
Chapter 6

Factorization of Analytic
Functions

In this chapter we will consider the problems of factoring out the zeros of an analytic
function f on a region Ω (à la polynomials), and of decomposing a meromorphic function
(à la partial fractions for rational functions). Suppose f is analytic on a region Ω and
f �≡ 0. What can be said about Z(f)? Theorem 2.4.8, the identity theorem, asserts that
Z(f) has no limit point in Ω. It turns out that no more can be said in general. That
is, if A is any subset of Ω with no limit point in Ω, then there exists f ∈ A(Ω) whose
set of zeros is precisely A. Furthermore, we can prescribe the order of the zero which
f shall have at each point of A. Now if A is a finite subset of Ω, say {z1, . . . , zn}, and
m1, . . . , mn are the corresponding desired multiplicities, then the finite product

f(z) = (z − z1)m1 · · · (z − zn)mn

would be such a function. However, in general the construction of such an f is accom-
plished using infinite products, which we now study in detail.

6.1 Infinite Products

Let {zn} be a sequence of complex numbers and put Pn =
∏n

k=1 zk, the n-th partial
product. We say that the infinite product

∏∞
n=1 zn converges if the sequence {Pn} is

convergent to a complex number P , and in this case we write P =
∏∞

n=1 zn.

This particular definition of convergence of infinite products is a natural one if the
usual definition of convergence of infinite series is extended directly to products. Many
textbook authors, however, find this approach objectionable, primarily for the following
two reasons.

(a) If one of the factors is zero, then the product converges to zero, no matter what
the other factors are, and a “correct” notion of convergence should presumably depend
on all (but possibly finitely many) of the factors.
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2 CHAPTER 6. FACTORIZATION OF ANALYTIC FUNCTIONS

(b) It is possible for a product to converge to zero without any of the factors being
zero, unlike the situation for a finite product.

Nevertheless, we have chosen to take the naive approach, and will deal with the above if
and when they are relevant.

Note that if Pn → P �= 0 , then zn = Pn/Pn−1 → P/P = 1 as n → ∞. Thus
a necessary (but not sufficient) condition for convergence of the infinite product to a
nonzero limit is that zn → 1.

A natural approach to the study of an infinite product is to formally convert the
product into a sum by taking logarithms. In fact this approach is quite fruitful, as the
next result shows.

6.1.1 Lemma

Suppose that zn �= 0, n = 1, 2, . . . . Then
∏∞

n=1 zn converges to a nonzero limit iff the series∑∞
n=1 Log zn converges. (Recall that Log denotes the particular branch of the logarithm

such that −π ≤ Im(Log z) < π.)

Proof. Let Pn =
∏n

k=1 zk and Sn =
∑n

k=1 Log zk. If Sn → S, then Pn = eSn → eS �= 0.
Conversely, suppose that Pn → P �= 0. Choose any θ such that argθ is continuous at P
(see Theorem 3.1.2). Then logθ Pn = ln |Pn| + i argθ(Pn) → ln |P | + i argθ(P ) = logθ P .
Since eSn = Pn, we have Sn = logθ Pn + 2πiln for some integer ln. But Sn − Sn−1 =
Log zn → Log 1 = 0. Consequently, logθ Pn − logθ Pn−1 + 2πi(ln − ln−1) → 0. Since
logθ Pn−logθ Pn−1 → logθ P−logθ P = 0 and ln−ln−1 is an integer, it follows that ln−ln−1

is eventually zero. Therefore ln is eventually a constant l. Thus Sn → logθ P + 2πil. ♣

6.1.2 Lemma

If an ≥ 0 for all n, then
∏∞

n=1(1 + an) converges iff
∑∞

n=1 an converges.

Proof. Since 1 + x ≤ ex, we have, for every n = 1, 2, . . . ,

a1 + · · ·+ an ≤ (1 + a1) · · · (1 + an) ≤ ea1+···+an . ♣

Lemma 6.1.2 suggests the following useful notion of absolute convergence for infinite
products.

6.1.3 Definition

The infinite product
∏∞

n=1(1 + zn) is said to converge absolutely if
∏∞

n=1(1 + |zn|) con-
verges. Thus by (6.1.2), absolute convergence of

∏∞
n=1(1 + zn) is equivalent to absolute

convergence of the series
∑∞

n=1 zn.

