Revised version
May 1990

DISCRETE–TIME FILTERING FOR LINEAR SYSTEMS
WITH NON–GAUSSIAN INITIAL CONDITIONS:
ASYMPTOTIC BEHAVIOR OF THE DIFFERENCE BETWEEN
THE MMSE AND LMSE ESTIMATES

by

Richard B. Sowers¹ and Armand M. Makowski²
University of Maryland

ABSTRACT

We consider the one–step prediction problem for discrete–time linear systems in correlated plant and
observation Gaussian white noises, with non–Gaussian initial conditions. We investigate the large time
asymptotics of $\epsilon_t$, the expected squared difference between the MMSE and LMSE (or Kalman) estimates of
the state at time $t$ given past observations. We characterize the limit of the error sequence $\{\epsilon_t, \ t = 0, 1, \ldots \}$
and obtain some related rates of convergence; a complete analysis is provided for the scalar case. The
discussion is based on explicit representations for the MMSE and LMSE estimates, recently obtained by the
authors, which display the dependence of these quantities on the initial distribution.

Key Words: Filtering, linear systems, non–Gaussian initial conditions, correlated noises, large
time asymptotics.

¹ Electrical Engineering Department and Systems Research Center, University of Maryland, College Park,
MD 20742. The work of this author was supported through an ONR Graduate Fellowship while completing
the requirements towards the M.S. degree. Currently with the Department of Mathematics, University of
Maryland, College Park, MD 20742.

² Electrical Engineering Department and Systems Research Center, University of Maryland, College Park,
MD 20742. The work of this author was supported partially through the Engineering Research Centers
Programs NSF CDR 88-03012 and partially through NSF grant ECS 83-51836.
I. INTRODUCTION

Consider the time-invariant linear discrete-time stochastic system

\[
\begin{align*}
X_0^o &= \xi, & X_{t+1}^o &= AX_t^o + W_{t+1}^o \\
Y_t &= HX_t^o + V_{t+1}^o
\end{align*}
\]

where the matrices $A$ and $H$ are of dimension $n \times n$ and $n \times k$, respectively. This system is defined on some underlying probability triple $(\Omega, \mathcal{F}, P)$ which carries all the random elements considered in this paper, namely the $\mathbb{R}^n$-valued plant process \{\(X_t^o, t = 0, 1, \ldots\)\}, the $\mathbb{R}^k$-valued observation process \{\(Y_t, t = 0, 1, \ldots\)\} and the $\mathbb{R}^{n+k}$-valued noise process \{(\(W_{t+1}^o, V_{t+1}^o\), \(t = 0, 1, \ldots\)\}. Throughout we make the following assumptions (A.1)–(A.3), where

(A.1): The process \{(\(W_{t+1}^o, V_{t+1}^o\), \(t = 0, 1, \ldots\)\} is a stationary zero-mean $\mathbb{R}^{n+k}$-valued Gaussian white noise sequence [2, p. 22] with covariance structure $\Gamma$ given by

\[
\Gamma := \text{Cov} \begin{pmatrix} W_{t+1}^o \\ V_{t+1}^o \end{pmatrix} = \begin{pmatrix} \Gamma_w & \Gamma_{wu} \\
\Gamma_{uw} & \Gamma_v \end{pmatrix}; \quad t = 0, 1, \ldots \tag{1.2}
\]

(A.2): The initial state $\xi$ has distribution $F$ with finite first and second moments $\mu$ and $\Delta$, respectively, and is independent of the noise process \{(\(W_{t+1}^o, V_{t+1}^o\), \(t = 0, 1, \ldots\)\}; and

(A.3): The covariance matrices $\Gamma_v$ and $\Delta$ are positive definite, thus invertible.

For each $t = 0, 1, \ldots$, we form the conditional mean $\hat{X}_{t+1} := E[X_{t+1}^o|Y_0, Y_1, \ldots, Y_t]$ or MMSE estimate of $X_{t+1}^o$ on the basis of \{\(Y_0, Y_1, \ldots, Y_t\)\}. In general, $\hat{X}_{t+1}$ is a non-linear function of \{\(Y_0, Y_1, \ldots, Y_t\)\}, in contrast to the corresponding LMSE or Kalman estimate of $X_{t+1}^o$ which is by definition linear, and which we denote by $\hat{X}_{t+1}^K$. We then calculate $\epsilon_{t+1} := E[\|\hat{X}_{t+1} - \hat{X}_{t+1}^K\|^2]$ † which is an $L^2$-measure of the agreement between the MMSE and LMSE estimates of $X_{t+1}^o$ on the basis of \{\(Y_0, Y_1, \ldots, Y_t\)\}.

The goal of this paper is to study the asymptotic behavior of $\epsilon_t$ as the time parameter $t$ tends to infinity. Noting the dependence

\[
\epsilon_t = \epsilon_t((A,H,\Gamma),F), \quad t = 1, 2, \ldots \tag{1.3}
\]

we find it natural to parametrize our asymptotic analysis of $\epsilon_t$ in terms of the system triple $(A,H,\Gamma)$ and of the initial distribution $F$. Of course, if $F$ is Gaussian, the LMSE and MMSE estimates coincide and $\epsilon_t = 0$ for all $t = 1, 2, \ldots$ and any system triple $(A,H,\Gamma)$.

† Here $\|v\|$ denotes the Euclidean norm of the vector $v$ in $\mathbb{R}^n$. 

2
We are interested in characterizing the limit of the error sequence \( \{ \epsilon_t, \ t = 0, 1, \ldots \} \) and in obtaining the corresponding rate of convergence (or bounds on it). In particular, we seek conditions under which the convergence \( \lim_t \epsilon_t = 0 \) takes place, and investigate the form of the corresponding rate of convergence and its dependence on the initial distribution \( F \). Of special interest is the situation where exponential rates of convergence are available, i.e., \( \lim_t \frac{1}{t} \log \epsilon_t = -I \) for some \( I > 0 \).

Our most useful result along these lines is Theorem 5 below which is an immediate consequence of Theorem 4 and Proposition 3 discussed in Section III. To state this result, we need the \( n \times n \) matrices \( \tilde{A} \) and \( \tilde{C} \) which are defined by

\[
\tilde{A} := A - \Gamma_{wv} \Gamma_v^{-1} H \quad \text{and} \quad \tilde{C} := \Gamma_w - \Gamma_{wv} \Gamma_v^{-1} \Gamma_{vw}.
\]  

Since \( \tilde{C} \) is the common covariance matrix of the estimation errors \( \{ W_{t+1}^* - E[W_{t+1}|V_{t+1}] \}, \ t = 0, 1, \ldots \), it is symmetric positive semi–definite, and its square root is thus well defined [2, Prop. D.1.3., p. 371]; let \( \tilde{C}^{1/2} \) denote any such square root of \( \tilde{C} \).

