1. **(6 points)** Use the given graph of f to state the value of each quantity, if it exists. (If an answer does not exist, enter DNE).

(a) $\lim_{x \to 2^-} f(x)$

(b) $\lim_{x \to 2^+} f(x)$

(c) $\lim_{x \to 2} f(x)$

(d) $f(2)$

(e) $\lim_{x \to 4} f(x)$

(f) $f(4)$

2. **(4 points)** A table of values for f, g, f' and g' is given.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$g(x)$</th>
<th>$f'(x)$</th>
<th>$g'(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

(a) If $A(x) = 3f(x) + 2g(x)$, find $A'(2)$.

(b) If $H(x) = g(f(x))$, find $H'(2)$.

(c) If $P(x) = f(x)g(x)$, find $P'(1)$.

(d) If $Q(x) = \frac{f(x)}{g(x)}$, find $Q'(1)$.
3. (6 points) The vase pictured is obtained by rotating a curve:

The vase is empty at time \(t = 0 \) and is being filled at a constant rate with water. Let \(V \) be the volume of water in the vase, \(h \) the height of the water in the vase and \(t \) the time. Indicate which graph best fits the indicated functions.

(a) \(V(h) \)
(b) \(\frac{dV}{dh} \)
(c) \(V(t) \)
(d) \(\frac{dV}{dt} \)
(e) \(h(t) \)
(f) \(\frac{dh}{dt} \)

A B C
D E F
G H I
4. (16 points, 2/2/3/3/3/3)

Compute the following derivatives using any methods we have covered in class.

(a) \(7x^2 - 5x^{\frac{1}{3}}\)
(b) \(\sqrt{x} e^x\)
(c) \(\frac{\sin x}{1 - \cos x}\)
(d) \((1 + \tan x)^x\)
(e) \(e^{x \sec x}\)
(f) \(\frac{1}{\sqrt{1 + \sin 5x}}\)

5. (10 points)

Use the definition of the derivative to show

if \(f(x) = 2x^2 - 3x + 1\) then \(f'(x) = 4x - 3\)

6. (8 points)

Find an equation of the tangent line to the curve at the given point.

\(y = x + e^{(x^2+1)}, \quad (1, 1 + e^2)\)

7. (10 points) Find the horizontal and vertical asymptotes of the curve.

(a) \(y = \frac{x^2 - x - 2}{x^2 - 2x - 3}\)
(b) \(y = \frac{e^{x^2}}{e^{x^2} - e}\)

8. (8 points) Show that there is a point on the graph of \(f(x) = x^2e^x\) where the tangent line is parallel to the line \(y = 3x - 2\).

9. (8 points) Show that the function

\[f(x) = \begin{cases}
 x^2 \cos \left(\frac{1}{x} \right) & x \neq 0 \\
 0 & x = 0
\end{cases} \]
is differentiable at 0. Hint: You need to use the definition of the derivative.