Chapter 2

Integral Extensions

2.1 Integral Elements

2.1.1 Definitions and Comments

Let R be a subring of the ring S, and let a € S. We say that « is integral over R if «
is a root of a monic polynomial with coefficients in R. If R is a field and S an extension
field of R, then « is integral over R iff « is algebraic over R, so we are generalizing a
familiar notion. If « is a complex number that is integral over Z, then « is said to be an
algebraic integer For example, if d is any integer, then v/d is an algebraic integer, because
it is a root of #? — d. Notice that 2/3 is a root of the polynomial f(z) = 3z — 2, but f
is not monic, so we cannot conclude that 2/3 is an algebraic integer. In a first course in
algebraic number theory, one proves that a rational number that is an algebraic integer
must belong to Z, so 2/3 is not an algebraic integer.

There are several conditions equivalent to integrality of o over R, and a key step is
the following result, sometimes called the determinant trick.

2.1.2 Lemma

Let R, S and « be as above, and recall that a module is faithful if its annihilator is 0. Let
M Dbe a finitely generated R-module that is faithful as an R[a]-module. Let I be an ideal
of R such that oM C IM. Then « is a root of a monic polynomial with coefficients in I.

Proof. let x1,...,x, generate M over R. Then ax; € IM, so we may write az; =
Z?Zl cijx; with ¢;; € I. Thus

(5ij0é — cij):cj = 0, 1 S ) S n.
1

n

J

In matrix form, we have Az = 0, where A is a matrix with entries a — ¢;; on the main
diagonal, and —c;; elsewhere. Multiplying on the left by the adjoint matrix, we get
Az; = 0 for all 4, where A is the determinant of A. But then A annihilates all of M, so
A = 0. Expanding the determinant yields the desired monic polynomial. &
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2.1.3 Remark

If aM C IM, then in particular, a stabilizes M, in other words, aM C M.

2.1.4 Theorem

Let R be a subring of S, with a € S. The following conditions are equivalent:
(1) « is integral over R;

(2) R[q] is a finitely generated R-module;

(3) R[q] is contained in a subring R’ of S that is a finitely generated R-module;
(4) There is a faithful R[a)-module M that is finitely generated as an R-module.

Proof.
(1) implies (2): If « is a root of a monic polynomial over R of degree n, then o™ and all
higher powers of a can be expressed as linear combinations of lower powers of «. Thus

L,a,a?,... o™t generate R[a] over R.

(2) implies (3): Take R’ = R[a].
(3) implies (4): Take M = R'. If y € R[] and yM = 0, then y = y1 = 0.
(4) implies (1): Apply (2.1.2) with I = R. &

We are going to prove a transitivity property for integral extensions, and the following
result will be helpful.

2.1.5 Lemma

Let R be a subring of S, with aq,...,a, € S. If a; is integral over R, as is integral
over Rlay],..., and «, is integral over R[ay, ... ,a,—1], then Rlaq,... ,ay,] is a finitely
generated R-module.

Proof. The n = 1 case follows from (2.1.4), part (2). Going from n — 1 to n amounts
to proving that if A, B and C are rings, with C' a finitely generated B-module and B a

finitely generated A-module, then C is a finitely generated A-module. This follows by a
brief computation:

C = ZByJ,B ZAxk, so C' = ZZijxk

j=1k=1

2.1.6 Transitivity of Integral Extensions

Let A, B and C be subrings of R. If C is integral over B, that is, every element of C' is
integral over B, and B is integral over A, then C' is integral over A.

Proof. Let x € C, with 2" + by_12" ' 4+ -+ + bz + bg = 0. Then z is integral over
Albg,... ,bp_1]. Each b; is integral over A, hence over Albg,...,b;—1]. By (2.1.5),

Albg, ... ,bp_1,2] is a finitely generated A-module. By (2.1.4), part (3), = is integral
over A. &
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2.1.7 Definitions and Comments

If R is a subring of S, the integral closure of R in S is the set R, of elements of S that
are integral over R. Note that R C R, because each a € R is a root of x —a. We say that
R is integrally closed in S if R, = R. If we simply say that R is integrally closed without
reference to S, we assume that R is an integral domain with fraction field K, and R is
integrally closed in K.

If the elements x and y of S are integral over R, then just as in the proof of (2.1.6), it
follows from (2.1.5) that R[x,y] is a finitely generated R-module. Since = + y,z — y and
2y belong to this module, they are integral over R by (2.1.4), part (3). The important
conclusion is that

R, is a subring of S containing R.

