constants \(\alpha_i \). Note further that since the \(\phi_i \) are orthonormal, we know that

\[
\alpha_j = \langle f, \phi_j \rangle = \left\langle \phi_{n+1} - \frac{k_{n+1}}{k_n} x \phi_n, \phi_j \right\rangle.
\]

Since \(j \leq n \), \(\langle \phi_{n+1}, \phi_j \rangle = 0 \), so that

\[
\alpha_j = -\frac{k_{n+1}}{k_n} \langle x \phi_n, \phi_j \rangle.
\]

Now, of course, we have no idea what \(\langle x \phi_n, \phi_j \rangle \) is, in general. However, we have one trick up our sleeve: notice that for any functions \(f, g \), we have

\[
\langle xf, g \rangle = \langle f, xg \rangle,
\]

because of the way we’ve defined our inner product.

NB. Of course, we cannot do this for every inner product, but this one has a special form.

So we then have

\[
\langle x \phi_n, \phi_j \rangle = \langle \phi_n, x \phi_j \rangle,
\]

and if \(j < n - 1 \), then the degree of \(x \phi_j \) is less than \(n \), and by part (a) this is zero. Therefore we know

\[
f(x) = \alpha_n \phi_n + \alpha_{n-1} \phi_{n-1},
\]

so define \(B_n = \alpha_n, C_n = -\alpha_{n-1} \), and we have established the formula for some \(B_n, C_n \). It remains to compute \(B_n, C_n \). We will use the two equations

\[
\langle \phi_{n+1}, \phi_n \rangle = 0, \quad \langle \phi_{n+1}, \phi_{n-1} \rangle = 0.
\]

From the first equation in (1), we have

\[
0 = \langle \phi_{n+1}, \phi_n \rangle = \langle A_n x \phi_n + B_n \phi_n - C_n \phi_{n-1}, \phi_n \rangle
\]

\[
= A_n \langle x \phi_n, \phi_n \rangle + B_n \langle \phi_n, \phi_n \rangle - C_n \langle \phi_{n-1}, \phi_n \rangle.
\]
Using the fact that
\[\langle \phi_n, \phi_n \rangle = 1, \quad \langle \phi_{n-1}, \phi_n \rangle = 0, \]
equation (2) becomes
\[B_n = -A_n \langle x\phi_n, \phi_n \rangle. \]
From the second equation in (1), we have
\[0 = \langle \phi_{n+1}, \phi_{n-1} \rangle = \langle A_n x\phi_n + B_n \phi_n - C_n \phi_{n-1}, \phi_{n-1} \rangle \]
\[= A_n \langle x\phi_n, \phi_{n-1} \rangle + B_n \langle \phi_n, \phi_{n-1} \rangle - C_n \langle \phi_{n-1}, \phi_{n-1} \rangle. \]
(3)
Similarly, this becomes
\[C_n = A_n \langle x\phi_n, \phi_{n-1} \rangle. \]
We would now like to write this in terms of only \(\phi_n \). But notice that
\[\langle x\phi_n, \phi_{n-1} \rangle = \langle \phi_n, x\phi_{n-1} \rangle = \langle \phi_n, \phi_{n-1} k_n x^{n-1} + O(x^{n-2}) \rangle \]
\[= \langle \phi_n, k_n x^{n-1} + O(x^{n-1}) \rangle = k_n \langle \phi_n, x^n \rangle. \]
To compute the last term there, notice that
\[1 = \langle \phi_n, \phi_n \rangle = \langle \phi_n, k_n x^n + O(x^{n-1}) \rangle = k_n \langle \phi_n, x^n \rangle, \]
so that
\[\langle \phi_n, x^n \rangle = \frac{1}{k_n}, \]
and thus
\[\langle x\phi_n, \phi_{n-1} \rangle = \frac{k_n-1}{k_n} = \frac{1}{A_{n-1}}. \]

7. (Problem 2.2.10 from Keener.) **Problem fixed!** Consider the inner product
\[\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)\omega(x) \, dx \]
\((\omega(x) > 0)\).
Show that
\[P_n(x) := \frac{1}{\omega(x)} \frac{d^n}{dx^n} (\omega(x)(1-x^2)^n) \]
is orthogonal to every polynomial of degree less than \(n \).

