Chapter 5

The Ideal Class Group

We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned the ideal class group briefly in (3.4.5); it measures how close a Dedekind domain is to a principal ideal domain.

5.1 Lattices

5.1.1 Definitions and Comments

Let \(e_1, \ldots, e_n \in \mathbb{R}^n \), with the \(e_i \) linearly independent over \(\mathbb{R} \). Thus the \(e_i \) form a basis for \(\mathbb{R}^n \) as a vector space over \(\mathbb{R} \). The \(e_i \) also form a basis for a free \(\mathbb{Z} \)-module of rank \(n \), namely

\[
H = \mathbb{Z}e_1 + \cdots + \mathbb{Z}e_n.
\]

A set \(H \) constructed in this way is said to be a lattice in \(\mathbb{R}^n \). The fundamental domain of \(H \) is given by

\[
T = \{ x \in \mathbb{R}^n : x = \sum_{i=1}^{n} a_i e_i, \; 0 \leq a_i < 1 \}.
\]

In the most familiar case, \(e_1 \) and \(e_2 \) are linearly independent vectors in the plane, and \(T \) is the parallelogram generated by the \(e_i \). In general, every point of \(\mathbb{R}^n \) is congruent modulo \(H \) to a unique point of \(T \), so \(\mathbb{R}^n \) is the disjoint union of the sets \(h + T, \; h \in H \). If \(\mu \) is Lebesgue measure, then the volume \(\mu(T) \) of the fundamental domain \(T \) will be denoted by \(v(H) \). If we generate \(H \) using a different \(\mathbb{Z} \)-basis, the volume of the fundamental domain is unchanged. (The change of variables matrix between \(\mathbb{Z} \)-bases is unimodular, hence has determinant \(\pm 1 \). The result follows from the change of variables formula for multiple integrals.)
5.1.2 Lemma

Let S be a Lebesgue measurable subset of \mathbb{R}^n with $\mu(S) > v(H)$. Then there exist distinct points $x, y \in S$ such that $x - y \in H$.

Proof. As we observed in (5.1.1), the sets $h + T, h \in H$, are (pairwise) disjoint and cover \mathbb{R}^n. Thus the sets $S \cap (h + T), h \in H$, are disjoint and cover S. Consequently,

$$\mu(S) = \sum_{h \in H} \mu(S \cap (h + T)).$$

By translation-invariance of Lebesgue measure, $\mu(S \cap (h + T)) = \mu((-h + S) \cap T)$. Now if $S \cap (h_1 + T)$ and $S \cap (h_2 + T)$ are disjoint, it does not follow that $(-h_1 + S) \cap T$ and $(-h_2 + S) \cap T$ are disjoint, as we are not subtracting the same vector from each set. In fact, if the sets $(-h + S) \cap T, h \in H$, were disjoint, we would reach a contradiction via

$$v(H) = \mu(T) \geq \sum_{h \in H} \mu((-h + S) \cap T) = \mu(S).$$

Thus there are distinct elements $h_1, h_2 \in H$ such that $(-h_1 + S) \cap (-h_2 + S) \cap T \neq \emptyset$. Choose (necessarily distinct) $x, y \in S$ such that $-h_1 + x = -h_2 + y$. Then $x - y = h_1 - h_2 \in H$, as desired. ♣

5.1.3 Minkowski's Convex Body Theorem

Let H be a lattice in \mathbb{R}^n, and assume that S is a Lebesgue measurable subset of \mathbb{R}^n that is symmetric about the origin and convex. If

(a) $\mu(S) > 2^n v(H)$, or
(b) $\mu(S) \geq 2^n v(H)$ and S is compact, then $S \cap (H \setminus \{0\}) \neq \emptyset$.

Proof.

(a) Let $S' = \frac{1}{2} S$. Then $\mu(S') = 2^{-n} \mu(S) > v(H)$ by hypothesis, so by (5.1.2), there exist distinct elements $y, z \in S'$ such that $y - z \in H$. But $y - z = \frac{1}{2} (2y + (-2z))$, a convex combination of $2y$ and $-2z$. But $y \in S' \Rightarrow 2y \in S$, and $z \in S' \Rightarrow 2z \in S \Rightarrow -2z \in S$ by symmetry about the origin. Thus $y - z \in S$ and since y and z are distinct, $y - z \in H \setminus \{0\}$.