With this definition of absolute convergence, we can state and prove a result analogous
to a well known property of infinite series.
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6.1.4 Lemma

If the infinite product
∏∞

n=1(1 + zn) converges absolutely, then it converges.
Proof. By Lemma 6.1.2, convergence of

∏∞
n=1(1 + |zn|) implies that of

∑∞
n=1 |zn|, hence

|zn| → 0 in particular. So we can assume that |zn| < 1 for all n. Now for |z| < 1, we have

Log(1 + z) = z − z2

2
+

z3

3
− z4

4
+ · · · = zh(z)

where h(z) = 1− z
2 + z2

3 − z3

4 + · · · → 1 as z → 0. Consequently, for m ≤ p,

|
p∑

n=m

Log(1 + zn)| ≤
p∑

n=m

|zn||h(zn)|.

Since {h(zn) : n = 1, 2, . . . } is a bounded set and
∑∞

n=1 |zn| converges, it follows from the
preceding inequality that |

∑p
n=m Log(1+zn)| → 0 as m, p→∞. Thus

∑∞
n=1 Log(1+zn)

is convergent, which by (6.1.1) implies that
∏∞

n=1(1 + zn) converges.
The preceding result may be combined with (6.1.2) to obtain a rearrangement theorem

for absolutely convergent products.

6.1.5 Theorem

If
∏∞

n=1(1 + zn) converges absolutely, then so does every rearrangement, and to the
same limit. That is, if

∏∞
n=1(1 + |zn|) converges and P =

∏∞
n=1(1 + zn), then for every

permutation k → nk of the positive integers,
∏∞

k=1(1 + znk
) also converges to P .

Proof. Since
∏∞

n=1(1 + |zn|) converges, so does
∑∞

n=1 |zn| by (6.1.2). But then every
rearrangement of this series converges, so by (6.1.2) again,

∏∞
k=1(1+|znk

|) converges. Thus
it remains to show that

∏∞
k=1(1+ znk

) converges to the same limit as does
∏∞

n=1(1+ zn).
To this end let ε > 0 and for j = 1, 2, . . . , let Qj be the j-th partial product of

∏∞
k=1(1 +

znk
). Choose N so large that

∑∞
n=N+1 |zn| < ε and J so large that j ≥ J implies that

{1, 2, . . . , N} ⊆ {n1, n2, . . . , nj}. (The latter is possible because j → nj is a permutation
of the positive integers.) Then for j ≥ J we have

|Qj − P | ≤ |Qj − PN |+ |PN − P |
(1)

= |PN ||
∏
k

(1 + znk
)− 1|+ |PN − P |

where the product is taken over those k ≤ j such that nk > N . Now for any complex
numbers w1, . . . , wn we have (by induction) |

∏n
k=1(1 + wk) − 1| ≤

∏n
k=1(1 + |wk|) − 1.

Using this, we get from (1) that

|Qj − P | ≤ |PN |(
∏
k

(1 + |znk
|)− 1) + |PN − P |

≤ |PN |(eε − 1) + |PN − P |.
But the right side of the above inequality can be made as small as we wish by choosing
ε sufficiently small and N sufficiently large. Therefore Qj → P also, and the proof is
complete. ♣
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6.1.6 Proposition

Let g1, g2, . . . be a sequence of bounded complex-valued functions, each defined on a set
S. If the series

∑∞
n=1 |gn| converges uniformly on S, then the product

∏∞
n=1(1 + gn)

converges absolutely and uniformly on S. Furthermore, if f(z) =
∏∞

n=1(1+ gn(z)), z ∈ S,
then f(z) = 0 for some z ∈ S iff 1 + gn(z) = 0 for some n.
Proof. Absolute convergence of the product follows from (6.1.2). If

∑
|gn| converges

uniformly on S, there exists N such that n ≥ N implies |gn(z)| < 1 for all z ∈ S. Now
for any r ≥ N ,

r∏
n=1

(1 + gn(z)) =
N−1∏
n=1

(1 + gn(z))
r∏

n=N

(1 + gn(z)).

As in the proof of (6.1.4), with the same h and with m, p ≥ N ,

|
p∑

n=m

Log(1 + gn(z))| ≤
p∑

n=m

|gn(z)||h(gn(z))| → 0

uniformly on S as m, p → ∞. Therefore
∑∞

n=N Log(1 + gn(z)) converges uniformly
on S. Since the functions gN , gN+1, . . . are bounded on S, it follows that the series∑∞

n=N |gn(z)||h(gn(z))| is bounded on S and thus by the above inequality, the same is
true of

∑∞
n=N Log(1 + gn(z)). However, the exponential function is uniformly continuous

on bounded subsets of C, so we may infer that

exp

{
r∑

n=N

Log(1 + gn(z))