**Theorem 5.** Assume the pair \((A,H)\) to be detectable and the pair \((\tilde{A},\tilde{C}^{1/2})\) to be stabilizable. For any square–integrable distribution \( F \) on \( IR^n \), we have

\[
\lim_t \epsilon_t ((A,H,\Gamma), F) = 0
\]  

(1.5)

and

\[
\overline{\lim}_t \frac{1}{t} \log \epsilon_t ((A,H,\Gamma), F) \leq 2 \log \rho(K_{\infty}) < 0
\]  

(1.6)

where \( K_{\infty} \) is an asymptotically stable \( n \times n \) matrix (given by (3.5)) and \( \rho(K_{\infty}) \) denotes its spectral radius.

To the best of the authors’ knowledge, no results have been reported in the literature on the large time asymptotics of \( \epsilon_t \) for a general non–Gaussian initial distribution. Such a lack of results may be explained in part by the fact that the key representation result [Theorem 1] has been derived only relatively recently [4–7]. In any case, the work reported here provides a formal justification for the idea widely held by practitioners that short of first and second moment information, precise distributional assumptions of the initial condition can be dispensed with when estimating the state \( X_{t+1}^* \) on the basis of the observations \( \{ Y_0, Y_1, \ldots, Y_t \} \). This is a useful complement to Kalman filtering theory since in many applications, the initial distribution is a rather vaguely defined object.

The organization of this paper is as follows. In Section II we summarize a representation result for \( \{ \epsilon_t, \ t = 0, 1, \ldots \} \) which constitutes the basis for the analysis presented here. In Section III, we
investigate the asymptotic behavior of \( \{ \epsilon_t, t = 0, 1, \ldots \} \) for a general multivariable system. Section IV is devoted to the derivation of a key technical result which is used in the discussion of Section III. This is followed in Section V by a more complete analysis of the scalar case (i.e., \( n = k = 1 \)).

The following notation is used throughout. Elements of \( \mathbb{R}^n \) are viewed as column vectors and transposition is denoted by \( \cdot \), so that \( \|v\|^2 = v'v \) for every \( v \) in \( \mathbb{R}^n \). For any positive integer \( n \), we denote by \( \mathcal{M}_n \) the space of \( n \times n \) real matrices and by \( \mathcal{Q}_n \) the cone of \( n \times n \) positive semi–definite matrices. Moreover, let \( I_n \) and \( O_n \) be the unit and zero elements in \( \mathcal{M}_n \), respectively. For any matrix \( K \) in \( \mathcal{M}_n \), with \( \text{sp}(K) \) denoting the set of all eigenvalues of \( K \), we set \( \lambda_{\min}(K) := \min\{ |\lambda| : \lambda \in \text{sp}(K) \} \) and \( \lambda_{\max}(K) := \max\{ |\lambda| : \lambda \in \text{sp}(K) \} \); it is customary to call \( \lambda_{\max}(K) \) the spectral radius of \( K \) and to denote it by \( \rho(K) \). The mapping \( \mathcal{M}_n \to \mathbb{R}_+ \) given by

\[
\|K\|_{op} := \sup_{v \neq 0} \frac{\|Kv\|}{\|v\|}, \quad K \in \mathcal{M}_n
\]

defines the norm on \( \mathcal{M}_n \) induced by the Euclidean norm on \( \mathbb{R}^n \). However, since all norms are equivalent on \( \mathcal{M}_n \), all limiting operations involving matrices can be safely understood entrywise.

We denote by \( \mathcal{E}_n \) the set of all square–integrable probability distributions functions on \( \mathbb{R}^n \) with positive definite covariance matrix, and by \( \mathcal{D}_n \) the set of those distributions in \( \mathcal{E}_n \) which have zero mean. For each matrix \( R \) in \( \mathcal{Q}_n \), let \( G_R \) denote the distribution of a zero–mean \( \mathbb{R}^n \)–valued Gaussian random variable with covariance \( R \).

II. A REPRESENTATION RESULT

The basis for our analysis is a representation result for the sequence \( \{ \epsilon_t, t = 0, 1, \ldots \} \) obtained in [5, 6]. However, before stating this result, we find it useful to observe that there is no loss of generality in assuming \( E[\xi] = 0 \) or equivalently, in restricting attention to distributions \( F \) in \( \mathcal{D}_n \). Indeed, a simple translation argument [5, Section VI.1] shows that for any square–integrable distribution \( F \) in \( \mathcal{E}_n \) with mean \( \mu \), the relation

\[
\epsilon_t ((A, H, \Gamma), F) = \epsilon_t \left((A, H, \Gamma), \bar{F}\right)
\]

holds for any triple \( (A, H, \Gamma) \), where \( \bar{F} \) is the element of \( \mathcal{D}_n \) given by \( \bar{F}(x) := F(x - \mu) \) for each \( x \) in \( \mathbb{R}_+ \).

We now can state the needed representation result, the proof of which is found in [5, 6].
Theorem 1. Define the \( Q_n \)-valued sequence \( \{P_t, \ t = 0, 1, \ldots \} \) by the recursions
\[
P_0 = O_n \\
P_{t+1} = AP_t A' - [AP_t H' + \Gamma_{\nu v}][HP_t H' + \Gamma_v]^{-1} [AP_t H' + \Gamma_{\nu v}]' + \Gamma_w \\
t = 0, 1, \ldots \tag{2.2}
\]
Moreover, let the deterministic sequences \( \{Q_t^*, t = 0, 1, \ldots \} \) and \( \{R_t^*, t = 0, 1, \ldots \} \) in \( \mathcal{M}_n \) and \( Q_n \), respectively, be defined recursively by
\[
Q_0^* = I_n, \quad Q_{t+1}^* = [A - [AP_t H' + \Gamma_{\nu v}][HP_t H' + \Gamma_v]^{-1} H] Q_t^* \\
t = 0, 1, \ldots \tag{2.3}
\]
and
\[
R_0^* = O_n, \quad R_{t+1}^* = R_t^* + Q_t^* H'[HP_t H' + \Gamma_v]^{-1} H Q_t^* \\
t = 0, 1, \ldots \tag{2.4}
\]
For any distribution \( F \) in \( \mathcal{D}_n \), the representation
\[
\epsilon_{t+1} = \int_{\mathbb{R}^n} \frac{\|Q_{t+1}^* \int_{\mathbb{R}^n} \{z - [R_{t+1}^* + \Delta - 1]^{-1} b\} \exp[\frac{1}{2} z' R_{t+1}^* z] dF(z)\|^2}{\int_{\mathbb{R}^n} \exp[\frac{1}{2} z' R_{t+1}^* z] dF(z)} dG_{R_{t+1}^*}(b) \tag{2.5}
\]
holds true for each \( t = 0, 1, \ldots \).

In order to rewrite (2.5) in a more manageable form, we associate with each distribution \( F \) in \( \mathcal{D}_n \), the mapping \( I_F : \mathcal{M}_n \times Q_n \rightarrow \mathbb{R} \) defined by
\[
I_F(K, R) := \int_{\mathbb{R}^n} \frac{\|K \int_{\mathbb{R}^n} \{z - [R + \Delta - 1]^{-1} b\} \exp[\frac{1}{2} z' R z] dF(z)\|^2}{\int_{\mathbb{R}^n} \exp[\frac{1}{2} z' R z] dF(z)} dG_R(b) \tag{2.6}
\]
for all \( K \) in \( \mathcal{M}_n \) and \( R \) in \( Q_n \). We show in Proposition 1 below that (2.6) is always well defined and finite owing to the finite second moment assumption (A.2) on \( \xi \).