(b) We apply (a) to $(1+1/m)S, m = 1, 2, \ldots$. Since S, hence $(1+1/m)S$, is a bounded set, it contains only finitely many points of the lattice H. Consequently, for every positive integer m, $S_m = (1 + 1/m)S \cap (H \setminus \{0\})$ is a nonempty finite, hence compact, subset of \mathbb{R}^n. Since $S_{m+1} \subseteq S_m$ for all m, the sets S_m form a nested sequence, and therefore $\cap_{m=1}^\infty S_m \neq \emptyset$. If $x \in \cap_{m=1}^\infty S_m$, then $x \in H \setminus \{0\}$ and $x/(1 + 1/m) \in S$ for every m. Since S is closed, we may let $m \to \infty$ to conclude that $x \in S$. ♣

5.1.4 Example

With $n = 2$, take $e_1 = (1, 0)$ and $e_2 = (0, 1)$. The fundamental domain is the unit square, closed at the bottom and on the left, and open at the top and on the right. Let S be the set of all $a_1 e_1 + a_2 e_2$ with $-1 < a_i < 1, i = 1, 2$. Then $\mu(S) = 4v(H)$, but S contains no nonzero lattice points. Thus compactness is a necessary hypothesis in part (b).
5.2 A Volume Calculation

We will use \(n \)-dimensional integration technique to derive a result that will be needed in the proof that the ideal class group is finite. We will work in \(\mathbb{R}^n \), realized as the product of \(r_1 \) copies of \(\mathbb{R} \) and \(r_2 \) copies of \(\mathbb{C} \), where \(r_1 + 2r_2 = n \). Our interest is in the set

\[
B_t = \{(y_1, \ldots, y_{r_1}, z_1, \ldots, z_{r_2}) \in \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} : \sum_{i=1}^{r_1} |y_i| + 2 \sum_{j=1}^{r_2} |z_j| \leq t \}, \quad t \geq 0.
\]

We will show that the volume of \(B_t \) is given by

\[
V(r_1, r_2, t) = 2^{r_1} \left(\frac{\pi}{2} \right)^{r_2} \frac{t^n}{n!}.
\]

The proof is by double induction on \(r_1 \) and \(r_2 \). If \(r_1 = 1 \) and \(r_2 = 0 \), hence \(n = 1 \), we are calculating the length of the interval \([-t, t]\), which is \(2t \), as predicted. If \(r_1 = 0 \) and \(r_2 = 1 \), hence \(n = 2 \), we are calculating the area of \(\{z_1 : 2|z_1| \leq t\} \), a disk of radius \(t/2 \). The result is \(\pi t^2/4 \), again as predicted. Now assume that the formula holds for \(r_1, r_2, \) and all \(t \). Then \(V(r_1+1, r_2, t) \) is the volume of the set described by

\[
|y| + \sum_{i=1}^{r_1} |y_i| + 2 \sum_{j=1}^{r_2} |z_j| \leq t
\]

or equivalently by

\[
\sum_{i=1}^{r_1} |y_i| + 2 \sum_{j=1}^{r_2} |z_j| \leq t - |y|.
\]

Now if \(|y| > t \), then \(B_t \) is empty. For smaller values of \(|y| \), suppose we change \(|y| \) to \(|y| + dy \). This creates a box in \((n + 1)\)-space with \(dy \) as one of the dimensions. The volume of the box is \(V(r_1, r_2, t - |y|)dy \). Thus

\[
V(r_1+1, r_2, t) = \int_{-t}^{t} V(r_1, r_2, t - |y|)dy
\]

which by the induction hypothesis is

\[
2 \int_{0}^{t} 2^{r_1} \left(\frac{\pi}{2} \right)^{r_2} [(t - y)^n/n!]\ dy.
\]

Evaluating the integral, we obtain

\[
2^{r_1+1} \left(\frac{\pi}{2} \right)^{r_2} t^{n+1}/(n+1)!,
\]

as desired.

