Chapter 2 # **Integral Extensions** ## 2.1 Integral Elements #### 2.1.1 Definitions and Comments Let R be a subring of the ring S, and let $\alpha \in S$. We say that α is integral over R if α is a root of a monic polynomial with coefficients in R. If R is a field and S an extension field of R, then α is integral over R iff α is algebraic over R, so we are generalizing a familiar notion. If α is a complex number that is integral over \mathbb{Z} , then α is said to be an algebraic integer For example, if d is any integer, then \sqrt{d} is an algebraic integer, because it is a root of $x^2 - d$. Notice that 2/3 is a root of the polynomial f(x) = 3x - 2, but f is not monic, so we cannot conclude that 2/3 is an algebraic integer. In a first course in algebraic number theory, one proves that a rational number that is an algebraic integer must belong to \mathbb{Z} , so 2/3 is not an algebraic integer. There are several conditions equivalent to integrality of α over R, and a key step is the following result, sometimes called the *determinant trick*. #### 2.1.2 Lemma Let R, S and α be as above, and recall that a module is faithful if its annihilator is 0. Let M be a finitely generated R-module that is faithful as an $R[\alpha]$ -module. Let I be an ideal of R such that $\alpha M \subseteq IM$. Then α is a root of a monic polynomial with coefficients in I. Proof. let x_1, \ldots, x_n generate M over R. Then $\alpha x_i \in IM$, so we may write $\alpha x_i = \sum_{j=1}^n c_{ij} x_j$ with $c_{ij} \in I$. Thus $$\sum_{j=1}^{n} (\delta_{ij}\alpha - c_{ij})x_j = 0, \ 1 \le i \le n.$$ In matrix form, we have Ax = 0, where A is a matrix with entries $\alpha - c_{ii}$ on the main diagonal, and $-c_{ij}$ elsewhere. Multiplying on the left by the adjoint matrix, we get $\Delta x_i = 0$ for all i, where Δ is the determinant of A. But then Δ annihilates all of M, so $\Delta = 0$. Expanding the determinant yields the desired monic polynomial. \clubsuit #### 2.1.3 Remark If $\alpha M \subseteq IM$, then in particular, α stabilizes M, in other words, $\alpha M \subseteq M$. #### 2.1.4 Theorem Let R be a subring of S, with $\alpha \in S$. The following conditions are equivalent: - (1) α is integral over R; - (2) $R[\alpha]$ is a finitely generated R-module; - (3) $R[\alpha]$ is contained in a subring R' of S that is a finitely generated R-module; - (4) There is a faithful $R[\alpha]$ -module M that is finitely generated as an R-module. #### Proof. - (1) implies (2): If α is a root of a monic polynomial over R of degree n, then α^n and all higher powers of α can be expressed as linear combinations of lower powers of α . Thus $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ generate $R[\alpha]$ over R. - (2) implies (3): Take $R' = R[\alpha]$. - (3) implies (4): Take M = R'. If $y \in R[\alpha]$ and yM = 0, then y = y1 = 0. - (4) implies (1): Apply (2.1.2) with I = R. We are going to prove a transitivity property for integral extensions, and the following result will be helpful. #### 2.1.5 Lemma Let R be a subring of S, with $\alpha_1, \ldots, \alpha_n \in S$. If α_1 is integral over R, α_2 is integral over $R[\alpha_1], \ldots$, and α_n is integral over $R[\alpha_1, \ldots, \alpha_{n-1}]$, then $R[\alpha_1, \ldots, \alpha_n]$ is a finitely generated R-module. *Proof.