If we take the integral closure of the integral closure, we get nothing new.

2.1.8 Proposition

The integral closure R, of R in S is integrally closed in S.

Proof. By definition, R. C (R;).. Thus let 2 € (R.)., so that x is integral over R.. Asin
the proof of (2.1.6), x is integral over R. Thus x € R.. &

We can identify a large class of integrally closed rings.

2.1.9 Proposition

If Ris a UFD, then R is integrally closed.

Proof. Let x belong to the fraction field K of R. Write = a/b where a,b € R and a and
b are relatively prime. If z is integral over R, there is an equation of the form

(a/b)™ + an—1(a/b)" ' + -+ ai(a/b) + ag = 0

with a; € R. Multiplying by 6", we have a™ 4+ bc = 0, with ¢ € R. Thus b divides a",
which cannot happen for relatively prime a and b unless b has no prime factors at all, in
other words, b is a unit. But then z =ab™' € R. &

A domain that is an integral extension of a field must be a field, as the next result
shows.

2.1.10 Proposition

Let R be a subring of the integral domain S, with S integral over R. Then R is a field if
and only if S is a field.

Proof. Assume that S is a field, and let a be a nonzero element of R. Since a~! € S,
there is an equation of the form

(@) +enal@)" 4 faa 4o =0
with ¢; € R. Multiply the equation by a"~! to get

at=—(ch1+--F+ecra" 4 cpa" ) € R
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Now assume that R is a field, and let b be a nonzero element of S. By (2.1.4) part (2),
RJ[b] is a finite-dimensional vector space over R. Let f be the R-linear transformation on
this vector space given by multiplication by b, in other words, f(z) = bz, z € R[b]. Since
RJ[b] is a subring of S, it is an integral domain. Thus if bz = 0 (with b # 0 by choice of b),
we have z = 0 and f is injective. But any linear transformation on a finite-dimensional
vector space is injective iff it is surjective. Therefore if b € S and b # 0, there is an
element ¢ € R[b] C S such that be = 1. Consequently, S is a field. &

2.1.11 Preview

Let S be integral over the subring R. We will analyze in great detail the relation between
prime ideals of R and those of S. Suppose that () is a prime ideal of S, and let P = QN R.
(We say that @ lies over P.) Then P is a prime ideal of R, because it is the preimage
of @ under the inclusion map from R into S. The map a + P — a + @ is a well-defined
injection of R/P into S/Q, because P = Q N R. Thus we can regard R/P as a subring of
S/Q. Moreover, S/Q is integral over R/P. To see this, let b+ Q € S/Q. Then b satisfies
an equation of the form

2" ap_ 12" far+ag=0

with a; € R. But b+ @ satisfies the same equation with a,; replaced by a; + P for all i,
proving integrality of S/Q over R/P. We can now invoke (2.1.10) to prove the following
result.

2.1.12 Proposition

Let S be integral over the subring R, and let () be a prime ideal of S, lying over the prime
ideal P = QN R of R. Then P is a maximal ideal of R if and only if ) is a maximal ideal
of S.

Proof. By (2.1.10), R/P is a field iff $/Q is a field. &

2.1.13 Remarks

Some results discussed in (2.1.11) work for arbitrary ideals, not necessarily prime. If R
is a subring of S and J is an ideal of S, then I = J N R is an ideal of R. As in (2.1.11),
R/I can be regarded as a subring of S/J, and if S is integral over R, then S/J is integral
over R/I. Similarly, if S is integral over R and T is a multiplicative subset of R, then
St is integral over Rr. To prove this, let o/t € Sy, with o € S;t € T. Then there is an
equation of the form a™ + ¢,_1a™ ' + -+ cia + ¢ = 0, with ¢; € R. Thus

" Cn—1,,00 p_ c1 o  Co
) ()T e (

(

(67
t t"*l)t tn

with Cn_j/tj € Rr.
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2.2 Integrality and Localization

Results that hold for maximal ideals can sometimes be extended to prime ideals by the
technique of localization. A good illustration follows.

2.2.1 Proposition

Let S be integral over the subring R, and let P; and P, be prime ideals of S that lie over
the prime ideal P of R, that is, P NR=P,NR=P. If P, C P, then P, = P5.

