1. Suppose that water flows into a tank at a rate of $200 - 4t$ liters per minute, for $0 \leq t \leq 50$. If the tank starts with 1000 liters at time $t = 0$, determine how much liquid is in the tank at time $t = 30$ minutes.

2. The region under the graph of $y = \sin(x^2)$ between $x = 0$ and $x = \sqrt{\pi}$ is shown below. Set up, but do not evaluate, integrals which represent the volume of the solid formed when

(a) The region is rotated about the x-axis.

(b) The region is rotated about the y-axis.

3. Suppose f is continuous on $(-\infty, \infty)$ and the function g is defined by $g(x) = \int_{-10}^{x} f(t) \, dt$. What is $g'(x)$?
4. Evaluate $\int_{-2}^{2} (x + 3)\sqrt{4 - x^2} \, dx$ by writing it as a sum of two integrals. Use symmetry to evaluate one of the two, and evaluate the other by interpreting it in terms of area. You should be evaluate the integrals without any difficult computation.

5. Evaluate the following integrals

(a) $\int x \cos(x^2) \, dx$

(b) $\int_{0}^{\pi} \sec^2(t/4) \, dt$

(c) $\int_{0}^{1} \frac{1}{x^2 + 4} \, dx$