* The n=1 case follows from (2.1.4), part (2). Going from n-1 to n amounts to proving that if A, B and C are rings, with C a finitely generated B-module and B a finitely generated A-module, then C is a finitely generated A-module. This follows by a brief computation: $$C = \sum_{j=1}^{r} By_j, \ B = \sum_{k=1}^{s} Ax_k, \text{ so } C = \sum_{j=1}^{r} \sum_{k=1}^{s} Ay_j x_k.$$ ## 2.1.6 Transitivity of Integral Extensions Let A, B and C be subrings of R. If C is integral over B, that is, every element of C is integral over B, and B is integral over A, then C is integral over A. *Proof.* Let $x \in C$, with $x^n + b_{n-1}x^{n-1} + \cdots + b_1x + b_0 = 0$. Then x is integral over $A[b_0, \ldots, b_{n-1}]$. Each b_i is integral over A, hence over $A[b_0, \ldots, b_{i-1}]$. By (2.1.5), $A[b_0, \ldots, b_{n-1}, x]$ is a finitely generated A-module. By (2.1.4), part (3), x is integral over A. #### 2.1.7 Definitions and Comments If R is a subring of S, the *integral closure* of R in S is the set R_c of elements of S that are integral over R. Note that $R \subseteq R_c$ because each $a \in R$ is a root of x - a. We say that R is *integrally closed* in S if $R_c = R$. If we simply say that R is *integrally closed* without reference to S, we assume that R is an integral domain with fraction field K, and R is integrally closed in K. If the elements x and y of S are integral over R, then just as in the proof of (2.1.6), it follows from (2.1.5) that R[x, y] is a finitely generated R-module. Since x + y, x - y and xy belong to this module, they are integral over R by (2.1.4), part (3). The important conclusion is that $$R_c$$ is a subring of S containing R. If we take the integral closure of the integral closure, we get nothing new. ## 2.1.8 Proposition The integral closure R_c of R in S is integrally closed in S. *Proof.* By definition, $R_c \subseteq (R_c)_c$. Thus let $x \in (R_c)_c$, so that x is integral over R_c . As in the proof of (2.1.6), x is integral over R. Thus $x \in R_c$. We can identify a large class of integrally closed rings. ## 2.1.9 Proposition If R is a UFD, then R is integrally closed. *Proof.* Let x belong to the fraction field K of R. Write x = a/b where $a, b \in R$ and a and b are relatively prime. If x is integral over R, there is an equation of the form $$(a/b)^n + a_{n-1}(a/b)^{n-1} + \dots + a_1(a/b) + a_0 = 0$$ with $a_i \in R$. Multiplying by b^n , we have $a^n + bc = 0$, with $c \in R$. Thus b divides a^n , which cannot happen for relatively prime a and b unless b has no prime factors at all, in other words, b is a unit. But then $x = ab^{-1} \in R$. A domain that is an integral extension of a field must be a field, as the next result shows. ## 2.1.10 Proposition Let R be a subring of the integral domain S, with S integral over R. Then R is a field if and only if S is a field. *Proof.* Assume that S is a field, and let a be a nonzero element of R. Since $a^{-1} \in S$, there is an equation of the form $$(a^{-1})^n + c_{n-1}(a^{-1})^{n-1} + \dots + c_1a^{-1} + c_0 = 0$$ with $c_i \in R$. Multiply the equation by a^{n-1} to get $$a^{-1} = -(c_{n-1} + \dots + c_1 a^{n-2} + c_0 a^{n-1}) \in R.