Multiple Choice Questions:

1. What number do we get if we approximate the integral \(\int_0^2 x^2 \, dx \) using the trapezoidal method with 4 intervals?

 (A) \(\frac{13}{4} \) (B) \(\frac{15}{4} \) (C) \(\frac{11}{4} \) (D) \(\frac{9}{4} \) (E) \(\frac{7}{4} \)

Determine whether each of these series diverge or converge and if it converges to which value:

2. \(\sum_{n=1}^{\infty} \frac{3^{2n+1}}{5^n 2^{2n}} \):

 (A) \(\frac{25}{13} \) (B) \(\frac{23}{15} \) (C) \(\frac{29}{13} \) (D) \(\frac{27}{11} \) (E) Diverges

3. \(\sum_{n=5}^{\infty} \frac{6}{9n^2 + 6n - 8} \):

 (A) \(\frac{29}{208} \) (B) \(\frac{24}{143} \) (C) \(\frac{20}{99} \) (D) \(\frac{28}{187} \) (E) Diverges

Determine whether each of these series diverge or converge:

4. \(\sum_{n=2}^{\infty} \frac{1}{n \ln(n) \ln(\ln(n))} \):

 (A) Converges (B) Diverges

5. \(\sum_{n=2}^{\infty} \frac{7n}{n^3 - 4n^2 + 2} \):

 (A) Converges (B) Diverges

6. \(\sum_{n=0}^{\infty} \frac{1}{n^2 - 1} \):

 (A) Converges (B) Diverges

7. \(\lim_{n \to \infty} \frac{n!}{4^n} \):

 (A) Converges (B) Diverges

8. \(\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right) \):

 (A) Converges (B) Diverges

9. True or False: If \(\sum_{n=1}^{\infty} a_n \) converges, then the sequence \(\{s_n\}_{n=1}^{\infty} \) converges, \(s_n = a_1 + a_2 + \ldots + a_n \)

 (A) True (B) False
Free Response:

10. Consider the lamina \(L \) in the plane of constant density \(\rho \), which is bounded by the curves

\[
x = 5 - y^4, \quad x = y^2 - 1.
\]

Find the moments \(M_x \) and \(M_y \) and the center of mass of \(L \).

11. We have a triangle shaped swimming pool formed by the lines \(y = -2x \) \(y = 0 \) and \(x = 5 \), which is completely filled up with water. Draw a picture of the pool and find the hydrolic force of the water at the bottom.

12. Let \(y = \sqrt{x - 1} \) from \(x = 1 \) to \(x = 10 \). Set up but do not evaluate the following:
 a) The arc length of the curve
 b) The surface area when rotated around the \(x \)-axis where the integral has to be in terms of \(x \).
 c) The surface area when rotated around the \(x \)-axis where the integral has to be in terms of \(y \).
 d) The surface area when rotated around the \(y \)-axis.

13. Suppose the sum of the series \(s = \sum_{k=1}^{\infty} \frac{1}{k^3} \) is approximated by its 5th partial sum, \(s_5 = 1 + \frac{1}{8} + ... + \frac{1}{125} \). Approximate the maximum possible error in this estimation.