With this notation, (2.5) may be rewritten as
\[
\epsilon_t = I_F(Q_t^*, R_t^*). \quad t = 1, 2, \ldots \tag{2.7}
\]
This representation clearly separates the dependence of \( \epsilon_t \) on the system triple \((A, H, \Gamma)\) from the dependence on the initial distribution \( F \); the distribution \( F \) affects \( \epsilon_t \) only through the structure of the functional \( I_F \), whereas the system triple and time affect \( \epsilon_t \) only through \( Q_t^* \) and \( R_t^* \).

We conclude this section by showing that (2.6) is indeed well defined and finite. For ease of exposition, we set
\[
\phi(z, b; R) := \exp \left[ z' b - \frac{1}{2} z' R z \right] \quad \text{and} \quad \Phi(b; R) := \int_{\mathbb{R}^n} \phi(z, b; R) dF(z) \tag{2.8}
\]
for all $b, z$ in $\mathbb{R}^n$ and all $R$ in $\mathcal{Q}_n$.

**Proposition 1.** Let $F$ be a distribution in $\mathcal{D}_n$. For all $K$ in $\mathcal{M}_n$ and $R$ in $\mathcal{Q}_n$, the quantity $I_F(K, R)$ is well defined and finite, with alternate representation

$$I_F(K, R) = \int_{\mathbb{R}^n} \left\| K \int_{\mathbb{R}^n} \{ z - [R + \Delta^{-1}]^{-1} b \} \frac{\phi(z, b; R)}{\Phi(b; R)} dF(z) \right\|^2 \Phi(b; R) dG_R(b) < \infty. \quad (2.9)$$

**Proof.** Fix $K$ in $\mathcal{M}_n$ and $R$ in $\mathcal{Q}_n$. Observe that whenever $b$ lies in the range $Im(R)$ of $R$, the quadratic form in the exponent of $\phi$ in (2.8) is amenable to a completion of squares, namely

$$z' b - \frac{1}{2} z' R z = \frac{1}{2} b' R^# b - \frac{1}{2} (z - R^# b)' R (z - R^# b), \quad z \in \mathbb{R}^n, \; b \in Im(R) \quad (2.10)$$

where $R^#$ denotes the Moore–Penrose pseudo-inverse of $R$ [1, pp. 329–330]. Consequently, $\Phi(b; R)$ is finite for each $b$ in $Im(R)$ since $\phi(z, b; R) < \exp[\frac{1}{2} b' R^# b]$ for $b$ in $Im(R)$ and $z$ in $\mathbb{R}^n$. This bound and the finite second moment assumption (A.2) on $\xi$ together imply that the inner integral in (2.6) is well defined and finite for each $b$ in $Im(R)$. Therefore, since the support of the Gaussian distribution $G_R$ is exactly $Im(R)$ and since $\Phi(b; R) \leq \exp[\frac{1}{2} b' R^# b]$ for $b$ in $Im(R)$, we conclude that $I_F(K, R)$ is indeed well defined and that the representation (2.9) holds.

To show that $I_F(K, R)$ is finite, we first observe from Jensen’s inequality that

$$\left\| K \int_{\mathbb{R}^n} \{ z - [R + \Delta^{-1}]^{-1} b \} \frac{\phi(z, b; R)}{\Phi(b; R)} dF(z) \right\|^2 \leq \left\| K \right\|_{op}^2 \int_{\mathbb{R}^n} \left\| z - [R + \Delta^{-1}]^{-1} b \right\|^2 \frac{\phi(z, b; R)}{\Phi(b; R)} dF(z), \quad b \in Im(R). \quad (2.11)$$

Next, we set

$$J_F(R) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left\| z - [R + \Delta^{-1}]^{-1} b \right\|^2 \phi(z, b; R) dF(z) dG_R(b)$$

$$= \int_{\mathbb{R}^n} \left[ \int_{\mathbb{R}^n} \left\| z - [R + \Delta^{-1}]^{-1} b \right\|^2 \exp[z' b] dG_R(b) \right] \exp[-\frac{1}{2} z' R z] dF(z) \quad (2.12)$$

where the last equality follows from Tonelli’s theorem. It is now plain from (2.9) and (2.11) that

$$I_F(K, R) \leq \left\| K \right\|_{op} J_F(R). \quad (2.13)$$

However, after some tedious calculations, we find that

$$J_F(R) = \text{tr} \left( [R + \Delta^{-1}]^{-1} R [R + \Delta^{-1}]^{-1} \right)$$

$$+ \int_{\mathbb{R}^n} z' \Delta^{-1} [R + \Delta^{-1}]^{-1} [R + \Delta^{-1}]^{-1} \Delta^{-1} z dF(z) < \infty \quad (2.14)$$
since $\xi$ has finite second moments, whence $J_F(R)$ is finite and so is $I_F(K, R)$ as a result of (2.13).

III. SOME CONVERGENCE ESTIMATES

We shall analyze the asymptotic behavior of $\{\epsilon_t, \ t = 0, 1, \ldots\}$ by making use of the representation (2.7). This requires that we study the behavior of $I_F$ under the joint asymptotic behavior of $\{Q_t^*, \ t = 0, 1, \ldots\}$ and $\{R_t^*, \ t = 0, 1, \ldots\}$. However, defining the mapping $I_F : Q_n \rightarrow IR^*$ by

$$I_F(R) := I_F(I_n, R), \quad R \in Q_n$$

(3.1)

we observe the inequalities

$$\lambda_{\min}(Q_t^* Q_t^*) I_F(R_t^*) \leq \epsilon_t ((A, H, \Gamma), F) \leq \lambda_{\max}(Q_t^* Q_t^*) I_F(R_t^*). \quad t = 1, 2, \ldots$$

(3.2)

In effect, (3.2) shows how to bound $\epsilon_t$ in such a way as to separately consider the asymptotic behavior of $\{Q_t^*, \ t = 0, 1, \ldots\}$ and the asymptotic behavior of $I_F$ as $\{R_t^*, \ t = 0, 1, \ldots\}$ tends to its limit. We focus our attention first on the asymptotics of $\{Q_t^*, \ t = 0, 1, \ldots\}$ and $\{R_t^*, \ t = 0, 1, \ldots\}$, and then study the behavior of $I_F$ as $R_t^*$ asymptotically behaves in a well-defined way.