$$ Now assume that R is a field, and let b be a nonzero element of S. By (2.1.4) part (2), R[b] is a finite-dimensional vector space over R. Let f be the R-linear transformation on this vector space given by multiplication by b, in other words, f(z) = bz, $z \in R[b]$. Since R[b] is a subring of S, it is an integral domain. Thus if bz = 0 (with $b \neq 0$ by choice of b), we have z = 0 and f is injective. But any linear transformation on a finite-dimensional vector space is injective iff it is surjective. Therefore if $b \in S$ and $b \neq 0$, there is an element $c \in R[b] \subseteq S$ such that bc = 1. Consequently, S is a field. \clubsuit #### 2.1.11 Preview Let S be integral over the subring R. We will analyze in great detail the relation between prime ideals of R and those of S. Suppose that Q is a prime ideal of S, and let $P = Q \cap R$. (We say that Q lies over P.) Then P is a prime ideal of R, because it is the preimage of Q under the inclusion map from R into S. The map $a + P \to a + Q$ is a well-defined injection of R/P into S/Q, because $P = Q \cap R$. Thus we can regard R/P as a subring of S/Q. Moreover, S/Q is integral over R/P. To see this, let $b + Q \in S/Q$. Then b satisfies an equation of the form $$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0$$ with $a_i \in R$. But b + Q satisfies the same equation with a_i replaced by $a_i + P$ for all i, proving integrality of S/Q over R/P. We can now invoke (2.1.10) to prove the following result. #### 2.1.12 Proposition Let S be integral over the subring R, and let Q be a prime ideal of S, lying over the prime ideal $P = Q \cap R$ of R. Then P is a maximal ideal of R if and only if Q is a maximal ideal of S. *Proof.* By (2.1.10), R/P is a field iff S/Q is a field. #### **2.1.13** Remarks Some results discussed in (2.1.11) work for arbitrary ideals, not necessarily prime. If R is a subring of S and J is an ideal of S, then $I = J \cap R$ is an ideal of R. As in (2.1.11), R/I can be regarded as a subring of S/J, and if S is integral over R, then S/J is integral over R/I. Similarly, if S is integral over S and S is a multiplicative subset of S, then S is integral over S. To prove this, let S, with S, with S, then there is an equation of the form S is an equation of the form S is integral over S. Thus $$(\frac{\alpha}{t})^n + (\frac{c_{n-1}}{t})(\frac{\alpha}{t})^{n-1} + \dots + (\frac{c_1}{t^{n-1}})\frac{\alpha}{t} + \frac{c_0}{t^n} = 0$$ with $c_{n-j}/t^j \in R_T$. ## 2.2 Integrality and Localization Results that hold for maximal ideals can sometimes be extended to prime ideals by the technique of localization. A good illustration follows. ## 2.2.1 Proposition Let S be integral over the subring R, and let P_1 and P_2 be prime ideals of S that lie over the prime ideal P of R, that is, $P_1 \cap R = P_2 \cap R = P$. If $P_1 \subseteq P_2$, then $P_1 = P_2$. *Proof.* If P is maximal, then by (2.1.12), so are P_1 and P_2 , and the result follows. In the general case, we localize with respect to P. Let $T = R \setminus P$, a multiplicative subset of $R \subseteq S$. The prime ideals P_i , i = 1, 2, do not meet T, because if $x \in T \cap P_i$, then $x \in R \cap P_i = P$, contradicting the definition of T. By the basic correspondence between prime ideals in a ring and prime ideals in its localization, it suffices to show that $P_1S_T = P_2S_T$. We claim that $$PR_T \subseteq (P_1S_T) \cap R_T \subset R_T$$. The first inclusion holds because $P \subseteq P_1$ and $R_T \subseteq S_T$. The second inclusion is proper, for otherwise $R_T \subseteq P_1S_T$ and therefore $1 \in P_1S_T$, contradicting the