Multiple Choice Questions:

1. What number do we get if we approximate the integral \(\int_{0}^{2} x^2 \, dx \) using the trapezoidal method with 4 intervals? Answer: (C)

Proof. The formula of the trapezoidal method is

\[
\frac{b-a}{2n} \left(f(x_0) + 2f(x_1) + ... + 2f(x_{n-1}) + f(x_n) \right).
\]

As they are 4 intervals we use the points \(\{0, 0.5, 1, 1.5, 2\} \). We get:

\[
\int_{0}^{2} x^2 \, dx \approx \frac{2-0}{8} (0 + 2 \cdot \frac{1}{4} + 2 \cdot 1 + 2 \cdot \frac{9}{4} + 4) = \frac{11}{4}
\]

\[\square\]

Determine whether each of these series diverge or converge and if it converges to which value:

2. \(\sum_{n=1}^{\infty} \frac{3^{2n+1}}{5^n 2^{2n}} \) Answer: (D)

Proof. After a little bit of algebra we see it turns into a geometric series:

\[
\sum_{n=1}^{\infty} \frac{3^{2n+1}}{5^n 2^{2n}} = 3 \sum_{n=1}^{\infty} \frac{3^{2n}}{5^n 4^n} = 3 \sum_{n=1}^{\infty} \left(\frac{9}{20} \right)^n = 3 \frac{\frac{9}{20}}{1 - \frac{9}{20}} = \frac{27}{11}
\]

\[\square\]

3. \(\sum_{n=5}^{\infty} \frac{6}{9n^2 + 6n - 8} \) Answer: (D)

Proof. After some factorization it turns into a telescopic series:

\[
\sum_{n=5}^{\infty} \frac{6}{9n^2 + 6n - 8} = \sum_{n=5}^{\infty} \frac{6}{(3n-2)(3n+4)}
\]

After using partial fractions we get:

\[
\sum_{n=5}^{\infty} \frac{1}{3n-2} - \frac{1}{3n+4}
\]

We want to make it into a telescopic series, however there is a problem: If we let \(a_n = \frac{1}{3n-2} \) then \(a_{n+1} = \frac{1}{3(n+1)-2} = \frac{1}{3n+1} \) but the second term is not equal to that. So, we add and subtract it to get the following:

\[
\sum_{n=5}^{\infty} \frac{1}{3n-2} - \frac{1}{3n+1} + \frac{1}{3n+1} - \frac{1}{3n+4}
\]

Now, notice that both parts are separately telescopic and so we can solve them independently and add the results:

\[
\sum_{n=5}^{\infty} \left(\frac{1}{3n-2} - \frac{1}{3n+1} \right) + \sum_{n=5}^{\infty} \left(\frac{1}{3n+1} - \frac{1}{3n+4} \right)
\]
Remember the answer of a telescopic series is \(\lim_{n \to \infty} (a_n - a_{n+1}) \) and so the answer is:

\[
\lim_{n \to \infty} \left(\frac{1}{13} - \frac{1}{3n + 1} \right) + \lim_{n \to \infty} \left(\frac{1}{16} - \frac{1}{3n + 4} \right) = \frac{1}{13} + \frac{1}{16} = \frac{29}{208}
\]

Determine whether each of these series diverge or converge:

4. \(\sum_{n=2}^{\infty} \frac{1}{n \ln(n) \ln(\ln(n))} \) Answer: Diverges

Proof. We use the integral test to show it diverges. First we show that \(f(x) = \frac{1}{x \ln(x) \ln(\ln(x))} \) satisfies our three conditions. Note for \(x > e \) \(\ln(x) > 1 \) and so \(\ln(\ln(x)) > 0 \) and so the function is positive for \(x > e \). Also, \(x \ln(x) \ln(\ln(x)) = 0 \) if and only if either \(x = 0 \) or \(\ln(x) = 0 \) which means that \(x = 1 \) or \(\ln(\ln(x)) = 0 \) which means that \(x = e \) and so if \(x > e \) then our function has a non-zero denominator. This means \(f(x) \) is continuous on \((e, +\infty)\). Finally, \(x \) an \(\ln(x) \) are both increasing functions. This means that \(\ln(\ln(x)) \) is also increasing (if \(0 < x_1 < x_2 \) then \(\ln(x_1) < \ln(x_2) \) and then \(\ln(\ln(x_1)) < \ln(\ln(x_2)) \)). This means that \(x \ln(x) \ln(\ln(x)) \) is also increasing (multiplication preserves order). Finally, this means that \(f(x) \) is decreasing. Indeed, if \(0 < x_1 < x_2 \), then \(x_1 \ln(x_1) \ln(\ln(x_1)) < x_2 \ln(x_2) \ln(\ln(x_2)) \) so if we reverse it we get:

