Multiple Choice Questions

1. Find the Maclaurin series for \(f(x) = e^{4x-5} \).

2. Use the remainder estimate in Taylor's theorem to estimate the accuracy of \(T_3(x) \), centered at \(a = 0 \), when \(x \) lies on the interval \([0, 3.5]\).

2. Does the series \(\sum_{n=2}^{\infty} \frac{(-1)^n \ln(n)}{(2n + 2)!} \) converge or diverge?

3. Find the number of terms necessary to estimate the sum \(\sum_{n=1}^{\infty} \frac{(-1)^n n^6 + 4n + 5}{n^7 + 7n + 3} \) to within 0.1.

4. Does the series \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 4n + 32} \) converge or diverge? If it converges, conditionally or absolutely?

5. Find the Maclaurin series representing \(f(x) = \sqrt{x}e^{x^2} \).

6. What can we say about this series \(\sum_{n=1}^{\infty} \frac{(-1)^n (n - 16)}{n^2 - 16} \) using the Ratio test?

7. Find a power series representation of the function \(\frac{\cos(x^2) - 1}{x^2} \).

8. Does the series \(\sum_{n=1}^{\infty} \frac{(-1)^n(n + 1)}{n^2 + 2n} \) converge or diverge?

9. Find the Taylor series for \(f(x) = \sqrt{5 + x} \) centered at \(a = 2 \).

2. Use the remainder estimate to find the maximum error of the approximation \(T_2(x) \approx f(x) \) on the interval \([2, 2.5]\).

10. Find the power series representing \(f(x) = \frac{-4\sin(4x^3)}{x^2} \), and then determine its interval of convergence.

2. Compute \(\int_0^1 f(x)dx. \)

11. Find \(T_3(x) \) of \(\sin(2x) \) centered \(x = \pi \).

2. Find the max error of \(\sin(2x) \) on the interval \([\pi, \frac{4\pi}{3}]\).

12. Find the value of \(\int_0^{\pi/4} x^2 \cos(x^3)dx \). Then use a test to approximate the value of this integral.

13. Find a power series representing \(f(x) = \ln(4 + x) \).

Please go on to the next page...
14. Find the radius of convergence and interval of convergence for \(\sum_{n=1}^{\infty} \frac{5^n}{n!(n+1)!}x^{2n+3} \).

15. Find the Maclaurin series for \(f(x) = e^{4x^2} \) and write out the cubic Taylor polynomial centered at \(a = 0 \).

16. Given \(\sum_{n=1}^{\infty} 2^n x^n \), find the radius of convergence.

17. Find the Maclaurin series for \(f(x) = \frac{1-x}{1-3x+3x^2-x^3} \).

18. Find the degree 3 taylor polynomial of \(\sqrt{x} \) centered \(a = 7 \).