}
→ exp

{ ∞∑
n=N

Log(1 + gn(z))

}
�= 0

uniformly on S as r → ∞. This proves uniform convergence on S of
∏∞

n=N (1 + gn(z)).
Now 1 + gn(z) is never 0 on S for n ≥ N , so if f(z) =

∏∞
n=1(1 + gn(z)), then f(z) = 0 for

some z ∈ S iff 1 + gn(z) = 0 for some n < N . ♣

Remark

The product
∏∞

n=1(1+ |gn|) also converges uniformly on S, as follows from the inequality

p∏
n=m

(1 + |gn|) ≤ exp

{
p∑

n=m

|gn|
}

or by applying (6.1.6) to |g1|, |g2|, . . . .
Proposition (6.1.6) supplies the essential ingredients for an important theorem on

products of analytic functions.

6.1.7 Theorem

Let f1, f2, . . . be analytic on Ω. If
∑∞

n=1 |fn− 1| converges uniformly on compact subsets
of Ω, then f(z) =

∏∞
n=1 fn(z) defines a function f that is analytic on Ω. Furthermore,

for any z ∈ Ω we have f(z) = 0 iff fn = 0 for some n.
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Proof. By (6.1.6) with gn = fn − 1, the product
∏∞

n=1 fn(z) converges uniformly on
compact subsets of Ω, hence f is analytic on Ω. The last statement of the theorem is also
a direct consequence of (6.1.6). ♣

Problems

1. Let f1, f2, . . . and f be as in Theorem 6.1.7. Assume in addition that no fn is identically
zero on any component of Ω. Prove that for each z ∈ Ω, m(f, z) =

∑∞
n=1 m(fn, z).

(Recall that m(f, z) is the order of the zero of f at z; m(f, z) = 0 if f(z) �= 0.)

2. Show that − ln(1 − x) = x + g(x)x2, |x| < 1, where g(x) → 1/2 as x → 0. Conclude
that if a1, a2, . . . are real numbers and

∑∞
n=1 an converges, then the infinite product∏

n(1 − an) converges to a nonzero limit iff
∑∞

n=1 a2
n < ∞. Also, if

∑∞
n=1 a2

n < ∞,
then

∏
n(1− an) converges to a nonzero limit iff

∑∞
n=1 an converges.

3. Determine whether or not the following infinite products are convergent.
(a)

∏
n(1− 2−n), (b)

∏
n(1− 1

n+1 ), (c)
∏

n(1 + (−1)n

√
n

),
∏

n(1− 1
n2 ).

4. (a) Give an example of an infinite product
∏

n(1 + an) such that
∑

an converges but∏
n(1 + an) diverges.

(b) Give an example of an infinite product
∏

n(1 + an) such that
∑

an diverges but∏
n(1 + an) converges to a nonzero limit.

5. Show that the following infinite products define entire functions.
(a)

∏∞
n=1(1 + anz), |a| < 1, (b)

∏
n∈Z,n �=0(1− z/n)ez/n,

(c)
∏∞

n=2[1 + z
n(ln n)2 ].

6. Criticize the following argument. We know that
∏

n(1+zn) converges to a nonzero limit
iff

∑
n Log(1 + zn) converges. The Taylor expansion of Log(1 + z) yields Log(1 + z) =

zg(z), where g(z) → 1 as z → 0. If zn → 0, then g(zn) will be arbitrarily close to
1 for large n, and thus

∑
n zng(zn) will converge iff

∑
n zn converges. Consequently,∏

n(1 + zn) converges to a nonzero limit iff
∑

n zn converges.

6.2 Weierstrass Products

In this section we will consider the problem of constructing an analytic function f with
a prescribed sequence of complex numbers as its set of zeros, as was discussed at the
beginning of the chapter. A naive approach is simply to write

∏
n(z − an)mn where

a1, a2, . . . is the sequence of (distinct) desired zeros and mn is the specified multiplicity
of the zero, that is, m(f, an) = mn. But if a1, a2, . . . is an infinite sequence, then the
infinite product

∏
n(z−an)mn need not converge. A more subtle approach is required, one

that achieves convergence by using factors more elaborate than (z− an). These “primary
factors” were introduced by Weierstrass.
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6.2.1 Definition

Define E0(z) = 1− z and for m = 1, 2, . . . ,

Em(z) = (1− z) exp
[
z +

z2

2
+ · · ·+ zm

m

]
.

Note that if |z| < 1, then as m → ∞, Em(z) → (1 − z) exp[−Log(1 − z)] = 1. Indeed,
Em(z) → 1 uniformly on compact subsets of the unit disk D. Also, the Em are entire
functions, and Em has a zero of order 1 at z = 1, and no other zeros.