\[
\frac{1}{x_2 \ln(x_2) \ln(\ln(x_2))} < \frac{1}{x_1 \ln(x_1) \ln(\ln(x_1))}
\]

and so it is decreasing. So, \(f(x) \) satisfies all three conditions on the interval \((e, +\infty)\) (we take \(e \) so that the left boundary is not improper and later calculations are easier). So, our series is divergent if and only if \(\int_{e^ e}^{\infty} \frac{1}{x \ln(x) \ln(\ln(x))} \, dx \) is divergent. We now calculate the improper integral:

\[
\int_{e^ e}^{\infty} \frac{1}{x \ln(x) \ln(\ln(x))} \, dx = \lim_{t \to \infty} \int_{e^ e}^{t} \frac{1}{x \ln(x) \ln(\ln(x))} \, dx
\]

We substitute \(u = \ln(x) \) then \(du = \frac{dx}{x} \) and the boundaries are \(\ln(e^ e) = e \) and \(\ln(t) \) which we call \(s \). As \(t \) converges to \(\infty \), \(s \) also converges to \(\infty \). Then:

\[
\lim_{t \to \infty} \int_{e^ e}^{t} \frac{1}{x \ln(x) \ln(\ln(x))} \, dx = \lim_{s \to \infty} \int_{e}^{s} \frac{1}{u \ln(u)} \, du
\]

Now, we do the same substitution again. Let \(w = \ln(u) \) then \(dw = \frac{du}{u} \) and the boundaries are \(\ln(e) = 1 \) and \(\ln(s) \) which we call \(r \). As \(s \) converges to \(\infty \), \(r \) also converges to \(\infty \). Then:

\[
\lim_{s \to \infty} \int_{e}^{s} \frac{1}{u \ln(u)} \, du = \lim_{r \to \infty} \int_{1}^{r} \frac{1}{w} \, dw = \lim_{r \to \infty} \ln(w)|_1^r \lim_{r \to \infty} \ln(r)
\]

And this sequence goes to \(\infty \) and so the integral is divergent and so, by the integral test, the series is divergent.

5. \(\sum_{n=2}^{\infty} \frac{7n}{n^3 - 4n^2 + 2} \) Answer: Converges
Proof. It converges by the limit comparison test. Note that for \(n > 4, n^3 > 4n^2 \) and so \(n^3 - 4n^2 > 0 \) and so \(n^3 - 4n^2 + 2 > 0 \). So, we will show \(\sum_{n=4}^{\infty} \frac{7n}{n^3 - 4n^2 + 2} \) converges and this implies that the initial series converges. As we stated above the sequence \(a_n = \frac{7n}{n^3 - 4n^2 + 2} \) is positive. Let \(b_n = \frac{1}{n^2} \) which is also positive. Note \(b_n \) converges by the \(p \)-test as \(p = 2 > 1 \). Now, we calculate \(\lim_{n \to \infty} \frac{a_n}{b_n} \):

\[
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{7n}{n^3 - 4n^2 + 2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{7n^3}{n^3 - 4n^2 + 2} = 7
\]

As the answer is positive and not infinite, by the limit comparison test \(\sum_{n=2}^{\infty} \frac{7n}{n^3 - 4n^2 + 2} \) converges.

6. \(\sum_{n=0}^{\infty} \frac{1}{n^2 - 1} \) Answer: Diverges

Proof. This series is not defined for \(n = 1 \) and so the series diverges.

7. \(\lim_{n \to \infty} \frac{n!}{4^n} \) Answer: Diverges

Proof. The point is that for large enough \(n, 5^n < n! \). As a matter of fact \(5^{125} < 125! \) as we have:

\[
5^{125} = 5^{120} \cdot 25 \cdot 125 < 5 \cdot 6 \cdot 7 \cdot 24 \cdot 26 \cdot \ldots \cdot 124 \cdot 25 \cdot 125 < 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \ldots \cdot 24 \cdot 25 \cdot 26 \cdot \ldots \cdot 124 \cdot 125 = 125!
\]

and for \(n > 5 \) if \(5^n < n! \) then \(5^{n+1} = 5^n \cdot 5 < n! \cdot 5 < n! \cdot (n + 1) = (n + 1)! \) And so for \(n > 125 \) we have:

\[
\frac{n!}{4^n} > \frac{5^n}{4^n} = \left(\frac{5}{4}\right)^n
\]

However, this is just an exponential function with the base bigger than one and so it goes to infinity, which means it is divergent. By comparison then \(\frac{n!}{4^n} \) is also divergent.