Proof. If P is maximal, then by (2.1.12), so are P, and P, and the result follows. In the
general case, we localize with respect to P. Let T'= R\ P, a multiplicative subset of R C S.
The prime ideals P; ,i = 1,2, do not meet T', because if x € TN P;, then z € RN P; = P,
contradicting the definition of T'. By the basic correspondence between prime ideals in a
ring and prime ideals in its localization, it suffices to show that P; St = P>St. We claim
that

PRy C (PlST) N Ry C Ry.

The first inclusion holds because P C P; and R C S7. The second inclusion is proper,
for otherwise Ry C P;St and therefore 1 € P;St, contradicting the fact that P, St is a
prime ideal.

But PRy is a maximal ideal of Ry, so by the above claim,

(P15T) N Ry = PRy, and similarly (PQST) N Ry = PRr.

Thus P; St and P,St lie over PRy. By (2.1.13), St is integral over Rr. As at the
beginning of the proof, P; St and P> St are maximal by (2.1.12), hence P1.St = P,St. &

If S/R is an integral extension, then prime ideals of R can be lifted to prime ideals of
S, as the next result demonstrates. Theorem 2.2.2 is also a good example of localization
technique.

2.2.2 Lying Over Theorem

If S is integral over R and P is a prime ideal of R, there is a prime ideal @) of .S such that
QNR=P.

Proof. First assume that R is a local ring with unique maximal ideal P. If @ is any
maximal ideal of S, then @ N R is maximal by (2.1.12), so @ N R must be P. In general,
let T be the multiplicative set R\ P. We have the following commutative diagram.

R —— S
/| |
Ry —— St

The horizontal maps are inclusions, and the vertical maps are canonical (f(r) = r/1 and
g(s) = s/1). Recall that St is integral over Ry by (2.1.13). If @’ is any maximal ideal
of St, then as at the beginning of the proof, Q' N R must be the unique maximal ideal
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of Ry, namely PRy. By commutativity of the diagram, f~3(Q' N Rr) = ¢~ Q") N R.
(Note that if r € R, then f(r) € Q' N Ry iff g(r) € Q'.) If Q = ¢g~1(Q’'), we have
f~Y(PR7) = QNR. By the basic localization correspondence [cf.(2.2.1)], f~}(PRr) = P,
and the result follows. &

2.2.3 Going Up Theorem

Let S be integral over R, and suppose we have a chain of prime ideals P, C --- C P,
of R, and a chain of prime ideals ;7 C --- C @,, of S, where m < n. If Q; lies
over P; for ¢ = 1,...,m, then there are prime ideals Q,,+1,...,Qy, of S such that
Qm CQmy1 C--- CQ, and Q; lies over P; for every i = 1,... ,n.

Proof. By induction, it suffices to consider the case n = 2,m = 1. Thus assume P; C P,
and @1 N R = P;. By (2.1.11), S/Q1 is integral over R/P;. Since P,/ P; is a prime ideal
of R/ Py, we may apply the lying over theorem (2.2.2) to produce a prime ideal Q2/@Q of
S/Q1 such that

(Q2/Q1)NR/Py = P/ Py,

where @5 is a prime ideal of S and @1 C Q2. We claim that Q2 N R = P», which gives the
desired extension of the @-chain. To verify this, let 22 € Q2 N R. By (2.1.11), we have
an embedding of R/P1 into S/Qh S0 x9 + P = x9 + Ql € (QQ/Ql) n R/Pl = PQ/Pl.
Thus zo + P, = yo + P, for some ys € Py, so x5 — ys € P C P,. Consequently, zo € Ps.
Conversely, if zo € P» then zo + P; € Q2/Q1, hence x5+ Py = y3 + Q1 for some ys € Qo.
But as above, x5 + Py = x2 + Q1, s0 x5 — y2 € Q1, and therefore x5 € Q2. &

It is a standard result of field theory that an embedding of a field F' in an algebraically
closed field can be extended to an algebraic extension of F'. There is an analogous result
for ring extensions.

2.2.4 Theorem

Let S be integral over R, and let f be a ring homomorphism from R into an algebraically
closed field C. Then f can be extended to a ring homomorphism g : S — C.

