Quiz #7 for Math 231 Solutions

Instructions. Be sure to show your work and explain your reasoning for full credit.

NAME ______________________

1. Use the integral test to determine if the series converges or diverges.

\[\sum_{n=1}^{\infty} \frac{n}{n^4 + 1} \]

Solution:
Using the substitution \(u = x^2 \) we have

\[\int_1^{\infty} \frac{x}{x^4 + 1} \, dx = \frac{1}{2} \int_1^{\infty} \frac{du}{u^2 + 1} = \frac{1}{2} \tan^{-1}(u) \bigg|_1^{\infty} = \frac{1}{2} \left(\frac{\pi}{2} - \frac{\pi}{4} \right) = \frac{\pi}{8} \]

Since the improper integral converges, the series converges also by the Integral test.

2. Determine whether the series is convergent or divergent.

(a) \[\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}^3 + 1} \]

Solution:

\[\frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{n}^3} = \frac{1}{n^{3/2}} \]

\[\sum \frac{1}{n^{3/2}} \] converges by the p-test. Therefore the original series also converges.

(b) \[\sum_{n=1}^{\infty} \frac{3^n}{8^n - 5} \]

Solution:

We know that \(\sum \left(\frac{3}{8} \right)^n \) converges, geometric with \(r = \frac{3}{8} < 1 \).

Limit comparison test: \(a_n = \frac{3^n}{8^n} = \left(\frac{3}{8} \right)^n \), \(b_n = \frac{3^n}{8^n - 5} \)

\[\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{3^n}{8^n}}{\frac{3^n}{8^n - 5}} = \lim_{n \to \infty} \frac{8^n - 5}{8^n} = \lim_{n \to \infty} \frac{1 - \frac{5}{8^n}}{1} = 1 \]

Since \(\sum \left(\frac{3}{8} \right)^n \) converges, both series have to converge. So the original series converges.