6.2.2 Lemma

|1− Em(z)| ≤ |z|m+1 for |z| ≤ 1.

Proof. If m = 0, equality holds, so assume m ≥ 1. Then a calculation shows that

E′m(z) = −zm exp
[
z +

z2

2
+ · · ·+ zm

m

]

so that

(1− Em(z))′ = zm exp
[
z +

z2

2
+ · · ·+ zm

m

]
. (1)

This shows that the derivative of 1−Em has a zero of order m at 0. Since 1−Em(0) = 0,
it follows that 1 − Em has a zero of order m + 1 at z = 0. Thus (1 − Em(z))/zm+1 has
a removable singularity at 0 and so has a Taylor expansion

∑∞
n=0 anzn valid everywhere

on C. Equation (1) shows also that the derivative of 1 − Em has nonnegative Taylor
coefficients and hence the same must be true of (1 − Em(z))/zm+1. Thus an ≥ 0 for all
n. Consequently,

∣∣∣∣1− Em(z)
zm+1

∣∣∣∣ ≤
∞∑

n=0

|an||z|n ≤
∞∑

n=0

an if |z| ≤ 1.

But
∑∞

n=0 an = [(1− Em(1)]/1m+1 = 1, and the result follows. ♣
Weierstrass’ primary factors Em will now be used to construct functions with pre-

scribed zeros. We begin by constructing entire functions with given zeros.

6.2.3 Theorem

Let {zn} be a sequence of nonzero complex numbers such that |zn| → ∞. Then there is
a sequence {mn} of nonnegative integers such that the infinite product

∏∞
n=1 Emn(z/zn)

defines an entire function f . Furthermore, f(z) = 0 iff z = zn for some n. Thus it is
possible to construct an entire function having zeros precisely at the zn, with prescribed
multiplicities. (If a appears k times in the sequence {zn}, then f has a zero of order k at
a. Also, a zero at the origin is handled by multiplying the product by zm.)
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Proof. Let {mn} be a sequence of nonnegative integers with the property that
∞∑

n=1

(
r

|zn|

)mn+1

<∞

for every r > 0. (One such sequence is mn = n−1 since for any r > 0, r/|zn|) is eventually
less than 1/2.) For fixed r > 0, (6.2.2) implies that

|1− Emn
(z/zn)| ≤ |z/zn|mn+1 ≤ (r/zn)mn+1

for all z ∈ D(0, r). Thus the series
∑
|1 − Emn(z/zn)| converges uniformly on D(0, r).

Since r is arbitrary, the series converges uniformly on compact subsets of C. The result
follows from (6.1.7). ♣

6.2.4 Remark

Let {zn} be as in (6.2.3). If |zn| grows sufficiently rapidly, it may be possible to take {mn}
to be a constant sequence. For example, if |zn| = n, then we may choose mn ≡ 1. The
corresponding product is

∏∞
n=1 E1(z/zn) =

∏∞
n=1(1 − z/zn)ez/zn . In this case, m = 1

is the smallest nonnegative integer for which
∑∞

n=1(r/|zn|)m+1 < ∞ for all r > 0, and∏∞
n=1 Em(z/zn) can be viewed as the canonical product associated with the sequence
{zn}. On the other hand, if |zn| = lnn, then

∑∞
n=1(1/|zn|)m = +∞ for every nonnegative

integer m, so no constant sequence suffices. These concepts arise in the study of the order
of growth of entire functions, but we will not pursue this area further.

Theorem 6.2.3 allows us to factor out the zeros of an entire function.Specifically, we
have a representation of an entire function as a product involving the primary factors Em.

6.2.5 Weierstrass Factorization Theorem

Let f be an entire function, f �≡ 0, and let k ≥ 0 be the order of the zero of f at 0.
Let the remaining zeros of f be at z1, z2, . . . , where each zn is repeated as often as its
multiplicity. Then

f(z) = eg(z)zk
∏
n

Emn(z/zn)

for some entire function g and nonnegative integers mn.
Proof. If f has finitely many zeros, the result is immediate, so assume that there are
infinitely many zn. Since f �≡ 0, |zn| → ∞. By (6.2.3) there is a sequence {mn} such that

h(z) = f(z)/[zk
∞∏

n=1

Emn(z/zn)]

has a zero-free extension to an entire function, which we will persist in calling h. But
now h has an analytic logarithm g on C, hence h(z) = eg(z) and we have the desired
representation. ♣

More generally, versions of (6.2.3) and its consequence (6.2.5) are available for any
proper open subset of Ĉ. We begin with the generalization of (6.2.3).
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6.2.6 Theorem

Let Ω be a proper open subset of Ĉ, A = {an : n = 1, 2, . . . } a set of distinct points in
Ω with no limit point in Ω, and {mn} a sequence of positive integers. Then there exists
f ∈ A(Ω) such that Z(f) = A and such that for each n we have m(f, an) = mn.