Finally, \(V(r_1, r_2 + 1, t) \) is the volume of the set described by

\[
\sum_{i=1}^{r_1} |y_i| + 2 \sum_{j=1}^{r_2} |z_j| + 2|z| \leq t.
\]

As above,

\[
V(r_1, r_2 + 1, t) = \int_{|z| \leq t/2} V(r_1, r_2, t - 2|z|) \mu(z)
\]
where μ is Lebesgue measure on \mathbb{C}. In polar coordinates, the integral becomes

$$\int_{\theta=0}^{2\pi} \int_{r=0}^{t/2} 2^r \left(\frac{\pi}{2} \right)^2 \frac{(t-2r)^n}{n!} \ r \ dr \ d\theta$$

which reduces to $2^r (\pi/2)^2 (2\pi/n!) \int_{r=0}^{t/2} (t-2r)^n \ r \ dr$. We may write the integrand as

$$(t-2r)^n \ r \ dr = -rd(t-2r)^{n+1}/2(n+1).$$

Integration by parts yields (for the moment ignoring the constant factors preceding the integral)

$$\int_0^{t/2} (t-2r)^{n+1} dr/2(n+1) = \frac{-(t-2r)^{n+2}}{2(n+1)2(n+2)} \bigg|_0^{t/2} = \frac{t^{n+2}}{4(n+1)(n+2)}.$$

Therefore $V(r_1, r_2 + 1, t) = 2^r (\pi/2)^2 (2\pi/n!) t^{n+2}/4(n+1)(n+2)$, which simplifies to $2^r (\pi/2)^2 t^{n+2}/(n+2)!$, completing the induction. Note that $n + 2$ (rather than $n + 1$) is correct, because $r_1 + 2(r_2 + 1) = r_1 + 2r_2 + 2 = n + 2$.

5.3 The Canonical Embedding

5.3.1 Definitions and Comments

Let L be a number field of degree n over \mathbb{Q}, and let $\sigma_1, \ldots, \sigma_n$ be the \mathbb{Q}-monomorphisms of L into \mathbb{C}. If σ_i maps entirely into \mathbb{R}, we say that σ_i is a real embedding; otherwise it is a complex embedding. Since the complex conjugate of a \mathbb{Q}-monomorphism is also a \mathbb{Q}-monomorphism, we can renumber the σ_i so that the real embeddings are $\sigma_1, \ldots, \sigma_{r_1}$ and the complex embeddings are $\sigma_{r_1+1}, \ldots, \sigma_n$, with σ_{r_1+j} paired with its complex conjugate $\sigma_{r_1+r_2+j}$, $j = 1, \ldots, r_2$. Thus there are $2r_2$ complex embeddings, and $r_1 + 2r_2 = n$.

The canonical embedding $\sigma : L \to \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} = \mathbb{R}^n$ is the injective ring homomorphism given by

$$\sigma(x) = (\sigma_1(x), \ldots, \sigma_{r_1+r_2}(x)).$$

5.3.2 Some Matrix Manipulations

Let $x_1, \ldots, x_n \in L$ be linearly dependent over \mathbb{Z} (hence the x_i form a basis for L over \mathbb{Q}). Let C be the matrix whose k^{th} column $(k = 1, \ldots, n)$ is

$$\sigma_1(x_k), \ldots, \sigma_{r_1}(x_k), \text{Re} \sigma_{r_1+1}(x_k), \text{Im} \sigma_{r_1+1}(x_k), \ldots, \text{Re} \sigma_{r_1+r_2}(x_k), \text{Im} \sigma_{r_1+r_2}(x_k).$$

The determinant of C looks something like a discriminant, and we can be more precise with the aid of elementary row operations. Suppose that

$$\begin{pmatrix} \sigma_j(x_k) \\ \sigma_j(x_k) \end{pmatrix} = \begin{pmatrix} x + iy \\ x - iy \end{pmatrix},$$

We are fixing j and allowing k to range from 1 to n, so we have two rows of an n by n matrix. Add the second row to the first, so that the entries on the right become $2x$
and \(x - iy \). Then add \(-1/2\) times row 1 to row 2, and the entries become \(2x\) and \(-iy\). Factoring out 2 and \(-i\), we get

\[
-2i \begin{pmatrix} x \\ y \end{pmatrix} = -2i \begin{pmatrix} \text{Re} \sigma_j(x_k) \\ \text{Im} \sigma_j(x_k) \end{pmatrix}.
\]

