1. A four-leaved rose is defined in polar coordinates by the equation \(r = \sin(2\theta) \). Make a careful sketch of \(r \) against \(\theta \) on the rectangular axes. Use this to make a careful sketch of the polar curve. Be sure that important angles are labelled clearly.

2. A cardioid is defined in polar coordinates by the equation \(r = 1 + \sin \theta \). Make a careful sketch of \(r \) against \(\theta \) on the rectangular axes. Use this to make a careful sketch of the polar curve. Be sure that important angles are labelled clearly.
3. A limaçon is defined in polar coordinates by the equation $r = 2 \sin \theta - 1$. Make a careful sketch of r against θ on the rectangular axes. Use this to make a careful sketch of the polar curve. Be sure that important angles are labelled clearly.

4. Recall the basic formulas $x = r \cos \theta$, $y = r \sin \theta$ and the chain rule: $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$.

Use these to find a general formula for the slope of the tangent line of the limaçon in the previous problem in terms of θ. Find the slope of the tangent line at the points where $\theta = 0$ and at $\theta = \pi/2$, and sketch those tangent lines carefully on your graph.

5. Repeat Problem 4 for the cardioid which you sketched on the previous page at the points where $\theta = 0$ and $\theta = \pi$.