8. \(\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right) \) Answer: Diverges

Proof. Remember that:

\[
\lim_{x \to 0} \frac{\sin(x)}{x} = 1
\]

This means that we have the following:

\[
\lim_{y \to \infty} \frac{\sin\left(\frac{1}{y}\right)}{\frac{1}{y}} = 1
\]

This follows from the previous fact if we substitute \(x = \frac{1}{y} \) and realize that if \(y \) goes to \(\infty \) then \(x \) goes to zero.

With this we can solve the question using limit comparison. Notice that \(0 < \frac{1}{n} < 1 \) and so \(a_n = \sin\left(\frac{1}{n}\right) > 0 \). Let \(b_n = \frac{1}{n} \) which is also positive. This series is divergent as it is the harmonic series. Now, we use the limit comparison test:

\[
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} = 1
\]
This limit (by the statement above) converges to 1, which is finite non-zero positive number and so the series diverges.

9. True or False: If \(\sum_{n=1}^{\infty} a_n \) converges, then the sequence \(\{s_n\}_{n=1}^{\infty} \) converges, \((s_n = a_1 + a_2 + \ldots + a_n) \).

Answer: True

Proof. This is true by definition as we know \(\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n \).

Free Response:

10. Consider the lamina \(L \) in the plane of constant density \(\rho \), which is bounded by the curves
\[x = 5 - y^4, \quad x = y^2 - 1. \]

Find the moments \(M_x \) and \(M_y \) and the center of mass of \(L \).

Proof. Note that both functions are even and so the shape is symmetric with respect to the \(x \)-axis. This implies that \(\bar{y} = 0 \) which also means that \(M_x = 0 \). So, all we have to do is to find \(M_y \) and then \(\bar{x} \). We first have to find the bounds of \(y \) by solving \(5 - y^4 = y^2 - 1 \).

\[5 - y^4 = y^2 - 1 \implies y^4 + y^2 - 6 = 0 \implies (y^2 + 3)(y^2 - 2) = 0 \]

But \(y^2 + 3 \) is never zero and so \(y^2 - 2 = 0 \) and so \(y \) is between \(\sqrt{2} \) and \(-\sqrt{2} \).

Now, we calculate:

\[M_x = \rho \int_{a}^{b} \frac{1}{2} ([f(y)]^2 - [g(y)]^2) \, dy = \rho \int_{-\sqrt{2}}^{\sqrt{2}} \frac{1}{2} ([5 - y^4]^2 - [y^2 - 1]^2) \, dy = \]

\[\rho \int_{0}^{\sqrt{2}} 25 - 10y^4 + y^8 - y^4 + 2y^2 - 1 \, dy = \rho \int_{0}^{\sqrt{2}} y^8 - 11y^4 + 2y^2 + 24 \, dy = \]

\[\rho \left(\frac{1}{9} y^9 - \frac{11}{5} y^5 + \frac{2}{3} y^3 + 24y \right) \bigg|_{0}^{\sqrt{2}} = \rho \left(\frac{1}{9} (\sqrt{2})^9 - \frac{11}{5} (\sqrt{2})^5 + \frac{2}{3} (\sqrt{2})^3 + 24(\sqrt{2}) \right) = \]

\[\sqrt{2} \rho \left(\frac{1}{9} (\sqrt{2})^8 - \frac{11}{5} (\sqrt{2})^4 + \frac{2}{3} (\sqrt{2})^2 + 24 \right) = \sqrt{2} \rho \left(\frac{16}{9} - \frac{44}{5} + \frac{4}{3} + 24 \right) = \frac{824\sqrt{2}\rho}{45} \]

Now, all we need is the area to find \(\bar{x} \). The area is:

\[A = \int_{-\sqrt{2}}^{\sqrt{2}} (5 - y^4) - (y^2 - 1) \, dy = 2 \int_{0}^{\sqrt{2}} 6 - y^4 - y^2 \, dy = \]

\[12y - \frac{2}{5} y^5 - \frac{2}{3} y^3 \bigg|_{0}^{\sqrt{2}} = 12(\sqrt{2}) - \frac{2}{5} (\sqrt{2})^5 - \frac{2}{3} (\sqrt{2})^3 = \sqrt{2}(12 - \frac{8}{5} - \frac{4}{3}) = \frac{136\sqrt{2}}{15} \]