Do this for each \(j = 1, \ldots, r_2 \). In the above calculation, \(\sigma_j \) appears immediately under \(\sigma_j \), but in the original ordering they are separated by \(r_2 \), which introduces a factor of \((-1)^{r_2}\) when we calculate a determinant. To summarize, we have

\[
\det C = (2i)^{-r_2} \det(\sigma_j(x_k)).
\]

Note that \(j \) and \(k \) range from 1 to \(n \); no operations are needed for the first \(r_1 \) rows.

Now let \(M \) be the free \(\mathbb{Z} \)-module generated by the \(x_i \), so that \(\sigma(M) \) is a free \(\mathbb{Z} \)-module with basis \(\sigma(x_i), i = 1, \ldots, n \), hence a lattice in \(\mathbb{R}^n \). The fundamental domain is a parallelogram whose sides are the \(\sigma(x_i) \), and the volume of the fundamental domain is the absolute value of the determinant whose rows (or columns) are the \(\sigma(x_i) \). Consequently [see (5.1.1) for notation],

\[
v(\sigma(M)) = |\det C| = 2^{-r_2} |\det \sigma_j(x_k)|.
\]

We apply this result in an algebraic number theory setting.

5.3.3 Proposition

Let \(B \) be the ring of algebraic integers of a number field \(L \), and let \(I \) be a nonzero integral ideal of \(B \), so that \(\sigma(I) \) is a lattice in \(\mathbb{R}^n \). Then the volume of the fundamental domain of this lattice is

\[
v(\sigma(I)) = 2^{-r_2} |d|^{1/2} N(I);
\]

in particular, \(v(\sigma(B)) = 2^{-r_2} |d|^{1/2} \), where \(d \) is the field discriminant.

Proof. The result for \(I = B \) follows from (5.3.2) and (2.3.3), taking the \(x_k \) as an integral basis for \(B \). To establish the general result, observe that the fundamental domain for \(\sigma(I) \) can be assembled by taking the disjoint union of \(N(I) \) copies of the fundamental domain of \(\sigma(B) \). To convince yourself of this, let \(e_1 \) and \(e_2 \) be basis vectors in the plane. The lattice \(H' \) generated by \(2e_1 \) and \(3e_2 \) is a subgroup of the lattice \(H \) generated by \(e_1 \) and \(e_2 \), but the fundamental domain \(T' \) of \(H' \) is larger than the fundamental domain \(T \) of \(H \). In fact, exactly 6 copies of \(T \) will fit inside \(T' \). ♣

5.3.4 Minkowski Bound on Element Norms

If \(I \) is a nonzero integral ideal of \(B \), then \(I \) contains a nonzero element \(x \) such that

\[
|N_{L/\mathbb{Q}}(x)| \leq (4/\pi)^{r_2} (n!/n^r) |d|^{1/2} N(I).
\]

Proof. The set \(B_t \) of Section 5.2 is compact, convex and symmetric about the origin. The volume of \(B_t \) is \(\mu(B_t) = 2^{r_1} (\pi/2)^{r_2} t^n / n! \), with \(\mu \) indicating Lebesgue measure. We
choose t so that $\mu(B_t) = 2^n v(\sigma(I))$, which by (5.3.3) is $2^{n-r_2}|d|^{1/2}N(I)$. Equating the two expressions for $\mu(B_t)$, we get

$$t^n = 2^{n-r_1} \pi^{-r_2} n! |d|^{1/2}N(I).$$

Apply (5.1.3b) with $H = \sigma(I)$ and $S = B_t$. By our choice of t, the hypothesis of (5.1.3b) is satisfied, and we have $S \cap (H \setminus \{0\}) \neq \emptyset$. Thus there is a nonzero element $x \in I$ such that $\sigma(x) \in B_t$. Now by (2.1.6), the absolute value of the norm of x is the product of the positive numbers $a_i = |\sigma_i(x)|$, $i = 1, \ldots, n$. To estimate $N(x)$, we invoke the inequality of the arithmetic and geometric means, which states that $(a_1 \cdots a_n)^{1/n} \leq (a_1 + \cdots + a_n)/n$. It follows that $a_1 \cdots a_n \leq (\sum_{i=1}^n a_i/n)^n$. With our a_i’s, we have

$$|N(x)| \leq \left[\frac{1}{n} \sum_{i=1}^{r_1} |\sigma_i(x)| + \frac{2}{n} \sum_{i=r_1+1}^{r_1+r_2} |\sigma_i(x)| \right]^n.$$