To simplify the notation, we define the matrices $\{K_t, \ t = 0, 1, \ldots\}$ as the elements of $\mathcal{M}_n$ given by

$$K_t := A - [AP_t H' + \Gamma_{vu}] [HP_t H' + \Gamma_v]^{-1} H, \quad t = 0, 1, \ldots$$

(3.3)

so that the recursion (2.3) may now be rewritten in the form

$$Q_0^* = I_n, \quad Q_{t+1}^* = K_t Q_t^*, \quad t = 0, 1, \ldots$$

(3.4)

We observe [3, Thm 5.2 (a), p. 171] that $0 \leq P_t \leq P_{t+1}$ for all $t = 0, 1, \ldots$, whence for each $v$ in $IR^n$, $0 \leq v' P_t v \leq v' P_{t+1} v$ and lim$_t v' P_t v$ always exists, though possibly infinite. As this may not imply the convergence of the iterates $\{P_t, \ t = 0, 1, \ldots\}$ [1, Prop. D.1.4, p. 370], we find it convenient to introduce the following assumption (C.1), where

(C.1): The sequence $\{P_t, \ t = 0, 1, \ldots\}$ has a well-defined limit $P_\infty$.

In that case, the sequence $\{K_t, \ t = 0, 1, \ldots\}$ also has a well-defined limit $K_\infty$ which is given by

$$K_\infty := A - [AP_\infty H' + \Gamma_{vu}] [HP_\infty H' + \Gamma_v]^{-1} H.$$

(3.5)

Conditions for (C.1) to hold are given in Proposition 3 below. We are now ready to present the basic estimates.
Theorem 2. Under (C.1), we have the following estimates: The upper bound

$$\lim_t \frac{1}{t} \log \lambda_{\max} (Q_t'Q_t^*) \leq 2 \ln \rho(K_{\infty})$$

(3.6a)

always holds. The lower bound

$$2 \ln \lambda_{\min} (K_{\infty}) \leq \lim_t \frac{1}{t} \log \lambda_{\min} (Q_t'Q_t^*)$$

(3.6b)

holds provided either $K_{\infty}$ is non-invertible or the matrices $\{K_t, \ t = 0, 1, \ldots\}$ are all invertible.

It is worth pointing out that if $K_t$ is not invertible for some $t = T$, then $Q_t^*$ is not invertible for all $t > T$ by virtue of (3.4) and the lower bound (3.6b) cannot hold with $K_{\infty}$ invertible. Before giving a proof of Theorem 2, we recall that $\lambda_{\max}(K'K) = \|K\|_p^2$ for any matrix $K$ in $\mathcal{M}_n$.

Proof. For every $N = 1, 2, \ldots$, we define $Z_j^{(N)} := K_{jN-1} \cdots K_{(j-1)N}$ for $j = 1, 2, \ldots$. As the recursion (3.4) implies $Q_{jN}^* = Z_j^{(N)} \cdots Z_1^{(N)}$ for all $j = 1, 2, \ldots$, we readily see that

$$\frac{1}{j} \log \|Q_{jN}^*\|_p \leq \frac{1}{j} \sum_{i=1}^j \log \|Z_i^{(N)}\|_p, \quad j = 1, 2, \ldots$$

(3.7)

Since matrix multiplication is continuous in the matrix norm (1.7), it is thus plain from (C.1) that $\lim_j Z_j^{(N)} = K_{\infty}^N$, whence $\lim_j \|Z_j^{(N)}\|_p = \|K_{\infty}^N\|_p$, and the estimate

$$\lim_j \frac{1}{j} \log \|Q_{jN}^*\|_p \leq \log \|K_{\infty}^N\|_p \quad N = 1, 2, \ldots$$

(3.8)

follows from (3.7) by Cesaro convergence.

Fix $N = 1, 2, \ldots$. For each $t = 1, 2, \ldots$, there exists a unique non-negative integer $j_N(t)$ such that $j_N(t)N < t \leq (j_N(t) + 1)N$. Upon iterating (3.4), we get $Q_t^* = K_{t-1}^* \cdots K_{j_N(t)N}^*Q_{j_N(t)N}^*$ for all $t = 1, 2, \ldots$, whence $\|Q_t^*\|_p \leq \|K_{t-1}\|_p \cdots \|K_{j_N(t)N}\|_p \|Q_{j_N(t)N}^*\|_p$, and the inequality

$$\frac{1}{t} \ln \|Q_t^*\|_p \leq \frac{1}{t} \sum_{s=j_N(t)N}^{(j_N(t)+1)N-1} \ln \|K_s\|_p + \frac{j_N(t)}{j_N(t)} \frac{1}{j_N(t)} \ln \|Q_{j_N(t)N}^*\|_p \quad t = 1, 2, \ldots$$

(3.9)

readily follows. Now, since $\lim_t j_N(t) = \infty$ monotonically and $\lim_j \|K_j\|_p = \|K_{\infty}\|_p$, we obtain

$$\lim_t \frac{1}{t} \sum_{s=j_N(t)N}^{(j_N(t)+1)N-1} \ln \|K_s\|_p \leq \lim_t \frac{1}{t} N \ln \|K_{\infty}\|_p = 0.$$

(3.10)
On the other hand, the fact \( \lim_{t \to \infty} \frac{j_N(t)}{t} = \frac{1}{N} \) and the estimate (3.8) lead to

\[
\lim_{t \to \infty} \frac{j_N(t)}{t} \frac{1}{j_N(t)} \ln \| Q^*_j \|_{op} = \frac{1}{N} \cdot \lim_{j \to \infty} \frac{1}{j} \ln \| Q^*_j \|_{op} \leq \frac{1}{N} \cdot \ln \| K^N_{\infty} \|_{op}.
\] (3.11)

Collecting (3.9)–(3.11), we get

\[
\lim_{t \to \infty} \frac{1}{t} \ln \| Q^*_t \|_{op} \leq \frac{1}{N} \cdot \ln \| K^N_{\infty} \|_{op} \quad N = 1, 2, \ldots
\] (3.12)

and (3.6a) then follows by letting \( N \) become large in (3.12) since \( \lim_{N \to \infty} \left( \| K^N_{\infty} \|_{op} \right)^{1/N} = \rho(K_{\infty}) \) [8, p. 271 and Thm. 3.8, p. 284].

As we now turn to the proof of (3.6b), we notice that only the case \( K_{\infty} \) invertible needs to be considered for otherwise the result is trivially true. If we assume that \( K_t \) is invertible for all \( t = 0, 1, \ldots \), then \( Q^*_t \) is also invertible for all \( t = 0, 1, \ldots \). Upon setting \( \hat{K}_t = (K^*_t)^{-1} \) and \( \hat{Q}_t = (Q^*_t)^{-1} \) for all \( t = 0, 1, \ldots \), we observe that (3.4) is equivalent to the recursion \( \hat{Q}_{t+1} = \hat{K}_t \hat{Q}_t \), \( t = 0, 1, \ldots \), whence

\[
\lim_{t \to \infty} \frac{1}{t} \ln \| \hat{Q}_t \|_{op}^2 \leq 2 \ln \rho(\hat{K}_t)
\] (3.13)

by the arguments leading to (3.6a). From basic arguments, we see that \( \rho(\hat{K}_t) = \rho(K^{-1}_t) = \lambda_{\min}(K_t)^{-1} \) and that \( \| \hat{Q}_t \|_{op}^2 = \lambda_{\max}(\hat{Q}_t \hat{Q}_t^*) = \lambda_{\max}((Q^*_t Q^*_t)^{-1}) = \lambda_{\min}(Q^*_t Q^*_t)^{-1} \) for each \( t = 0, 1, \ldots \). These facts, when used in (3.13), immediately imply (3.6b).