Proof. We first show that it is sufficient to prove the theorem in the special case where
Ω is a deleted neighborhood of ∞ in Ĉ and ∞ /∈ A. For suppose that the theorem has
been established in this special case. Then let Ω1 and A1 be arbitrary but as in the
hypothesis of the the theorem. Choose a point a �= ∞ in Ω1 \ A1 and define T (z) =
1/(z − a), z ∈ Ĉ. Then T is a linear fractional transformation of Ĉ onto Ĉ and thus
is a one-to-one continuous map of the open set Ω1 in Ĉ onto an open set Ω. Further,
if A = {T (an) : n = 1, 2 . . . } then Ω and A satisfy the hypotheses of the special case.
Having assumed the special case, there exists f analytic on Ω such that Z(f) = A and
m(f, T (an)) = mn. Now consider the function f1 = f ◦T . Since T is analytic on Ω1 \{a},
so is f1. But as z → a, T (z) → ∞, and since f is analytic at ∞, f(T (z)) approaches a
nonzero limit as z → a. Thus f1 has a removable singularity at a with f1(a) �= 0. The
statement regarding the zeros of f1 and their multiplicities follows from the fact that T
is one-to-one.

Now we must establish the special case. First, if A is a finite set {a1, . . . , an}, then
we can simply take

f(z) =
(z − a1)m1 · · · (z − an)mn

(z − b)m1+···+mn

where b ∈ C \ Ω. The purpose of the denominator is to assure that f is analytic and
nonzero at ∞.

Now suppose that A = {a1, a2, . . . } is an infinite set. Let {zn} be a sequence whose
range is A but such that for each j, we have zn = aj for exactly mj values of n. Since
C \Ω is a nonempty compact subset of C, for each n ≥ 1 there exists a point wn in C \Ω
such that |wn − zn| = dist(zn,C \ Ω). Note that |wn − zn| → 0 as n → ∞ because the
sequence {zn} has no limit point in Ω. Let {fn} be the sequence of functions on Ω defined
by

fn(z) = En

(
zn − wn

z − wn

)
,

where fn(∞) = En(0) = 1. Then fn has a simple zero at zn and no other zeros. Further-
more,

∑
|fn−1| converges uniformly on compact subsets of Ω. For if K ⊆ Ω, K compact,

then eventually |zn − wn|/|z − wn| is uniformly bounded by 1/2 on K. Thus by Lemma
6.2.2,

|fn(z)− 1| =
∣∣∣∣1− En

(
zn − wn

z − wn

)∣∣∣∣ ≤
∣∣∣∣zn − wn

z − wn

∣∣∣∣
n+1

≤ (1/2)n+1

for each z ∈ K. The statement of the theorem then follows from (6.1.7) by setting
f(z) =

∏∞
n=1 fn(z). ♣
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It is interesting to see what the preceding argument yields in the special case Ω = C, a
case which was established directly in (6.2.3). Specifically, suppose that A = {a1, a2, . . . }
is an infinite set of distinct points in C (with no limit point in C), and assume that 0 /∈ A.
Let {mj} and {zn} be as in the preceding proof. We are going to reconstruct the proof in
the case where ∞ ∈ Ω \ A. In order to do this, consider the transformation T (z) = 1/z.
This maps C onto Ĉ \ {0} and the sequence {zn} in C \ {0} onto the sequence {1/zn}
in T (C). The points wn obtained in the proof of (6.2.6) are all 0, and the corresponding
functions fn would be given by

fn(z) = En(1/znz), z ∈ C \ {0}.

Thus f(z) =
∏∞

n=1 fn(z) is analytic on C \ {0} and f has a zero of order mj at 1/aj .
Transforming Ĉ \ {0} back to C, it follows that

F (z) = f(1/z) =
∞∏

n=1

En(z/zn)

is an entire function with zeros of order mj at aj and no other zeros. That is, we obtain
(6.2.3) with mn = n. (Note that this mn from (6.2.3) is unrelated to the sequence {mj}
above.)