fact that P_1S_T is a prime ideal. But PR_T is a maximal ideal of R_T , so by the above claim, $$(P_1S_T) \cap R_T = PR_T$$, and similarly $(P_2S_T) \cap R_T = PR_T$. Thus P_1S_T and P_2S_T lie over PR_T . By (2.1.13), S_T is integral over R_T . As at the beginning of the proof, P_1S_T and P_2S_T are maximal by (2.1.12), hence $P_1S_T = P_2S_T$. If S/R is an integral extension, then prime ideals of R can be lifted to prime ideals of S, as the next result demonstrates. Theorem 2.2.2 is also a good example of localization technique. #### 2.2.2 Lying Over Theorem If S is integral over R and P is a prime ideal of R, there is a prime ideal Q of S such that $Q \cap R = P$. *Proof.* First assume that R is a local ring with unique maximal ideal P. If Q is any maximal ideal of S, then $Q \cap R$ is maximal by (2.1.12), so $Q \cap R$ must be P. In general, let T be the multiplicative set $R \setminus P$. We have the following commutative diagram. $$\begin{array}{ccc} R & \longrightarrow & S \\ f \downarrow & & \downarrow g \\ R_T & \longrightarrow & S_T \end{array}$$ The horizontal maps are inclusions, and the vertical maps are canonical (f(r) = r/1 and g(s) = s/1). Recall that S_T is integral over R_T by (2.1.13). If Q' is any maximal ideal of S_T , then as at the beginning of the proof, $Q' \cap R_T$ must be the unique maximal ideal of R_T , namely PR_T . By commutativity of the diagram, $f^{-1}(Q' \cap R_T) = g^{-1}(Q') \cap R$. (Note that if $r \in R$, then $f(r) \in Q' \cap R_T$ iff $g(r) \in Q'$.) If $Q = g^{-1}(Q')$, we have $f^{-1}(PR_T) = Q \cap R$. By the basic localization correspondence [cf.(2.2.1)], $f^{-1}(PR_T) = P$, and the result follows. \clubsuit ## 2.2.3 Going Up Theorem Let S be integral over R, and suppose we have a chain of prime ideals $P_1 \subseteq \cdots \subseteq P_n$ of R, and a chain of prime ideals $Q_1 \subseteq \cdots \subseteq Q_m$ of S, where m < n. If Q_i lies over P_i for $i = 1, \ldots, m$, then there are prime ideals Q_{m+1}, \ldots, Q_n of S such that $Q_m \subseteq Q_{m+1} \subseteq \cdots \subseteq Q_n$ and Q_i lies over P_i for every $i = 1, \ldots, n$. *Proof.* By induction, it suffices to consider the case n=2, m=1. Thus assume $P_1 \subseteq P_2$ and $Q_1 \cap R = P_1$. By (2.1.11), S/Q_1 is integral over R/P_1 . Since P_2/P_1 is a prime ideal of R/P_1 , we may apply the lying over theorem (2.2.2) to produce a prime ideal Q_2/Q_1 of S/Q_1 such that $$(Q_2/Q_1) \cap R/P_1 = P_2/P_1,$$ where Q_2 is a prime ideal of S and $Q_1 \subseteq Q_2$. We claim that $Q_2 \cap R = P_2$, which gives the desired extension of the Q-chain. To verify this, let $x_2 \in Q_2 \cap R$. By (2.1.11), we have an embedding of R/P_1 into S/Q_1 , so $x_2 + P_1 = x_2 + Q_1 \in (Q_2/Q_1) \cap R/P_1 = P_2/P_1$. Thus $x_2 + P_1 = y_2 + P_1$ for some $y_2 \in P_2$, so $x_2 - y_2 \in P_1 \subseteq P_2$. Consequently, $x_2 \in P_2$. Conversely, if $x_2 \in P_2$ then $x_2 + P_1 \in Q_2/Q_1$, hence $x_2 + P_1 = y_2 + Q_1$ for some $y_2 \in Q_2$. But as above, $x_2 + P_1 = x_2 + Q_1$, so $x_2 - y_2 \in Q_1$, and therefore $x_2 \in Q_2$. It is a standard result of field theory that an embedding of a field F in an algebraically closed field can be extended to an algebraic extension of F. There is an analogous result for ring extensions. #### 2.2.4 Theorem Let S be integral over R, and let f be a ring homomorphism from R into an algebraically closed field C. Then f can be extended to a ring homomorphism $g: S \to C$. *Proof.