Hint: We proved this in class when \(\omega \equiv 1 \). Adapt that argument to this case.

Solution. Let \(f \) be a polynomial of degree \(k < n \). Then we have
\[\langle f, P_n \rangle = \int_{-1}^{1} f(x) \frac{d^n}{dx^n} (\omega(x)(1-x^2)^n) \, dx. \]
Recall the two lemmas we proved in class. First of all, since \((1-x^2)\) is zero at \(\pm 1 \), then if we define \(g(x) = (1-x^2)^n \), \(g \), and its first \(n-1 \) derivatives are as well, i.e.
\[g(\pm 1) = g'(\pm 1) = g''(\pm 1) = \cdots = g^{(n-1)}(\pm 1) = 0. \]
Now, the question is, does the function \(\omega(x)g(x) \) also have the same property, i.e. are its first \(n-1 \) derivatives zero as well? The answer is yes: recall the product rule from calculus,
\[\frac{d^p}{dx^p}(\omega(x)g(x)) = \sum_{k=0}^{p} \binom{p}{k} \omega^{(k)}(x)g^{(p-k)}(x), \]
and if we replace p with any integer less than n, then all the derivatives on g which appear in the sum are less than n, and these are all zero at $±1$, so therefore we know $ωg$ and its first $n−1$ derivatives are zero at $±1$.

Now we use the other lemma we proved in class, namely that if

$$h(±1) = h'(±1) = \cdots = h^{(n−1)}(±1) = 0,$$

then

$$\int_{-1}^{1} f(x) \frac{d^n}{dx^n} h(x) \, dx = (-1)^n \int_{-1}^{1} \frac{d^n}{dx^n} f(x) h(x) \, dx.$$

But notice that f is a polynomial of degree $k < n$, and so if we take n derivatives on f it is zero.

8. (Problem 2.2.14 from Keener.) Suppose that $f(t)$ and $g(t)$ are 2π-periodic functions with Fourier series representations

$$f(t) = \sum_{k=-\infty}^{\infty} f_k e^{ikt}, \quad g(t) = \sum_{k=-\infty}^{\infty} g_k e^{ikt}.$$

Now define

$$h(t) = \int_{0}^{2\pi} f(t-x) g(x) \, dx.$$

Compute the Fourier series for h.

Solution. We compute

$$h(t) = \int_{0}^{2\pi} \sum_{k=-\infty}^{\infty} f_k e^{ikt} \sum_{l=-\infty}^{\infty} g_l e^{ilx} \, dx$$

$$= \int_{0}^{2\pi} \sum_{k,l=-\infty}^{\infty} f_k g_l e^{ikt} e^{ilx} \, dx$$

$$= \sum_{k,l=-\infty}^{\infty} f_k g_l e^{ikt} \int_{0}^{2\pi} e^{ilx} \, dx.$$

Now, if $α$ is a non-zero integer, then

$$\int_{0}^{2\pi} e^{iαx} \, dx = e^{iαx} \left|_{x=0}^{x=2\pi} \right. = 0,$$

but if $α = 0$ then the integral is 2π, so

$$\int_{0}^{2\pi} e^{iαx} \, dx = 2\pi δ_{α,0}.$$

Thus we have

$$h(t) = \sum_{k,l=-\infty}^{\infty} f_k g_l e^{ikt} \int_{0}^{2\pi} e^{i(l-k)x} \, dx$$

$$= \sum_{k,l=-\infty}^{\infty} f_k g_l e^{ikt} 2\pi δ_{l,k}$$

$$= \sum_{k=-\infty}^{\infty} 2\pi f_k g_k e^{ikt}.$$

So, the kth Fourier coefficient of h is $2\pi f_k g_k$, i.e. forming the convolution of f and g is equivalent (up to a constant) to multiplying their Fourier series term-by-term.