And so

\[\bar{x} = \frac{M_x}{\rho A} = \frac{824\sqrt{2}\rho}{45} \cdot \frac{45}{136\sqrt{2}} = \frac{103}{51} \]

As we said \(\bar{y} = 0 \) and so

\((\bar{x}, \bar{y}) = (\frac{103}{51}, 0) \)
11. We have a triangle shaped swimming pool formed by the lines \(y = -2x \) \(y = 0 \) and \(x = 5 \), which is completely filled up with water. Draw a picture of the pool and find the hydraulic force of the water at the bottom.

Proof. If you draw the shape correctly you get a right triangle with base of length 5 on the \(x \)-axis height equal to \(-10\). So the length of each strip is \(5 - \frac{y}{2} = 5 + \frac{y}{5} \) where \(-10 \leq y \leq 0\). So, we get the following integral we have to calculate:

\[
F = \int_{-10}^{0} 1000 \cdot 9.8 \cdot (0 - y)(5 + \frac{y}{5}) \, dy = -9800 \int_{-10}^{0} 5y + \frac{y^2}{5} \, dy = -9800\left(\frac{5}{2}y^2 + \frac{1}{15}y^3\right)|_{-10}^{0} = 0 + 9800\left(\frac{5}{2}(-10)^2 + \frac{1}{15}(-10)^3\right) = \frac{5390000}{3}
\]

12. Let \(y = \sqrt{x - 1} \) from \(x = 1 \) to \(x = 10 \). Set up but do not evaluate the following:

a) The arc length of the curve
b) The surface area when rotated around the \(x \)-axis where the integral has to be in terms of \(x \).
c) The surface area when rotated around the \(x \)-axis where the integral has to be in terms of \(y \).
d) The surface area when rotated around the \(y \)-axis.

Proof. We just plug into the formulas for arc length and surface area. The only other information we need is the function in terms of \(x \) so that we can later write the answer in terms of \(y \). So, we find the function which is: \(x = y^2 + 1 \) from \(y = 0 \) to \(y = 3 \).

\[
a) \int_{a}^{b} ds = \int_{1}^{10} \sqrt{1 + \left(\frac{1}{2\sqrt{x - 1}}\right)^2} \, dx = \int_{1}^{10} \sqrt{1 + \frac{1}{4x - 4}} \, dx \\
b) 2\pi \int_{a}^{b} yds = 2\pi \int_{1}^{10} \sqrt{x - 1} \sqrt{1 + \left(\frac{1}{2\sqrt{x - 1}}\right)^2} \, dx = 2\pi \int_{1}^{10} \sqrt{x - 1} \sqrt{1 + \frac{1}{4x - 4}} \, dx \\
c) 2\pi \int_{a}^{b} yds = 2\pi \int_{0}^{3} y\sqrt{(2y)^2 + 1} \, dy = 2\pi \int_{0}^{3} y\sqrt{4y^2 + 1} \, dy \\
d) 2\pi \int_{a}^{b} xds = 2\pi \int_{1}^{10} x \sqrt{1 + \left(\frac{1}{2\sqrt{x - 1}}\right)^2} \, dx = 2\pi \int_{1}^{10} x \sqrt{1 + \frac{1}{4x - 4}} \, dx
\]

13. Suppose the sum of the series \(s = \sum_{k=1}^{\infty} \frac{1}{k^3} \) is approximated by its 5th partial sum, \(s_5 = 1 + \frac{1}{8} + \ldots + \frac{1}{125} \). Approximate the maximum possible error in this estimation.

Proof. Our goal is to find an upper bound for \(R_5 \) we know that \(R_5 < \int_{5}^{\infty} \frac{1}{x^3} \), because the function \(\frac{1}{x^3} \) satisfies the conditions of the integral test (it is positive, decreasing and continuous). So, we just find that integral:

\[
\int_{5}^{\infty} \frac{1}{x^3} \, dx = \lim_{t \to \infty} \int_{5}^{t} \frac{1}{x^3} \, dx = \lim_{t \to \infty} \frac{1}{-2x^2} \bigg|_{5}^{t} = \lim_{t \to \infty} \frac{1}{-2t^2} - \frac{1}{-2 \cdot 25} = \frac{1}{50}
\]