* Let P be the kernel of f. Since f maps into a field, P is a prime ideal of R. By (2.2.2), there is a prime ideal Q of S such that $Q \cap R = P$. By the factor theorem, f induces an injective ring homomorphism $\overline{f}: R/P \to C$, which extends in the natural way to the fraction field K of R/P. Let L be the fraction field of S/Q. By (2.1.11), S/Q is integral over R/P, hence L is an algebraic extension of K. Since C is algebraically closed, \overline{f} extends to a monomorphism $\overline{g}: L \to C$. If $p: S \to S/Q$ is the canonical epimorphism and $g = \overline{g} \circ p$, then g is the desired extension of f, because \overline{g} extends \overline{f} and $\overline{f} \circ p|_R = f$. In the next section, we will prove the companion result to (2.2.3), the going down theorem. There will be extra hypotheses, including the assumption that R is integrally closed. So it will be useful to get some practice with the idea of integral closure. 2.3. GOING DOWN 7 #### 2.2.5 Lemma Let R be a subring of S, and denote by \overline{R} the integral closure of R in S. If T is a multiplicative subset of R, then $(\overline{R})_T$ is the integral closure of R_T in S_T . *Proof.* Since \overline{R} is integral over R, it follows from (2.1.13) that $(\overline{R})_T$ is integral over R_T . If $\alpha/t \in S_T$ ($\alpha \in S, t \in T$) and α/t is integral over R_T , we must show that $\alpha/t \in (\overline{R})_T$. There is an equation of the form $$\left(\frac{\alpha}{t}\right)^n + \left(\frac{a_1}{t_1}\right)\left(\frac{\alpha}{t}\right)^{n-1} + \dots + \frac{a_n}{t_n} = 0$$ with $a_i \in R$ and $t_i, t \in T$. Let $t_0 = \prod_{i=1}^n t_i$, and multiply the equation by $(tt_0)^n$ to conclude that $t_0\alpha$ is integral over R. Therefore $t_0\alpha \in \overline{R}$, so $\alpha/t = t_0\alpha/t_0t \in (\overline{R})_T$. ## 2.2.6 Corollary If T is a multiplicative subset of the integrally closed domain R, then R_T is integrally closed *Proof.* Apply (2.2.5) with $\overline{R} = R$ and S = K, the fraction field of R (and of R_T). Then R_T is the integral closure of R_T in S_T . But $S_T = K$, so R_T is integrally closed. \clubsuit Additional results on localization and integral closure will be developed in the exercises. The following result will be useful. (The same result was proved in (1.5.1), but a slightly different proof is given here.) #### 2.2.7 Proposition The following conditions are equivalent, for an arbitrary R-module M. - (1) M = 0; - (2) $M_P = 0$ for all prime ideals P of R; - (3) $M_P = 0$ for all maximal ideals P of R. Proof. It is immediate that $(1) \Rightarrow (2) \Rightarrow (3)$. To prove that $(3) \Rightarrow (1)$, let $m \in M$. If P is a maximal ideal of R, then m/1 is 0 in M_P , so there exists $r_P \in R \setminus P$ such that $r_P m = 0$ in M. Let I(m) be the ideal generated by the r_P . Then I(m) cannot be contained in any maximal ideal M, because $r_M \notin M$ by construction. Thus I(m) must be R, and in particular, $1 \in I(m)$. Thus 1 can be written as a finite sum $\sum_P a_P r_P$ where P is a maximal ideal of R and $a_P \in R$. Consequently, $$m = 1m = \sum_{P} a_P r_P m = 0. \quad \clubsuit$$ ## 2.3 Going Down We will prove a companion result to the going up theorem (2.2.3), but additional hypotheses will be needed and the analysis is more complicated. #### 2.3.1 Lemma Let S be integral over the subring R, with I an ideal of R. Then \sqrt{IS} is the set of all $s \in S$ satisfying an equation of integral dependence $s^m + r_{m-1}s^{m-1} + \cdots + r_1s + r_0 = 0$ with the $r_i \in I$. *Proof.