
Math 231E, Lecture 33.
Parametric Calculus

1 Derivatives

1.1 First derivative

Now, let us say that we want the slope at a point on a parametric curve. Recall the chain rule:

dy

dx
=
dy/dt

dx/dt

which exists as long as dx/dt 6= 0.

Example 1.1. Reconsider the circle example above. We have

dx

dt
= − sin(t),

dy

dt
= cos(t),

so
dy

dx
=

cos(t)

− sin(t)
= −x

y
.

What kind of tangency do we have on a parametric curve?

1. If dy/dt = 0 and dx/dt 6= 0, then the curve should have a horizontal tangency.

2. If dx/dt = 0 and dy/dt 6= 0, then the curve should have a vertical tangency.

3. If both derivatives are zero, then all kinds of things can happen: we can have vertical or horizontal
tangencies, we can have a “cusp”, we can even have a regular point that looks perfectly fine.

Although we don’t say much about it here (you will see much more in MATH 241!), we can also think
of the tangent vector to a curve as the vector: (

dx

dt
,
dy

dt

)
Its slope gives dy/dx in the computations above. Note that it also has another parameter associated to it, its
length: √(

dx

dt

)2

+

(
dy

dt

)2

,

which we can think of as a “speed” at which we traverse the curve. (More on this below.)
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1.2 Second (and higher) derivatives

What if we are interesting in computing where a parametric curve is concave up or down, for example?
Here we would need the second derivative d2y/dx2. How do we compute this?

Recall the chain rule. If , is a function of x and x is a function of t, then

d,
dt

=
d,
dx

dx

dt
, (1)

or

d,
dx

=

d,
dt
dx

dt

.

This is the formula we used above, but with , = y. To get the second derivative d2y/dx2, let us choose
, = dy/dx, giving

d2y

dx2
=

d

dx

(
dy

dx

)
=

d(dy/dx)

dt
dx

dt

=

d

dt

(
dy/dt

dx/dt

)
dx

dt

It is a complicated formula. I wouldn’t suggest memorizing it, but do recall how to derive it, because this
and related formulas are useful!

2 Cycloid, revisited

Recall the equations for the cycloid:

x = r(t− sin t), y = r(1− cos t). (2)

Let us first compute the derivative at each point on the cycloid. Note that we have

dy

dx
=
dy/dt

dx/dt
=

r sin t

r(1− cos t)
=

sin t

1− cos t
.

We see that the slope is zero when sin t = 0 and 1 − cos t 6= 0, which occurs at every odd multiple of π.
Notice that whenever the denominator is zero, so is the numerator, so we have to be clever to compute the
derivative. For example, let us consider t = 0. We formally have a 0/0 indeterminate form here. Expanding
in Taylor series at t = 0, we obtain

dy

dx
=
t− t3/6 +O(t5)

t2/2 +O(t4)
=

1

2t
+O(t).

We see that the left and right limits are different! So in fact we have

lim
t→0+

dy

dx
=∞, lim

t→0−

dy

dx
= −∞.

This makes sense from the picture: the slope is pointing down as we approach each cusp from the left, and
pointing up as we approach each cusp from the right.
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3 Other examples with indeterminate derivatives

We have already seen from the cycloid that a point with an indeterminate derivative can have a vertical
tangency in a cusp-like manner.

We can also see that a horizontal and vertical tangencies are possible. For example, consider the para-
metric curve

x = t3, y = t5, t ∈ [−1, 1].

We plot this:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Notice that x′(t) = 3t2, so x′(0) = 0, and y′(t) = 5t4, so y′(0) = 0. We can see from the picture that the
curve seems to have a horizontal tangency. In fact, note that x, y satisfy y = x5/3, and therefore

dy

dx
=

5

3
x2/3,

so at x = 0 this slope is, in fact, zero.
We can also obtain a vertical tangency by flipping the role of x, y in the previous example:

x = t5, y = t3, t ∈ [−1, 1].
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Also, note that we can actually obtain any slope we want at an indeterminate point. For example,
consider

x = t3, y = αt3.

Note that at t = 0, both of these functions have a zero derivative. But we can see that y = αx, so the curve
is just a line with slope α. We can choose α to be any number we want to get any slope we want.

Basically, when both functions have a zero derivative, anything can happen!

4 Area

We might now try to compute the area underneath a parametric curve, or more specifically, the (signed)
area between a curve and the x-axis. Now, if we have a curve y = f(x) where x ∈ [a, b], then the area under
the curve is given by ∫ b

a

f(x) dx =

∫ b

a

y dx.

Now consider the parametric curve

x = f(t), y = g(t), t ∈ [c, d],

where f(c) = a and f(d) = b. Writing dx = f ′(t) dt, we then obtain∫ b

a

y dx =

∫ d

c

g(t)f ′(t) dt.

In the case where we have x = t, y = g(t), notice that this recovers the standard integral, but this allows
us to consider the general parametric case.
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For example, what is the area under one leaf of the cycloid? We have∫ 2π

0

r(1− cos t) · r(1− cos t) dt

=

∫ 2π

0

r2(1− cos t)2 dt

= r2
∫ 2π

0

1− 2 cos t+ cos2 t dt

= r2
∫ 2π

0

1− 2 cos t+
1

2
(1 + cos 2t) dt.

The two trig functions will have a zero average, so the final answer we obtain here is

r2
∫ 2π

0

3

2
dt = 3πr2.

5 Arc Length

Recall our derivation of arc length earlier in the semester. If we break up a curve into many small line
segments, notice that we have

ds2 = dx2 + dy2,

and thus our integrand is ∫ d

c

√
(dx/dt)2 + (dy/dt)2 dt

For example, if we want the length of one leaf of the cycloid, we compute∫ 2π

0

√
r2(1− cos t)2 + r2 sin2 t = r

∫ 2π

0

√
2(1− cos t) dt.

To do this integral, let us recall the trig formula

cos2 t =
1

2
(1− cos 2t).

Solving gives
cos 2t = 2 cos2 t− 1 = 1− 2 sin2 t.

This means we can also write

1− cos t = 1− (1− 2 sin2(t/2)) = 2 sin2(t/2).

So √
2(1− cos t) =

√
4 sin2(t/2) = 2 sin(t/2).

Then our integral is

2r

∫ 2π

0

sin(t/2) dt = −4r cos(t/2)
∣∣∣∣t=2π

t=0

= −4r(−1− 1) = 8r.

We can also consider the arc length of a circle, which is a much simpler calculation. A circle of radius
one is parameterized by

x = cos t, y = sin t, t ∈ [0, 2π].∫ 2π

0

√
sin2 t+ cos2 t dt =

∫ 2π

0

dt = 2π.

Of course we already knew that.
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