Hydrostatic Force

1. (a) A triangle with corners (0, 0), (5, 0) and (5, −10).
 (b) We set the bottom of the triangle to be the origin and y goes up.
 (c) With that set up our integral is
 \[\rho g \int_0^{10} (10 - y) \frac{y}{2} \, dy \]
 (d) \[\rho g \frac{250}{3} \]

2. \[\rho g \int_0^5 (7 - y) \frac{3}{5} y \, dy = \rho g \frac{55}{2} \]

3. \[\rho g \int_0^{\sqrt{5}} \frac{2y}{\sqrt{5}} (\sqrt{5} - y) \, dy = \frac{5}{3} \]

Center of Mass

1. \[\left(\frac{32}{12\pi} + 1, \frac{32}{12\pi} - \frac{1}{2} \right) \]

2. (a) A triangle with corners (0, 0), (0, t) and (r, 0)
 (b) \[M_x = \frac{1}{6} \rho (3r - 2)t^2 \]

3. (a) \[M_x = \frac{824\sqrt{2}}{45} \rho \]
 (b) \[M_y = 0 \]
 (c) \[\left(\frac{103}{51}, 0 \right) \]

Approximation:

1. \[\frac{1}{18} \]
2. \[n > 10 \]
3. \[\frac{1}{4} \]