A WRITTEN SKETCH OF THE FUNDAMENTAL THEOREM OF CALCULUS

The Fundamental Theorem of Calculus states that if f is continuous on $[a, b]$, then
\[
\frac{d}{dx} \left(\int_a^x f(t)dt \right) = f(x).
\]

Definition of Derivative.

By the definition of the derivative,
\[
\frac{d}{dx} \left(\int_a^x f(t)dt \right) = \lim_{h \to 0} \frac{\int_a^{x+h} f(t)dt - \int_a^x f(t)dt}{h} = \lim_{h \to 0} \frac{\int_a^x f(t)dt + \int_x^{x+h} f(t)dt - \int_a^x f(t)dt}{h}
\]
\[
= \lim_{h \to 0} \frac{\int_x^{x+h} f(t)dt}{h}
\]
where the final equality holds since
\[
\int_a^{x+h} f(t)dt = \int_a^x f(t)dt + \int_x^{x+h} f(t)dt.
\]

Extreme Value Theorem.

By the Extreme Value Theorem, the function f has a maximum value at a point M in $[x, x + h]$ and f has a minimum value at a point m in $[x, x + h]$ for a fixed $h > 0$. Thus, by the definition of the integral, we have that
\[
h \cdot f(m) \leq \int_x^{x+h} f(t)dt \leq h \cdot f(M).
\]

Algebra.

Now, when $h \neq 0$, we can divide each term in the previous inequality by h giving
\[
f(m) \leq \frac{1}{h} \int_x^{x+h} f(t)dt \leq f(M).
\]
Note that we can think of m and M as functions of h since, as h increases or decreases, the interval which we are considering the max and min values gets larger or smaller respectively.
Intermediate Value Theorem.

Since

$$f(m) \leq \frac{1}{h} \int_{x}^{x+h} f(t)dt \leq f(M),$$

by the Intermediate Value Theorem, we have that there is a point c in the interval $[x, x + h]$ such that

$$f(c) = \frac{1}{h} \int_{x}^{x+h} f(t)dt$$

for each value of $h > 0$.

Limit of average values c.

As h goes to 0 the c’s must go to x since c is between x and $x+h$. Because f is continuous,

$$\lim_{c \to x} f(c) = f(x)$$

and so if we take the limit as h goes to zero on both sides, we get

$$f(x) = \lim_{h \to 0} f(c) = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt =$$

$$\lim_{h \to 0} \frac{\int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt}{h} = \frac{d}{dx} \left(\int_{a}^{x} f(t)dt \right).$$