The fact that we can construct analytic functions with prescribed zeros has an inter-
esting consequence, which was referred to earlier in (4.2.5).

6.2.7 Theorem

Let h be meromorphic on the open set Ω ⊆ C. Then h = f/g where f and g are analytic
on Ω.

Proof. Let A be the set of poles of h in Ω. Then A satisfies the hypothesis in (6.2.6). Let
g be an analytic function on Ω with zeros precisely at the points in A and such that for
each a ∈ A, the order of the zero of g at a equals the order of the pole of h at a. Then gh
has only removable singularities in Ω and thus can be extended to an analytic function
f ∈ A(Ω). ♣

Problems

1. Determine the canonical products associated with each of the following sequences. [See
the discussion in (6.2.4).]
(a) zn = 2n, (b) zn = nb, b > 0, (c) zn = n(lnn)2.

2. Apply Theorem 6.2.6 to construct an analytic function f on the unit disk D such that
f has no proper analytic extension to a region Ω ⊃ D. (Hint: Construct a countable
set A = {an : n = 1, 2, . . . } in D such that every point in ∂D is an accumulation point
of A.) Compare this approach to that in Theorem 4.9.5, where essentially the same
result is obtained by quite different means.
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6.3 Mittag-Leffler’s Theorem and Applications

Let Ω be an open subset of C and let A = {an : n = 1, 2, . . . } be a set of distinct points in
Ω with no limit point in Ω. If {mn} is a sequence of positive integers, then Theorem 6.2.6
implies (by using 1/f) that there is a meromorphic function f on Ω such that f has poles
of order precisely mn at precisely the points an. The theorem of Mittag-Leffler, which we
will prove next, states that we can actually specify the coefficients of the principal part
at each pole an. The exact statement follows; the proof requires Runge’s theorem.

6.3.1 Mittag-Leffler’s Theorem

Let Ω be an open subset of C and B a subset of Ω with no limit point in Ω. Thus
B = {bj : j ∈ J} where J is some finite or countably infinite index set. Suppose that to
each j ∈ J there corresponds a rational function of the form

Sj(z) =
aj1

z − bj
+

aj2

(z − bj)2
+ · · ·+ ajnj

(z − bj)nj
.

Then there is a meromorphic function f on Ω such that f has poles at precisely the points
bj and such that the principal part of the Laurent expansion of f at bj is exactly Sj .
Proof. Let {Kn} be the sequence of compact sets defined in (5.1.1). Recall that {Kn}
has the properties that Kn ⊆ Ko

n+1 and ∪Kn = Ω. Furthermore, by Problem 5.2.5, each
component of C \ Kn contains a component of C \ Ω, in particular, C \ Ω meets each
component of C \Kn. Put K0 = ∅ and for n = 1, 2, . . . , define

Jn = {j ∈ J : bj ∈ Kn \Kn−1}.

The sets Jn are pairwise disjoint (possibly empty), each Jn is finite (since B has no limit
point in Ω), and ∪Jn = J . For each n, define Qn by

Qn(z) =
∑
j∈Jn

Sj(z)

where Qn ≡ 0 if Jn is empty. Then Qn is a rational function whose poles lie in Kn \Kn−1.
In particular, Qn is analytic on a neighborhood of Kn−1. Hence by Runge’s theorem
(5.2.8) with S = C \Ω, there is a rational function Rn whose poles lie in C \Ω such that

|Qn(z)−Rn(z)| ≤ (1/2)n, z ∈ Kn−1.

It follows that for any fixed m ≥ 1, the series
∑∞

n=m+1(Qn−Rn) converges uniformly on
Km to a function which is analytic on Ko

m ⊇ Km−1. Thus it is meaningful to define a
function f : Ω→ C by

f(z) = Q1(z) +
∞∑

n=2

(Qn(z)−Rn(z)), z ∈ Ω.

Indeed, note that for any fixed m, f is the sum of the rational function Q1+
∑m

n=2(Qn−Rn)
and the series

∑∞
n=m+1(Qn−Rn), which is analytic on Ko

m. Therefore f is meromorphic
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on Ω, as well as analytic on Ω \ B. It remains to show that f has the required principal
part at each point b ∈ B. But for any bj ∈ B, we have f(z) = Sj(z) plus a function that
is analytic on a neighborhood of bj . Thus f has a pole at bj with the required principal
part Sj . ♣

6.3.2 Remark

Suppose g is analytic at the complex number b and g has a zero of order m ≥ 1 at b. Let
c1, c2, . . . , cm be given complex numbers, and let R be the rational function given by

R(z) =
c1

z − b
+ · · ·+ cm

(z − b)m
.

