CONTRACTION PRINCIPLE

Proposition 0.1. Suppose that \(\{X^\varepsilon; \varepsilon > 0\} \) is a collection of random variables defined on some probability space \((\Omega, \mathcal{F}, P) \) and taking values in some Polish space \(E \). Suppose furthermore that \(\{X^\varepsilon; \varepsilon > 0\} \) has a large deviations principle with rate function \(I \). Suppose that \(E' \) is a second Polish space and suppose that \(\psi \) is a continuous map from \(E \) to \(E' \). Define the \(E' \)-valued random variables \(Y^\varepsilon \overset{\text{def}}{=} \psi(X^\varepsilon) \) for all \(\varepsilon > 0 \). Then \(\{Y^\varepsilon; \varepsilon > 0\} \) has a large deviations principle with rate function

\[
I'(y) \overset{\text{def}}{=} \inf \{I(x) : \psi(x) = y\}.
\]

Proof. We break the calculation up into three steps.

Upper Bound. Fix a closed subset \(F \) of \(E' \). Then

\[
\lim_{\varepsilon \to 0} \varepsilon \ln P\{Y^\varepsilon \in F\} = \lim_{\varepsilon \to 0} \varepsilon \ln P\{X^\varepsilon \in \psi^{-1}(F)\} \leq - \inf \{I(x) : x \in \psi^{-1}(F)\} = - \inf \{I'(y) : y \in F\}.
\]

Lower Bound. Fix an open subset \(G \) of \(E' \). Then

\[
\lim_{\varepsilon \to 0} \varepsilon \ln P\{Y^\varepsilon \in G\} = \lim_{\varepsilon \to 0} \varepsilon \ln P\{X^\varepsilon \in \psi^{-1}(G)\} \geq - \inf \{I(x) : x \in \psi^{-1}(G)\} = - \inf \{I'(y) : y \in G\}.
\]

Compactness. Since \(\psi \) is continuous, it suffices to show that for any \(s \geq 0 \),

\[
\Phi'(s) \overset{\text{def}}{=} \{y \in E' : I'(y) \leq s\} = \psi(\Phi(s)).
\]

First, we show that \(\psi(\Phi(s)) \subset \Phi'(s) \). If \(x \in \Phi(s) \), then \(I(x) \leq s \), so if we define \(y \overset{\text{def}}{=} \psi(x) \), we see that \(x \in \{x' \in E : \psi(x') = y\} \), so \(I'(y) \leq I(x) \leq s \), so indeed \(\psi(\Phi(s)) \subset \Phi'(s) \).

Next, we show that \(\Phi'(s) \subset \psi(\Phi(s)) \). Fix \(y \in \Phi'(s) \). Thus, for each \(n \in \mathbb{N} \), there is an \(x_n \in E \), such that \(\psi(x_n) = y \) and

\[
I(x_n) \leq I'(y) + \frac{1}{n} \leq s + \frac{1}{n}.
\]

Since \(\Phi(s + 1) \) is compact, there is a convergent subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) with limit point \(x^* \). By continuity, \(\psi(x^*) = \lim_{k} \psi(x_{n_k}) = y \). Fixing any \(\delta > 0 \), we see that for \(k \) large enough that \(n_k \geq 1/\delta \), \(x_{n_k} \in \Phi(s + 1/n_k) \subset \Phi(s + \delta) \). Since \(\Phi(s + \delta) \) is closed, we thus have that \(x^* \in \Phi(s + \delta) \); i.e., \(I(x^*) \leq s + \delta \). Thus in fact, \(I(x^*) \leq s \). Hence \(\psi(x^*) = y \) and \(x^* \in \Phi(s) \), so \(y \in \psi(\Phi(s)) \). \(\Box \)