Study Goals:

- Define parametric equations
- Draw graphs using parametric equations

1. Let \(x = f(t) \) and \(y = g(t) \) be a parametrization.

 - Find the formula for the area under the curve in terms of \(t \)
 (Hint: normally it should be \(\int y \, dx \))

 - Find the formula for the surface area created by rotating the curve about the \(x \)-axis in terms of \(t \) (Hint: normally it should be \(2\pi \int y \, ds \))

2. Consider the parametric curve \(x = \sin^2 t, \ y = \sin 3t, \ 0 \leq t \leq \pi/3 \). Set up but do not evaluate integrals which represent the following:

 a) The area under the curve.

 b) The arc length on the given interval

 c) The surface area created by rotating the curve about the \(x \)-axis.

 d) The surface area created by rotating the curve about the line \(y = 5 \).

 e) The surface area created by rotating the curve about the \(y \)-axis.
3. A sphere of radius r is formed by rotating the semicircle

$$x = r \cos \theta, \quad y = r \sin \theta, \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$$

about the y axis. Sketch a graph. Then compute the surface area of the sphere. (The answer should be familiar)

Moral: We can use parametric equations to compute arc length, surface area, ... of many shapes.

Polar Coordinates: Polar coordinates allow us to think of points (x, y) in terms of (r, θ) (radius, angle).

4. Fill in the blanks:
If we have a radius r and angle θ then we can find the (x, y)-coordinates by:

$$x = _ \cos(\theta)$$
$$y = r _$$

On the other hand if we have (x, y)-coordinates, we find the radius and angle by:

$$\theta = \arctan\left(\frac{y}{_} \right) \quad \text{or} \quad \tan(\theta) = _$$
$$r = \sqrt{x^2 + (_)^2} \quad \text{or} \quad r^2 = _$$

Although we can translate between (x, y) and (r, θ) we must learn to directly think in terms of polar coordinates without any reference to (x, y) coordinates.

5. Sketch the regions
 a) $1 \leq r \leq 2, \ -\frac{\pi}{3} \leq \theta \leq \frac{\pi}{4}.$
 b) $r \leq 0, \ \frac{4\pi}{3} \leq \theta \leq \frac{5\pi}{3}.$
6. Find the following polar coordinates on the plane

\((-2, \pi/4)\) \((\pi, 0)\) \((2, \pi/4)\) \((2, 9\pi/4)\)
\((-2, 7\pi/4)\) \((0, 1)\) \((1, 3\pi/4)\) \((-1, 3\pi/4)\)

7. Identify each polar curve by finding a Cartesian equation.
 a) \(\theta = \frac{\pi}{3}\)

 b) \(r = 4\)

 c) \(r = 2\sin \theta\)

8. Find a simple polar equation which represents each of the following.
 a) \(x = 4\)

 b) \(y = 3x\)

 c) \(y = 4x^2\)

 d) \(x^2 - y^2 = 1\)
Why do we use polar coordinates? Solve the following problem to find out:

9. Find the equation of a circle of radius 1 and center (0, 0):
 a) Using (x, y) coordinates
 b) Using polar coordinates

 c) What do you conclude from the previous two parts? In particular, answer following questions:
 I) Which one is a function?
 II) How do the graphs of part (a) and (b) compare?
 III) How do the formulas of part (a) and (b) compare?

10. Graph the following polar functions
 a) $r = \theta$
 b) $f(\theta) = \cos \theta$