To see the implications of Theorem 2 on the asymptotics of \( \{\epsilon_t, t = 0, 1, \ldots\} \), we shall need the following fact.

**Proposition 2.** For every distribution \( F \) in \( D_n \), we have \( \sup_t J_F^*(R_t^*) < \infty \).

**Proof.** Since \( 0 \leq R_t^* \leq R_{t+1}^* \) for all \( t = 0, 1, \ldots \), we conclude from (2.14) that \( \sup_t J_F^*(R_t^*) < \infty \) and the result follows from (2.13).

Note that in Proposition 2 we did not impose the requirement that the sequence \( \{R_t^*, t = 0, 1, \ldots\} \) be convergent. In analogy with (C.1), we introduce assumption (C.2), where

\[\text{(C.2): The sequence } \{R_t^*, t = 0, 1, \ldots\} \text{ has a well-defined limit } R_\infty^* \text{ which is positive definite.}\]

**Theorem 3.** Assume (C.1). We have the following estimates for every non-Gaussian distribution \( F \) in \( D_n \):

The upper bound

\[
\lim_{t \to \infty} \frac{1}{t} \log \epsilon_t \leq 2 \ln \rho(K_{\infty})
\] (3.14a)
always holds. If in addition (C.2) holds, then the lower bound

\[ 2 \ln \lambda_{\min}(K_\infty) \leq \lim_{t \to \infty} \frac{1}{t} \log \epsilon_t \]  

(3.14b)

holds provided either \( K_\infty \) is non-invertible or the matrices \( \{ K_t, \ t = 0, 1, \ldots \} \) are all invertible.

**Proof.** The upper bound (3.14a) follows from (3.2) and (3.6a) with the help of Proposition 2. Under (C.2), Theorem 6 of Section IV implies \( \lim_{t \to \infty} I_F(R_t^*) > 0 \) for \( F \) non-Gaussian and (3.14b) now follows from (3.2) and (3.6b).

We now present some simple implications of Theorems 2 and 3 on the asymptotics considered here. For future reference, we note from (2.4) that

\[ R_t^* = \sum_{s=0}^{t-1} Q_s^* H'[H P_s H' + \Gamma_v]^{-1} H Q_s^*, \quad t = 1, 2, \ldots \]  

(3.15)

**Theorem 4.** Assume (C.1). If \( \rho(K_\infty) < 1 \), then

1. The sequence \( \{ Q_t^*, \ t = 0, 1, \ldots \} \) converges with \( \lim_{t} Q_t^* = 0 \);
2. The sequence \( \{ R_t^*, \ t = 0, 1, \ldots \} \) has a well-defined limit \( R_\infty^* \);
3. For all non-Gaussian distributions \( F \) in \( \mathcal{D}_n \), the convergence \( \lim_{t} \epsilon_t = 0 \) takes place at least exponentially fast according to (3.14a).

**Proof.** From (3.6a) and the fact that \( \lambda_{\max}(Q_t^* Q_t^*) = \| Q_t^* \|_{op}^2 \) for all \( t = 0, 1, \ldots \), we readily obtain

\[ \lim_{t} \frac{1}{t} \log \| Q_t^* \|_{op} < 0, \] 

so that the convergence \( \lim_{t} \| Q_t^* \|_{op} = 0 \) takes place at least exponentially fast. Claim 1 now follows from the fact that all norms are equivalent on \( \mathcal{M}_n \).

To obtain Claim 2, we note from (3.15) that

\[ \| R_t^* - R_s^* \|_{op} \leq \frac{\lambda_{\max}(H'H)}{\lambda_{\min}(\Gamma_v)} \sum_{r=s}^{t-1} \| Q_r^* \|_{op}^2, \quad s < t \]  

and since \( \lim_{t} \| Q_t^* \|_{op} = 0 \) at least exponentially fast, the sequence \( \{ R_t^*, \ t = 0, 1, \ldots \} \) is Cauchy, thus convergent, in the matrix norm (1.7). The norm equivalence invoked earlier completes the proof of Claim 2. Claim 3 is immediate from (3.14a).

We conclude this section with a set of sufficient conditions which ensure (C.1) as well as the condition \( \rho(K_\infty) < 1 \).
**Proposition 3.** If the pair \((A, H)\) is detectable, then (C.1) holds. If in addition, the pair \((A, C^{1/2})\) is stabilizable, then the matrix \(K_\infty\) is asymptotically stable, i.e., \(\rho(K_\infty) < 1\).

**Proof.** The first claim is Theorem 5.2(b) of [3, p. 172], while the second claim follows from Theorem 5.3 of [3, p. 175].

**IV. A PARTIAL CONVERSE**

In this section, we present the key technical fact required in proving (3.14b). This result provides an indirect characterization of the initial condition as a Gaussian random variable.

**Theorem 6.** Assume (C.2). For any distribution \(F\) in \(D_n\), the condition \(\lim_{F} I_F^*(R_t^*) = 0\) implies that \(F\) is necessarily Gaussian.

**Proof.** First we introduce the distribution \(\hat{F}\) in \(D_n\) which is absolutely continuous with respect to \(F\) and whose Radon–Nikodym derivative is given by

\[
\frac{d\hat{F}}{dF}(z) = \frac{\exp \left[ -\frac{1}{2} z' R_{\infty}^* z \right]}{\int_{R^n} \exp \left[ -\frac{1}{2} y' R_{\infty}^* y \right] dF(y)}, \quad z \in IR^n. \tag{4.1}
\]

The moment generating \(N\) of \(\hat{F}\) is simply

\[
N(b) := \int_{IR^n} \exp[b'z] d\hat{F}(z), \quad b \in IR^n. \tag{4.2}
\]

Since the matrix \(R_{\infty}^*\) is positive definite, there exists a finite \(T\) such that for \(t = T, T+1, \ldots\) the matrix \(R_t^*\) is also positive definite and thus \(G_{R_t^*}\) is absolutely continuous with respect to Lebesgue measure \(\lambda\) on \(IR^n\). Applying Fatou’s Lemma to (2.5), we see from the assumption \(\lim_{F} I_F^*(R_t^*) = 0\) that

\[
\lim_{\lambda} \left\| \int_{IR^n} \left\{ z - [R_t^* + \Delta^{-1}]^{-1} b \right\} \phi(z, b; R_t^*) dF(z) \right\|^2 \cdot \frac{dG_{R_t^*}}{d\lambda}(b) = 0 \quad \lambda - a.e. \tag{4.3}
\]

Under (C.2), for each \(b\) in \(IR^n\), we have \(\lim_{\lambda} \frac{dG_{R_t^*}}{d\lambda}(b) = \frac{dG_{R_{\infty}^*}}{d\lambda}(b) > 0\) and \(\Phi(b; R_t^*) = \Phi(b, R_{\infty}^*) > 0\), with the last following by monotone convergence. We now conclude that

\[
\lim_{\lambda} \left\| \int_{IR^n} \left\{ z - [R_t^* + \Delta^{-1}]^{-1} b \right\} \phi(z, b; R_t^*) dF(z) \right\| = 0 \quad \lambda - a.e. \tag{4.4}
\]

or equivalently,

\[
\int_{IR^n} z \phi(z, b; R_{\infty}^*) dF(z) = [R_{\infty}^* + \Delta^{-1}]^{-1} b \int_{IR^n} \phi(z, b; R_{\infty}^*) dF(z) \quad \lambda - a.e. \tag{4.5}
\]
Upon dividing (4.5) by \( \int_{\mathbb{R}^n} \exp \left[ -\frac{1}{2} z' R_* z \right] dF(z) \), we readily see that \( N \) must satisfy the conditions
\[
\nabla_b N(b) = \left( R_* + \Delta^{-1} \right)^{-1} b N(b), \quad b \in \mathbb{R}^n \quad \text{with} \quad N(0) = 1; \tag{4.6}
\]
the technical details are found in [5, Section VI.2].