Proof. Let P be the kernel of f. Since f maps into a field, P is a prime ideal of R. By
(2.2.2), there is a prime ideal @ of S such that Q@ N R = P. By the factor theorem, f
induces an injective ring homomorphism f : R/P — C, which extends in the natural way
to the fraction field K of R/P. Let L be the fraction field of S/Q. By (2.1.11), S/Q is
integral over R/ P, hence L is an algebraic extension of K. Since C is algebraically closed,
f extends to a monomorphism g : L — C. If p: S — S/Q is the canonical epimorphism
and g = g o p, then g is the desired extension of f, because g extends f and fop|r = f.
&

In the next section, we will prove the companion result to (2.2.3), the going down
theorem. There will be extra hypotheses, including the assumption that R is integrally
closed. So it will be useful to get some practice with the idea of integral closure.
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2.2.5 Lemma
Let R be a subring of S, and denote by R the integral closure of R in S. If T is a

multiplicative subset of R, then (R)r is the integral closure of Ry in Sy.

Proof. Since R is integral over R, it follows from (2.1.13) that (R)y is integral over Ryp.
If o/t € Sy (o € S,¢t € T) and «/t is integral over Ry, we must show that o/t € (R)r.
There is an equation of the form

., ap, o, 1 Qnp

bl 2y 2 e Ly

G+ (Gt 2
with a@; € R and ¢;,t € T. Let to = []_, t;, and multiply the equation by (tto)™ to
conclude that oo is integral over R. Therefore toa € R, so o/t = toa/tot € (R)r. &

2.2.6 Corollary

If T is a multiplicative subset of the integrally closed domain R, then Ry is integrally
closed.

Proof. Apply (2.2.5) with R = R and S = K, the fraction field of R (and of Rz). Then
Ry is the integral closure of Ry in S7. But St = K, so Ry is integrally closed. &

Additional results on localization and integral closure will be developed in the exercises.
The following result will be useful. (The same result was proved in (1.5.1), but a slightly
different proof is given here.)

2.2.7 Proposition

The following conditions are equivalent, for an arbitrary R-module M.
(1) M =0;

(2) Mp =0 for all prime ideals P of R;

(3) Mp =0 for all maximal ideals P of R.

Proof. It is immediate that (1) = (2) = (3). To prove that (3) = (1), let m € M. If P is
a maximal ideal of R, then m/1 is 0 in Mp, so there exists rp € R\ P such that rpm =0
in M. Let I(m) be the ideal generated by the rp. Then I(m) cannot be contained in
any maximal ideal M, because s ¢ M by construction. Thus I(m) must be R, and
in particular, 1 € I(m). Thus 1 can be written as a finite sum ), aprp where P is a
maximal ideal of R and ap € R. Consequently,

mzlm:ZGPTmeO. &
P

2.3 Going Down

We will prove a companion result to the going up theorem (2.2.3), but additional hy-
potheses will be needed and the analysis is more complicated.



8 CHAPTER 2. INTEGRAL EXTENSIONS

2.3.1 Lemma

Let S be integral over the subring R, with I an ideal of R. Then /IS is the set of all
s € S satisfying an equation of integral dependence s™ + 7,,_18™ ' + - 4 ris+19 =0
with the r; € 1.

Proof. If s satisfies such an equation, then s™ € IS, so s € v/ IS. Conversely, let s €
IS, n > 1, so that s™ = Zle r;8; for some r; € I and s; € S. Then S; = R][s1,... , Sk
is a subring of S, and is also a finitely generated R-module by (2.1.5). Now

k

k
5"51 = Z’I‘,‘Sisl g ZriSl Q ISl.

i=1 =1

Moreover, S; is a faithful R[s"]-module, because an element that annihilates Sy annihilates
1 and is therefore 0. By (2.1.2), s™, hence s, satisfies an equation of integral dependence
with coefficients in I. &

2.3.2 Lemma

Let R be an integral domain with fraction field K, and assume that R is integrally closed.
Let f and g be monic polynomials in K[z]. If fg € R[z], then both f and g are in R[z].
Proof. In a splitting field containing K, we have f(z) = [[;(z—a;) and g(z) = [];(z—b;).
Since the a; and b; are roots of the monic polynomial fg € R[z], they are integral over R.
The coefficients of f and g are in K and are symmetric polynomials in the roots, hence
are integral over R as well. But R is integrally closed, and the result follows. &

2.3.3 Proposition

Let S be integral over the subring R, where R is an integrally closed domain. Assume
that no nonzero element of R is a zero-divisor of S. (This is automatic if S itself is an
integral domain.) If s € S, define a homomorphism hy : R[x] — S by hs(f) = f(s); thus
hs is just evaluation at s. Then the kernel I of h, is a principal ideal generated by a
monic polynomial.

Proof. If K is the fraction field of R, then I K[z] is an ideal of the PID K[z], and IK[z] # 0
because s is integral over R. (If this is unclear, see the argument in Step 1 below.) Thus
IK[x] is generated by a monic polynomial f.