* If s satisfies such an equation, then $s^m \in IS$, so $s \in \sqrt{IS}$. Conversely, let $s^n \in IS$, $n \geq 1$, so that $s^n = \sum_{i=1}^k r_i s_i$ for some $r_i \in I$ and $s_i \in S$. Then $S_1 = R[s_1, \ldots, s_k]$ is a subring of S, and is also a finitely generated R-module by (2.1.5). Now $$s^n S_1 = \sum_{i=1}^k r_i s_i S_1 \subseteq \sum_{i=1}^k r_i S_1 \subseteq IS_1.$$ Moreover, S_1 is a faithful $R[s^n]$ -module, because an element that annihilates S_1 annihilates 1 and is therefore 0. By (2.1.2), s^n , hence s, satisfies an equation of integral dependence with coefficients in I. #### 2.3.2 Lemma Let R be an integral domain with fraction field K, and assume that R is integrally closed. Let f and g be monic polynomials in K[x]. If $fg \in R[x]$, then both f and g are in R[x]. Proof. In a splitting field containing K, we have $f(x) = \prod_i (x - a_i)$ and $g(x) = \prod_j (x - b_j)$. Since the a_i and b_j are roots of the monic polynomial $fg \in R[x]$, they are integral over R. The coefficients of f and g are in K and are symmetric polynomials in the roots, hence are integral over R as well. But R is integrally closed, and the result follows. \clubsuit ## 2.3.3 Proposition Let S be integral over the subring R, where R is an integrally closed domain. Assume that no nonzero element of R is a zero-divisor of S. (This is automatic if S itself is an integral domain.) If $s \in S$, define a homomorphism $h_s : R[x] \to S$ by $h_s(f) = f(s)$; thus h_s is just evaluation at s. Then the kernel I of h_s is a principal ideal generated by a monic polynomial. *Proof.* If K is the fraction field of R, then IK[x] is an ideal of the PID K[x], and $IK[x] \neq 0$ because s is integral over R. (If this is unclear, see the argument in Step 1 below.) Thus IK[x] is generated by a monic polynomial f. Step 1: $f \in R[x]$. By hypothesis, s is integral over R, so there is a monic polynomial $h \in R[x]$ such that h(s) = 0. Then $h \in I \subseteq IK[x]$, hence h is a multiple of f, say h = fg, with g monic in K[x]. Since R is integrally closed, we may invoke (2.3.2) to conclude that f and g belong to R[x]. Step 2: $f \in I$. Since $f \in IK[x]$, we may clear denominators to produce a nonzero element $r \in R$ such that $rf \in IR[x] = I$. By definition of I we have rf(s) = 0, and by hypothesis, r is not a zero-divisor of S. Therefore f(s) = 0, so $f \in I$. Step 3: f generates I. Let $q \in I \subseteq IK[x]$. Since f generates IK[x], we can take a common denominator and 2.3. GOING DOWN 9 write $q = q_1 f/r_1$ with $0 \neq r_1 \in R$ and $q_1 \in R[x]$. Thus $r_1 q = q_1 f$, and if we pass to residue classes in the polynomial ring $(R/Rr_1)[x]$, we have $\overline{q_1}\overline{f} = 0$. Since \overline{f} is monic, the leading coefficient of $\overline{q_1}$ must be 0, which means that $\overline{q_1}$ itself must be 0. Consequently, r_1 divides every coefficient of q_1 , so $q_1/r_1 \in R[x]$. Thus f divides q in R[x]. ## 2.3.4 Going Down Theorem Let the integral domain S be integral over the integrally closed domain R. Suppose we have a chain of prime ideals $P_1 \subseteq \cdots \subseteq P_n$ of R and a chain of prime ideals $Q_m \subseteq \cdots \subseteq Q_n$ of S, with $1 < m \le n$. If Q_i lies over P_i for $i = m, \ldots, n$, then there are prime ideals Q_1, \ldots, Q_{m-1} such that $Q_1 \subseteq \cdots \subseteq Q_m$ and Q_i lies over P_i for every $i = 1, \ldots, n$. *Proof.