The unique solution of (4.6) is
\[
N(b) = \exp \left[ \frac{1}{2} b' \left( R_* + \Delta^{-1} \right)^{-1} b \right], \quad b \in \mathbb{R}^n \tag{4.7}
\]
so that \( \hat{F} \) is zero–mean Gaussian with covariance \( \left( R_* + \Delta^{-1} \right)^{-1} \). Since \( \hat{F} \) has positive definite covariance, we see that \( \hat{F} \) is absolutely continuous with respect to \( \lambda \) and therefore \( F \) must be absolutely continuous with respect to \( \lambda \) by virtue of the mutual absolute continuity of \( F \) and \( \hat{F} \).

After some straighforward calculations, we find
\[
\frac{dF}{d\lambda}(z) = \frac{dF}{d\hat{F}}(z) \cdot \frac{d\hat{F}}{d\lambda}(z) = c \exp \left[ -\frac{1}{2} z' \Delta^{-1} z \right], \quad z \in \mathbb{R}^n \tag{4.8}
\]
for some positive constant \( c \), i.e., the distribution \( F \) is Gaussian.

As an immediate consequence of Theorem 6 and of the lower bound in (3.2), we observe that under condition (C.2), whenever \( \lambda_{\min}(Q_t' Q_t^*) > 0 \) for all \( t \) sufficiently large, the distribution \( F \) is necessarily Gaussian if
\[
\lim_t \frac{\epsilon_t ((A, H, \Gamma), F)}{\lambda_{\min}(Q_t' Q_t^*)} = 0. \tag{4.9}
\]

V. THE SCALAR CASE

In this section, we focus exclusively on the scalar case \( n = k = 1 \). We use lower case letters for all deterministic quantities. Moreover, to conform to standard usage, we also set \( \gamma_v = \sigma_v^2 \), \( \gamma_w = \sigma_w^2 \), and \( \gamma_{vw} = \gamma_{wv} = \gamma \) with \( \sigma_v^2 > 0 \), so that
\[
\bar{\sigma} := a - \frac{\gamma h}{\sigma_v^2} \quad \text{and} \quad \bar{\sigma} := \sigma_w^2 - \frac{\gamma^2}{\sigma_v^2} \geq 0. \tag{5.1}
\]

With this notation, we can rewrite the recursions (2.2)–(2.4) as
\[
p_0 = 0, \quad p_{t+1} = \frac{\bar{a}^2 \sigma_v^2 p_t}{h^2 p_t + \sigma_v^2} + \bar{c} \quad t = 0, 1, \ldots \tag{5.2}
\]
\[
q_0^* = 1, \quad q_{t+1}^* = \left( \frac{\bar{a} \sigma_v^2}{h^2 p_t + \sigma_v^2} \right) q_t^* = k_t q_t^* \quad t = 0, 1, \ldots \tag{5.3}
\]
and
\[ r_0^* = 0, \quad r_{t+1}^* = r_t^* + \frac{(q_t^*)^2 h^2}{h^2 p_t + \sigma_v^2}, \quad t = 0, 1, \ldots \quad (5.4) \]

Moreover, the representation (2.7) now takes the form

\[ \epsilon_t = (q_t^*)^2 I_F^t(r_t^*), \quad F \in D_1. \quad t = 1, 2, \ldots \quad (5.5) \]

As we shall see, the scalar nature of the recursions (5.2)–(5.4) permits simpler arguments which are not available in the multivariable case. Although Theorem 5 might be suggestive of a taxonomy based on the detectability of \((a, h)\) and the stabilizability of \((\bar{a}, \bar{c}^{1/2})\), a more direct classification will emerge from our discussion of the scalar situation. We need only consider four possibilities parametrized by \(h, \bar{a}, \bar{c}\), and start with an obvious degeneracy.

**Proposition 4.** If either \(\bar{a} = 0\) or \(h = 0\), then \(\epsilon_t = 0\) for all \(t = 1, 2, \ldots\) and all distributions \(F\) in \(\mathcal{E}_1\).

**Proof.** Fix \(F\) in \(D_1\). If \(\bar{a} = 0\), then \(q_t^* = 0\) for all \(t = 1, 2, \ldots\) by (5.3), and (5.5) therefore implies \(\epsilon_t = 0\) for all \(t = 1, 2, \ldots\). On the other hand, if \(h = 0\), then (5.4) leads to \(r_t^* = 0\) for all \(t = 0, 1, \ldots\), so that \(\epsilon_t = 0\) for all \(t = 1, 2, \ldots\) by direct evaluation of (2.6). We translate these results from \(D_1\) to \(\mathcal{E}_1\) by making use of (2.1).

We now consider the more interesting situation where both conditions \(\bar{a} \neq 0\) and \(h \neq 0\) are assumed, in which case \(q_t^* \neq 0, r_t^* > 0\) and \(\epsilon_t > 0\) for all \(t = 1, 2, \ldots\). We rewrite (5.2) as \(p_{t+1} = T(p_t)\) where the mapping \(T : [0, \infty) \to \mathbb{R}\) is given by

\[ T(p) := \frac{\bar{a}^2 \sigma_v^2}{h^2 p + \sigma_v^2} + \bar{c}, \quad p \geq 0. \quad (5.6) \]

Since

\[ T'(p) = \frac{\bar{a}^2 \sigma_v^4}{(h^2 p + \sigma_v^2)^2}, \quad p \geq 0 \quad (5.7) \]

we conclude that \(T\) is concave and non-decreasing on \([0, \infty)\). Hence, the iterates \(\{p_t, \ t = 0, 1, \ldots\}\) form a non-decreasing, thus convergent, sequence with limit point \(p_\infty\) in \([0, \infty)\). The finiteness of \(p_\infty\) is an easy consequence of the relation \(p_\infty = T(p_\infty)\) which must necessarily hold.