Then gR has a removable singularity at b, so there exist complex numbers a0, a1, a2, . . .
such that for z in a neighborhood of b,

g(z)R(z) = a0 + a1(z − b) + · · ·+ am−1(z − b)m−1 + · · · .

Furthermore, if we write the Taylor series expansion

g(z) = b0(z − b)m + b1(z − b)m+1 + · · ·+ bm−1(z − b)2m−1 + · · · ,

then the coefficients a0, a1, . . . for gR must satisfy

a0 = b0cm

a1 = b0cm−1 + b1cm

...
am−1 = b0c1 + b1c2 + · · ·+ bm−1cm

That is, if c1, c2, . . . , cm are given, then a0, a1, . . . , am−1 are determined by the above
equations. Conversely, if g is given as above, and a0, a1, . . . , am−1 are given complex
numbers, then since b0 �= 0, one can sequentially solve the equations to obtain, in order,
cm, cm−1, . . . , c1. This observation plays a key role in the next result, where it is shown
that not only is it possible to construct analytic functions with prescribed zeros and with
prescribed orders at these zeros, as in (6.2.3) and (6.2.6), but we can specify the values
of f and finitely many of its derivatives in an arbitrary way. To be precise, we have the
following extension of (6.2.6).

6.3.3 Theorem

Let Ω be an open subset of C and B a subset of Ω with no limit point in Ω. Index B
by J , as in Mittag-Leffler’s theorem, so B = {bj : j ∈ J}. Suppose that corresponding
to each j ∈ J , there is a nonnegative integer nj and complex numbers a0j , a1j , . . . , anj ,j .
Then there exists f ∈ A(Ω) such that for each j ∈ J ,

f (k)(bj)
k!

= akj , 0 ≤ k ≤ nj .
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Proof. First apply (6.2.6) to produce a function g ∈ A(Ω) such that Z(g) = B and for
each j, m(g, bj) = nj + 1 = mj , say. Next apply the observations made above in (6.3.2)
to obtain, for each bj ∈ B, complex numbers c1j , c2j , . . . , cmj ,j such that

g(z)
mj∑
k=1

ckj

(z − bj)k
= a0j + a1j(z − bj) + · · ·+ anj ,j(z − bj)nj + · · ·

for z near bj . Finally, apply Mittag-Leffler’s theorem to obtain h, meromorphic on Ω,
such that for each j,

h−
mj∑
k=1

ckj

(z − bj)k

has a removable singularity at bj . It follows that the analytic extension of gh to Ω is the
required function f . (To see this, note that

gh = g

(
h−

mj∑
k=1

ckj

(z − bj)k

)
+ g

mj∑
k=1

ckj

(z − bj)k

and m(g, bj) > nj .) ♣

6.3.4 Remark

Theorem 6.3.3 will be used to obtain a number of algebraic properties of the ring A(Ω).
This theorem, together with most of results to follow, were obtained (in the case Ω = C)
by Olaf Helmer, Duke Mathematical Journal, volume 6, 1940, pp.345-356.

Assume in what follows that Ω is connected. Thus by Problem 2.4.11, A(Ω) is an
integral domain. Recall that in a ring, such as A(Ω), g divides f if f = gq for some
q ∈ A(Ω). Also, g is a greatest common divisor of a set F if g is a divisor of each f ∈ F
and if h divides each f ∈ F , then h divides g.

6.3.5 Proposition

Each nonempty subfamily F ⊆ A(Ω) has a greatest common divisor, provided F �= {0}.
Proof. Put B = ∩{Z(f) : f ∈ F}. Apply Theorem 6.2.6 to obtain g ∈ A(Ω) such that
Z(g) = B and for each b ∈ B, m(g, b) = min{m(f, b) : f ∈ F}. Then f ∈ F implies that
g|f (g divides f). Furthermore, if h ∈ A(Ω) and h|f for each f ∈ F , then Z(h) ⊆ B and
for each b ∈ B, m(h, b) ≤ min{m(f, b) : f ∈ F} = m(g, b). Thus h|g, and consequently g
is a greatest common divisor of F . ♣

6.3.6 Definitions

A unit in A(Ω) is a function f ∈ A(Ω) such that 1/f ∈ A(Ω). Thus f is a unit iff f has
no zeros in Ω. If f, g ∈ A(Ω), we say that f and g are relatively prime if each greatest
common divisor of f and g is a unit. It follows that f and g are relatively prime iff
Z(f)∩Z(g) = ∅. (Note that f and g have a common zero iff they have a nonunit common
factor.)
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6.3.7 Proposition

If the functions f1, f2 ∈ A(Ω) are relatively prime, then there exist g1, g2 ∈ A(Ω) such
that f1g1 + f2g2 ≡ 1.