* By induction, it suffices to consider n=m=2. Let T be the subset of S consisting of all products rt, $r \in R \setminus P_1$, $t \in S \setminus Q_2$. In checking that T is a multiplicative set, we must make sure that it does not contain 0. If rt=0 for some $r \notin P_1$ (hence $r \neq 0$) and $t \notin Q_2$, then the hypothesis that r is not a zero-divisor of S gives t=0, which is a contradiction (because $0 \in Q_2$). Note that $R \setminus P_1 \subseteq T$ (take t=1), and $S \setminus Q_2 \subseteq T$ (take t=1). First we prove the theorem under the assumption that $T \cap P_1S = \emptyset$. Now P_1S_T is a proper ideal of S_T , else 1 would belong to $T \cap P_1S$. Therefore P_1S_T is contained in a maximal ideal \mathcal{M} . By basic localization theory, \mathcal{M} corresponds to a prime ideal Q_1 of S that is disjoint from T. Explicitly, $s \in Q_1$ iff $s/1 \in \mathcal{M}$. We refer to Q_1 as the contraction of \mathcal{M} to S; it is the preimage of \mathcal{M} under the canonical map $s \to s/1$. With the aid of the note at the end of the last paragraph, we have $(R \setminus P_1) \cap Q_1 = (S \setminus Q_2) \cap Q_1 = \emptyset$. Thus $Q_1 \cap R \subseteq P_1$ and $Q_1 = Q_1 \cap S \subseteq Q_2$. We must show that $P_1 \subseteq Q_1 \cap R$. We do this by taking the contraction of both sides of the inclusion $P_1S_T \subseteq \mathcal{M}$. Since the contraction of P_1S_T to S is P_1S , we have $P_1S \subseteq Q_1$, so $P_1 \subseteq (P_1S) \cap R \subseteq Q_1 \cap R$, as desired. Finally, we show that $T \cap P_1S$ is empty. If not, then by definition of T, $T \cap P_1S$ contains an element rt with $r \in R \setminus P_1$ and $t \in S \setminus Q_2$. We apply (2.3.1), with $I = P_1$ and s replaced by rt, to produce a monic polynomial $f(x) = x^m + r_{m-1}x^{m-1} + \cdots + r_1x + r_0$ with coefficients in P_1 such that f(rt) = 0. Define $$v(x) = r^m x^m + r_{m-1} r^{m-1} x^{m-1} + \dots + r_1 r x + r_0.$$ Then $v(x) \in R[x]$ and v(t) = 0. By (2.3.3), there is a monic polynomial $g \in R[x]$ that generates the kernel of the evaluation map $h_t : R[x] \to S$. Therefore v = ug for some $u \in R[x]$. Passing to residue classes in the polynomial ring $(R/P_1)[x]$, we have $\overline{v} = \overline{u} \ \overline{g}$. Since $r_i \in P_1$ for all $i = 0, \ldots, m-1$, we have $\overline{v} = \overline{r}^m x^m$. Since R/P_1 is an integral domain and g, hence \overline{g} , is monic, we must have $\overline{g} = x^j$ for some j with $0 \le j \le m$. (Note that $r \notin P_1$, so \overline{v} is not the zero polynomial.) Consequently, $$g(x) = x^{j} + a_{j-1}x^{j-1} + \dots + a_{1}x + a_{0}$$ with $a_i \in P_1, i = 0, \ldots, j-1$. But $g \in \ker h_t$, so g(t) = 0. By (2.3.1), t belongs to the radical of P_1S , so for some positive integer l, we have $t^l \in P_1S \subseteq P_2S \subseteq Q_2S = Q_2$, so $t \in Q_2$. This contradicts our choice of t (recall that $t \in S \setminus Q_2$).