Consequently, the sequence \(\{k_t, \ t = 0, 1, \ldots\}\) has a limit \(k_\infty\) given by

\[ k_\infty := \frac{\bar{a} \sigma_v^2}{h^2 p_\infty + \sigma_v^2} \quad (5.8) \]
with $|k_\infty| > 0$ since $\tilde{a} \neq 0$ and $p_\infty < \infty$. The convergence of the sequence $\{p_t, \; t = 0, 1, \ldots\}$ and (5.3) readily imply the Cesaro convergence

$$\lim_t \frac{1}{t} \log(q_t^*)^2 = \lim_t \frac{1}{t} \sum_{s=0}^{t-1} \log \left( \frac{\tilde{a} \sigma^2}{h^2 p_s + \sigma^2_\epsilon} \right)^2 = 2 \log |k_\infty|. \quad (5.9)$$

It is then easy to see from (3.15) and (5.9) that if $|k_\infty| < 1$, then $r^*_\infty := \lim_t r^*_t$ is well defined and finite, whereas if $|k_\infty| \geq 1$, then $\lim_t r^*_t = \infty$. We now make use of these observations to prove the following result.

**Proposition 5.** We assume both $h \neq 0$ and $\tilde{a} \neq 0$. If either $\tilde{c} \neq 0$ or $\tilde{c} = 0$ with $|\tilde{a}| < 1$, then $|k_\infty| < 1$ and $\lim_t \epsilon_t = 0$ with $\lim_t \frac{1}{t} \log \epsilon_t = 2 \log |k_\infty| < 0$ for all non-Gaussian distributions $F$ in $\mathcal{E}_1$.

**Proof.** Prompted by the remarks made earlier, we begin by showing that $|k_\infty| < 1$ under the stated conditions. If $\tilde{c} = 0$, then $p_t = 0$ for all $t = 0, 1, \ldots$, so that $p_\infty = 0$ and the conclusion $|k_\infty| \leq |\tilde{a}| < 1$ follows when $|\tilde{a}| < 1$. If $\tilde{c} \neq 0$, then necessarily $\tilde{c} > 0$ and therefore $p_\infty > 0$ (since $\tilde{c} = p_1 \leq p_\infty$). Consequently, $p_\infty$ is the only finite solution to the fixed point equation $T(p) = p$ on $(0, \infty)$, and geometric considerations based on the concavity and monotonicity of $T$ readily lead to $T'(p_\infty) < 1$. The conclusion $|k_\infty| < 1$ now follows from the fact that $T'(p_\infty) = k^2_\infty$.

As pointed out earlier, here $q^*_t \neq 0$ and $r^*_t > 0$ for all $t = 0, 1, \ldots$, whence $r^*_\infty > 0$ since $\{r^*_t, \; t = 0, 1, \ldots\}$ is an increasing sequence. On the other hand, we saw earlier that $|k_\infty| < 1$ implies $r^*_\infty < \infty$. Therefore, from Proposition 1 and Theorem 6, we obtain $0 < \lim_{t \to \infty} I_F(r^*_t) \leq \lim_{t \to \infty} I_F(r^*_t) < \infty$ for every non-Gaussian $F$ in $\mathcal{D}_1$. As a result, $\lim_t \frac{1}{t} \log \epsilon_t = \lim_t \frac{1}{t} \log(q^*_t)^2 = 2 \log |k_\infty| < 0$ for all $F$ non-Gaussian in $\mathcal{D}_1$, and thus in $\mathcal{E}_1$ by translation.

Notice that Proposition 5 is almost a direct consequence of Theorem 3 since in the scalar case, we have $\lambda_{\min}(k_\infty) = \rho(k_\infty) = |k_\infty|$, and we need only establish that conditions (C.1) and (C.2) hold true under the assumptions of Proposition 5. We found it interesting, however, to provide a direct argument tailored to the scalar case.

It now remains to investigate the case $\tilde{c} = 0$ and $|\tilde{a}| \geq 1$, still with $h \neq 0$. We shall see that the initial state distribution $F$ has a non-trivial effect on the large time asymptotics of $\{\epsilon_t, \; t = 0, 1, 2, \ldots\}$. A priori, it would seem natural that the initial distribution $F$ should have some effect on the asymptotics of the mean squared error between the MMSE and LMSE filters. However, in both cases considered thus far in Propositions 4 and 5, the effect of the system parameters $(a, h, \Gamma)$ have dominated these asymptotics. Only when $\tilde{c} = 0$ and $|\tilde{a}| \geq 1$, does $F$ have a significant
effect. We shall establish this dependence by performing a complete analysis for two specific initial distributions \( F \), and by noting the different asymptotics of \( \{ \epsilon_t, \ t = 0, 1, \ldots \} \). We first verify a general result which complements Proposition 2.

**Proposition 6.** For any distribution \( F \) in \( \mathcal{D}_1 \), we have \( I_F^*(r) \leq \frac{4}{r} \) for all \( r > 0 \) so that \( \lim_r I_F^*(r) = 0 \).

**Proof.** We note that the functional \( I_F^* \) is independent of the system dynamics \( (a, h, \Gamma) \). Consequently, for the purpose of argumentation, we can take the system (1.1) to be

\[
X^*_t = \xi, \quad Y_t = \xi + V^*_t, \quad t = 0, 1, \ldots \quad (5.10)
\]

with \( a = h = 1, \sigma^2_w = \gamma = 0 \) and \( \sigma^2_v > 0 \). For this system, \( q^*_t = 1, r^*_t = \frac{t}{\sigma^2_v} \) and \( \epsilon_t = I_F^*(\frac{t}{\sigma^2_v}) \) for all \( t = 0, 1, \ldots \). We now set

\[
\hat{X}_{t+1} := \frac{1}{t+1} \sum_{s=0}^{t} Y_s, \quad t = 0, 1, \ldots \quad (5.11)
\]

and observe that since \( \hat{X}_{t+1} \) is a linear estimate of \( X^*_t \) on the basis of \( \{ Y_0, \ldots, Y_t \} \), it has larger mean squared error than both the LMSE estimate \( \hat{X}^K_{t+1} \) and the MMSE estimate \( \hat{X}_{t+1} \). Therefore, we have

\[
E[|\hat{X}_{t+1} - \hat{X}^K_{t+1}|^2] \leq 2E[|\hat{X}_{t+1} - X^*_t|^2] + 2E[|\hat{X}^K_{t+1} - X^*_t|^2]
\]

\[
\leq 4E[|\hat{X}_{t+1} - X^*_t|^2] \quad t = 0, 1, \ldots \quad (5.12)
\]

so that

\[
I_F^*(\frac{t}{\sigma^2_v}) = \epsilon_t \leq 4E \left[ \frac{1}{t} \sum_{s=0}^{t-1} V^*_s \right]^2 \leq \frac{4\sigma^2_v}{t} \quad t = 1, 2, \ldots \quad (5.13)
\]

and the result follows since \( \sigma^2_v \) is arbitrary.

We now consider the following two distributions \( F_1 \) and \( F_2 \) in \( \mathcal{D}_1 \).