Proof. By the remarks above, Z(f1) ∩ Z(f2) = ∅. By working backwards, i.e., solving
f1g1 +f2g2 = 1 for g1, we see that it suffices to obtain g2 such that (1−f2g2)/f1 has only
removable singularities. But this entails obtaining g2 such that Z(f1) ⊆ Z(1− f2g2) and
such that for each a ∈ Z(f1), m(f1, a) ≤ m(1 − f2g2, a). However, the latter condition
may be satisfied by invoking (6.3.3) to obtain g2 ∈ A(Ω) such that for each a ∈ Z(f1)
(recalling that f2(a) �= 0),

0 = 1− f2(a)g2(a) = (1− f2g2)(a)
0 = f2(a)g′2(a) + f ′2(a)g2(a) = (1− f2g2)′(a)
0 = f2(a)g′′2 (a) + 2f ′2(a)g′2(a) + f ′′2 (a)g2(a) = (1− f2g2)′′(a)
...

0 = f2(a)g(m−1)
2 (a) + · · ·+ f

(m−1)
2 (a)g2(a) = (1− f2g2)(m−1)(a)

where m = m(f1, a). [Note that these equations successively determine g2(a), g′2(a), . . . , g
(m−1)
2 (a).]

This completes the proof of the proposition. ♣
The preceding result can be generalized to an arbitrary finite collection of functions.

6.3.8 Proposition

If {f1, f2, . . . , fn} ⊆ A(Ω) and d is a greatest common divisor for this set, then there exist
g1, g2, . . . , gn ∈ A(Ω) such that f1g1 + f2g2 + · · ·+ fngn = d.

Proof. Use (6.3.7) and induction. The details are left as an exercise (Problem 1). ♣
Recall that an ideal I ⊆ A(Ω) is a subset that is closed under addition and subtraction

and has the property that if f ∈ A(Ω) and g ∈ I, then fg ∈ I.

We are now going to show that A(Ω) is what is referred to in the literature as a Bezout
domain. This means that each finitely generated ideal in the integral domain A(Ω) is a
principal ideal. A finitely generated ideal is an ideal of the form {f1g1 + · · · + fngn :
g1, . . . , gn ∈ A(Ω)} where {f1, . . . , fn} is some fixed finite set of elements in A(Ω). A
principal ideal is an ideal that is generated by a single element f1. Most of the work has
already been done in preceding two propositions.

6.3.9 Theorem

Let f1, . . . , fn ∈ A(Ω) and let I = {f1g1 + · · · + fngn : g1, . . . , gn ∈ A(Ω)} be the ideal
generated by f1, . . . , fn. Then there exists f ∈ A(Ω) such that I = {fg : g ∈ A(Ω)}. In
other words, I is a principal ideal.

Proof. If f ∈ I then f = f1h1 + · · ·+ fnhn for some h1, . . . , hn ∈ A(Ω). If d is a greatest
common divisor for {f1, . . . , fn}, then d divides each fj , hence d divides f . Thus f is
a multiple of d. On the other hand, by (6.3.8), there exist g1, . . . , gn ∈ A(Ω) such that
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d = f1g1 + · · ·+ fngn. Therefore d and hence every multiple of d belongs to I. Thus I is
the ideal generated by the single element d. ♣

A principal ideal domain is an integral domain in which every ideal is principal. Prob-
lem 2 asks you to show that A(Ω) is never a principal ideal domain, regardless of the
region Ω. There is another class of (commutative) rings called Noetherian; these are rings
in which every ideal is finitely generated. Problem 2, when combined with (6.3.9), also
shows that A(Ω) is never Noetherian.

Problems

1. Supply the details to the proof of (6.3.8). (Hint: Use induction, (6.3.7), and the
fact that if d is a greatest common divisor (gcd) for {f1, . . . , fn} and d1 is a gcd for
{f1, . . . , fn−1}, then d is a gcd for the set {d1, fn}. Also note that 1 is a gcd for
{f1/d, . . . , fn/d}.)

2. Show that A(Ω) is never a principal ideal domain. that is, there always exists ideals I
that are not principal ideals, and thus by (6.3.9) are not finitely generated. (Hint: Let
{an} be a sequence of distinct points in Ω with no limit point in Ω. For each n, apply
(6.2.6) to the set {an, an+1, . . . }.)


