1. **15 points** This is a question about the Markov property. Define sets

\[A \overset{\text{def}}{=} \{ X_3 = k_3 \}, \quad B \overset{\text{def}}{=} \{ X_2 = k_2 \}, \quad \text{and} \quad C \overset{\text{def}}{=} \{ X_1 = k_1 \}. \]

We have two ways of understanding the Markov property. Define

a) \(\mathbb{P}(A | B \cap C) = \mathbb{P}(A | B) \)

b) \(\mathbb{P}(A \cap C | B) = \mathbb{P}(A | B) \mathbb{P}(C | B) \).

The direct definition involves the requirement a). We also have a conditional independence claim; i.e., b). We here show that these two ideas are equivalent. Namely, for any sets \(A, B, \) and \(C \) on any probability space (removing ourselves from the setup of Markov processes), show that a) and b) are equivalent.

2. **30 points** Consider the Gambler's ruin problem with \(p_{n,n+1} = p \) for \(n \geq 0 \) and \(p_{n,n-1} = q = 1 - p \) for \(n \geq 1 \). Let \(H = H^{(0)} \). Assume that \(q > p \) so that \(\mathbb{P}_n \{ H < \infty \} = 1 \).

(a) **15 points** Compute \(\mathbb{E}_n[H] \) for all \(n \geq 0 \).

(b) **15 points** Using the Laplace transform for the law of \(H \) under \(\mathbb{P}_1 \), compute \(\mathbb{E}_1[H^2] \).

3. **15 points** Define \(\tau \overset{\text{def}}{=} \inf \{ n \geq 1 : X_n = X_0 \} \). This is the *first return time*. Suppose that \(X \) is a Markov chain with transition matrix

\[
P = \begin{pmatrix}
\frac{1}{6} & \frac{2}{6} & \frac{3}{6} \\
\frac{3}{6} & \frac{1}{6} & \frac{2}{6} \\
\frac{2}{6} & \frac{2}{6} & \frac{2}{6}
\end{pmatrix}.
\]

Compute \(\mathbb{E}_1[\tau] \).

4. **15 points** Let \(\tau \) be a stopping time and let \(A \) be a fixed subset of the state space. Define \(\tau' \overset{\text{def}}{=} \inf \{ n \geq \tau : X_n \in A \} \). Show that \(\tau' \) is a stopping time.