**Distribution \( F_1 \).** Distribution \( F_1 \) admits a density with respect to Lebesgue measure \( \lambda \) on \( IR \) given by

\[
dF_1/d\lambda(z) = \sum_{i=1}^{m} \alpha_i \frac{1}{\sqrt{2\pi \rho^2}} \exp \left[ -\frac{1}{2} \frac{(z - \mu_i)^2}{\rho^2} \right], \quad z \in IR \quad (5.14)
\]

where \( \rho > 0, 0 < \alpha_i < 1 \) for \( i = 1, 2, \ldots, m \), \( \sum_{i=1}^{m} \alpha_i = 1 \), and \( \sum_{i=1}^{m} \alpha_i \mu_i = 0 \). We exclude the case where \( F_1 \) is actually Gaussian.
Distribution $F_2$. Under $F_2$, the RV $\xi$ takes on a finite number of values $z_1 < z_2 \ldots < z_m$ with probabilities $p_1, p_2, \ldots, p_m$, respectively, such that $\sum_{i=1}^{m} p_i z_i = 0$.

The following two facts are proved in [5].

**Fact 1.** We have

$$I_{F_1}(r) = \frac{K + o(1)}{(\rho^2 r + 1)^2}, \quad r > 0$$

(5.15)

for some $K > 0$;

**Fact 2.** We also have

$$I_{F_2}(r) = \frac{1 + o(1)}{r}, \quad r > 0.$$ 

(5.16)

We now can prove the following results.

**Proposition 7.** If $h \neq 0$, $|\bar{a}| = 1$ and $\bar{c} = 0$, then $\lim_{t} \epsilon_t = 0$ for any distribution $F$ in $\mathcal{E}_1$, with $\lim_{t} \frac{1}{t} \log \epsilon_t \leq 0$. This convergence takes place at a rate which depends non-trivially upon $F$ for non-Gaussian $F$.

**Proof.** Under the stated hypothesis, we have $p_t = 0$, $(q_t^*)^2 = 1$, $r_t^* = \frac{h^2}{\sigma^2} t$ and $\epsilon_t = I_{F_t}(t) = \frac{h^2}{\sigma^2} t$ for all $t = 0, 1, \ldots$ and all $F$ in $\mathcal{D}_1$, the extension to $\mathcal{E}_1$ being as before. The conclusions $\lim_{t} \epsilon_t = 0$ and $\lim_{t} \frac{1}{t} \log \epsilon_t \leq 0$ are immediate consequences of Proposition 6. However, direct calculations show that if $F = F_1$, then $\lim_{t} t^2 \epsilon_t = \frac{K}{\rho^2}$, whereas if $F = F_2$, then $\lim_{t} t \epsilon_t = 1$ (so that $\lim_{t} \frac{1}{t} \log \epsilon_t = 0$ in both cases.)

And finally, we have

**Proposition 8.** If $h \neq 0$, $|\bar{a}| > 1$ and $\bar{c} = 0$, then $\lim_{t} \epsilon_t < \infty$ for all distributions $F$ in $\mathcal{E}_1$, the asymptotic behavior depending non-trivially upon $F$ for non-Gaussian $F$.

**Proof.** Under the stated hypotheses on $(a, h, \Gamma)$, $p_t = 0$, $(q_t^*)^2 = \bar{a}^{2t}$, $r_t^* = \frac{h^2}{\sigma^2} \frac{\bar{a}^{2t} - 1}{\bar{a}^2 - 1}$ for all $t = 0, 1, \ldots$. Thus $\lim_{t} r_t^* = \infty$ with $\lim_{t} (q_t^*)^2 / r_t^* = \sigma^2 (\bar{a}^2 - 1) / h^2$ and we are led to write

$$\epsilon_t = \frac{(q_t^*)^2}{r_t^*} (r_t^* I_{F_t}(r_t^*)) \leq 4 \frac{\sigma^2}{h^2} (\bar{a}^2 - 1) \cdot \frac{\bar{a}^{2t}}{\bar{a}^{2t} - 1}, \quad t = 1, 2, \ldots$$

(5.17)

where the inequality follows from Proposition 6. We now see that $\lim_{t} \epsilon_t < \infty$ for all $F$ in $\mathcal{D}_1$, and thus for all distributions $F$ in $\mathcal{E}_1$. However, if $F = F_1$, then $\lim_{t} \epsilon_t = 0$, whereas if $F = F_2$, then $\lim_{t} \epsilon_t = 1$.□
We conclude with the following remark which is also valid in the multivariable case and which complements some of the results obtained so far: We readily see by an argument similar to the one leading to (5.12) that

\[\epsilon_t \leq 4E[|X_t^\circ - \hat{X}_t^K|^2] = 4p_t^\delta \quad t = 1, 2, \ldots \]  

(5.18)

where the error variances \(\{p_t^\delta, \ t = 0, 1, \ldots\}\) are generated through the recursion (5.2) with initial condition \(p_0^\delta = \delta\). The sequence \(\{p_t^\delta, \ t = 0, 1, \ldots\}\) is either monotone non-decreasing or monotone non-increasing, thus convergent, with limit point \(p_\infty^\delta\). Therefore, whenever \(p_\infty^\delta < \infty\), we conclude by inspection that

\[\epsilon_t \leq 4 \max\{\delta, p_\infty^\delta\} \quad t = 1, 2, \ldots \]  

(5.19)

In particular, under the conditions of Proposition 8, i.e., \(h \neq 0\), \(|\bar{a}| > 1\) and \(\bar{c} = 0\), we have (5.19) with \(p_\infty^\delta = \frac{h^2}{\sigma^2(\bar{a}^2 - 1)}\) (a fact in agreement with the conclusion of Proposition 8).

As all possible combinations of \(\bar{a}, \bar{c}\) and \(h\) have now been considered, a careful review of our analysis suggests the following classification: For any matrices \(\bar{A}\) and \(\bar{C}\) in \(\mathcal{M}_n\), the pair \((\bar{A}, \bar{C})\) is said to be marginally stabilizable if all modes which are neither stable nor critically stable, are in the controllable subspace. Equipped with this notion, we can now rewrite the results of this section in terms which are also meaningful for the multivariable case. As such, this formulation provides a useful starting point for investigating the asymptotics in the non-scalar case.

**Theorem 7.** We have the following convergence results:

1a. If the pair \((\bar{a}, \bar{c})\) is marginally stabilizable, \(\lim_t \epsilon_t = 0\) for any distribution \(F\) in \(\mathcal{E}_1\);

1b. If the pair \((\bar{a}, \bar{c})\) is not marginally stabilizable, then the asymptotic behavior of \(\epsilon_t\) depends non-trivially upon \(F\) in \(\mathcal{E}_1\).

Moreover we also have the following estimates:

2a. If \((\bar{a}, \bar{c})\) is stabilizable, then \(\lim_t \epsilon_t = 0\) at an exponential rate independent of \(F\) for non-Gaussian \(F\) in \(\mathcal{E}_1\);

2b. If \((\bar{a}, \bar{c})\) is marginally stabilizable but not stabilizable, then the rate depends non-trivially upon \(F\).

**ACKNOWLEDGEMENT**

The authors thank the referee for pointing out an embarrassing mistake in an earlier version of this paper and for making suggestions that led to an improved presentation.
REFERENCES


