Partial Differential Equations – Math 442 C13/C14
Fall 2009
Homework 4 — due October 9

1. Consider the boundary value problem

\[A'' + \lambda A = 0, \quad A'(0) + aA(0) = 0, \quad A(L) = 0. \]

(a) Show that if \(a < 0 \), then there is no negative eigenvalue.
(b) Under which conditions is there a zero eigenvalue?
(c) Show there are infinitely many positive eigenvalues for any value of \(a \).

Bonus: We showed in (a) that if \(a < 0 \) then there is no negative eigenvalue. It turns out that for some positive \(a \), this problem has a negative eigenvalue (and for some others it does not). Write down a condition on \(a \) which determines whether such an eigenvalue exists.

2. *(Strauss 4.3.2.)* Consider the eigenvalue problem with Robin boundary conditions

\[A'' + \lambda A = 0, \quad A'(0) - \alpha_0 A(0) = 0, \quad A'(L) + \alpha_L A(L) = 0. \]

(a) Show that zero is an eigenvalue if and only if \(\alpha_0 + \alpha_L = -\alpha_0 \alpha_L \).
(b) Compute the eigenfunction corresponding to this eigenvalue.

3. Solve the equation

\[u_t = ku_{xx}, \quad x \in [0, \infty), \quad t > 0, \]

\[u(x, 0) = \begin{cases} 1, & x \in (0, 1), \\ 0, & x > 1, \end{cases} \]

\[u(0, t) = 0. \]

4. Consider the Schrödinger equation with Neumann boundary conditions:

\[iu_t = u_{xx}, \quad \frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(L, t) = 0. \]

Write out the general series solution for this equation as we have done for the heat and wave equations, i.e. separate variables, get ODEs in \(x \) and \(t \), solve these problems, and take the linear combination.