Step 1: f € R|x].

By hypothesis, s is integral over R, so there is a monic polynomial h € R[x| such that
h(s) = 0. Then h € I C IK[z], hence h is a multiple of f, say h = fg, with g monic in
K|[z]. Since R is integrally closed, we may invoke (2.3.2) to conclude that f and g belong
to R[z].

Step 2: fel.

Since f € IK|z], we may clear denominators to produce a nonzero element r € R such
that rf € IR[z] = I. By definition of I we have rf(s) = 0, and by hypothesis, r is not a
zero-divisor of S. Therefore f(s) =0, so f € I.

Step 3: f generates I.

Let ¢ € I C IK[z]. Since f generates IK[z], we can take a common denominator and



2.3. GOING DOWN 9

write ¢ = ¢1f/r1 with 0 # r1 € R and ¢1 € R[z]. Thus r1q = ¢1f, and if we pass to
residue classes in the polynomial ring (R/Rr)[z], we have g1 f = 0. Since f is monic, the
leading coefficient of g must be 0, which means that g7 itself must be 0. Consequently,
r1 divides every coefficient of 1, so ¢1/r1 € R[z]. Thus f divides ¢ in R[z]. &

2.3.4 Going Down Theorem

Let the integral domain S be integral over the integrally closed domain R. Suppose we
have a chain of prime ideals P, C --- C P, of R and a chain of prime ideals @,, C --- C Q,
of S, with 1 < m < n. If Q; lies over P; for i = m,... ,n, then there are prime ideals
Q1,-..,Qm—1 such that @, C --- C Q,, and Q; lies over P; for every i =1,... ,n.

Proof. By induction, it suffices to consider n = m = 2. Let T be the subset of S consisting
of all products rt, r € R\ P, t € S\ Q2. In checking that T is a multiplicative set,
we must make sure that it does not contain 0. If ¢ = 0 for some r ¢ P; (hence r # 0)
and t ¢ @2, then the hypothesis that r is not a zero-divisor of S gives t = 0, which is a
contradiction (because 0 € Q2). Note that R\ P, C T (take t = 1), and S\ Q2 C T (take
r=1).

First we prove the theorem under the assumption that TN P;S = . Now P, St is
a proper ideal of S, else 1 would belong to T'N P;S. Therefore P;St is contained in a
maximal ideal M. By basic localization theory, M corresponds to a prime ideal @1 of S
that is disjoint from T'. Explicitly, s € @ iff s/1 € M. We refer to Q1 as the contraction
of M to S; it is the preimage of M under the canonical map s — s/1. With the aid of
the note at the end of the last paragraph, we have (R\ P1)NQ1 = (S\ Q2) NQ1 = 0.
Thus Q1N R C Py and Q1 = Q1 NS C Q. We must show that P; C Q1 N R. We do this
by taking the contraction of both sides of the inclusion P; ST C M. Since the contraction
of PySt to Sis P1.S, we have P;S C Q1,50 P; C (P1S)NR C Q1N R, as desired.

Finally, we show that T'N Py S is empty. If not, then by definition of T, T'N P;.S
contains an element rt with r € R\ P, and ¢t € S\ Q2. We apply (2.3.1), with I = P; and
s replaced by rt, to produce a monic polynomial f(z) = 2™ + 7, 12™ L+ +riz+ 170
with coefficients in P; such that f(rt) = 0. Define

v(x) = ™™+ rp ™ 2™ e 4.

Then v(z) € R[z] and v(t) = 0. By (2.3.3), there is a monic polynomial g € R[z] that
generates the kernel of the evaluation map h; : R[z] — S. Therefore v = ug for some
u € R[z]. Passing to residue classes in the polynomial ring (R/P;)[z], we have T =T §.
Since r; € Py for all i = 0,...,m — 1, we have T = 7"z™. Since R/P; is an integral
domain and g, hence g, is monic, we must have g = 27 for some j with 0 < j < m. (Note
that r» ¢ Pj, so U is not the zero polynomial.) Consequently,

g(e) =2’ +a; 1277 + -+ arx +ag

with a; € P1,i =0,...,5— 1. But g € kerh, so g(¢t) = 0. By (2.3.1), t belongs to the
radical of P;S, so for some positive integer I, we have t' € P1S C P»S C Q25 = Q2, s0
t € Q2. This contradicts our choice of ¢ (recall that t € S\ Q2). &