Since $\sigma(x) \in B_t$, we have $|N(x)| \leq t^n/n^n$. By choice of t,

$$|N(x)| \leq (1/n^n)2^{n-r_1} \pi^{-r_2} n! |d|^{1/2}N(I).$$

But $n - r_1 = 2r_2$, so $2^{n-r_1} \pi^{-r_2} = 2^{2r_2} \pi^{-r_2} = (4/\pi)^{r_2}$, and the result follows. ♣

5.3.5 Minkowski Bound on Ideal Norms

Every ideal class [see (3.4.5)] of L contains an integral ideal I such that

$$N(I) \leq (4/\pi)^{r_2} \left(n!/n^n \right) |d|^{1/2}.$$

Proof. Let J' be a fractional ideal in the given class. We can multiply by a principal ideal of B without changing the ideal class, so we can assume with loss of generality that $J = (J')^{-1}$ is an integral ideal. Choose a nonzero element $x \in J$ such that x satisfies the norm inequality of (5.3.4). Our candidate is $I = xJ'$.

First note that I is an integral ideal because $x \in J$ and $JJ' = B$. Now $(x) = IJ$, so by (4.2.6) and (5.3.4),

$$N(I)N(J) = N(x) \leq (4/\pi)^{r_2} \left(n!/n^n \right) |d|^{1/2}N(J).$$

Cancel $N(J)$ to get the desired result. ♣

5.3.6 Corollary

The ideal class group of a number field is finite.

Proof. By (4.2.13), there are only finitely many integral ideals with a given norm. By (5.3.5), we can associate with each ideal class an integral ideal whose norm is bounded above by a fixed constant. If the ideal class group were infinite, we would eventually use the same integral ideal in two different ideal classes, which is impossible. ♣
5.3. THE CANONICAL EMBEDDING

5.3.7 Applications

Suppose that a number field L has a Minkowski bound on ideal norms that is less than 2. Since the only ideal of norm 1 is the trivial ideal $(1) = B$, every ideal class must contain (1). Thus there can be only one ideal class, and the class number of L, that is, the order of the ideal class group, is $h_L = 1$. By (3.4.5), B is a PID, equivalently, by (3.2.8), a UFD.

If the Minkowski bound is greater than 2 but less than 3, we must examine ideals whose norm is 2. If I is such an ideal, then by (4.2.9), I divides (2). Thus the prime factorization of (2) will give useful information about the class number.

In the exercises, we will look at several explicit examples.

Problems For Section 5.3

1. Calculate the Minkowski bound on ideal norms for an imaginary quadratic field, in terms of the field discriminant d. Use the result to show that $\mathbb{Q}(\sqrt{m})$ has class number 1 for $m = -1, -2, -3, -7$.
2. Calculate the Minkowski bound on ideal norms or a real quadratic field, in terms of the field discriminant d. Use the result to show that $\mathbb{Q}(\sqrt{m})$ has class number 1 for $m = 2, 3, 5, 13$.
3. Show that in the ring of algebraic integers of $\mathbb{Q}(\sqrt{-5})$, there is only one ideal whose norm is 2. Then use the Minkowski bound to prove that the class number is 2.
4. Repeat Problem 3 for $\mathbb{Q}(\sqrt{6})$.
5. Show that the only prime ideals of norm 2 in the ring of algebraic integers of $\mathbb{Q}(\sqrt{17})$ are principal. Conclude that the class number is 1.
6. Find the class number of $\mathbb{Q}(\sqrt{14})$. (It will be necessary to determine the number of ideals of norm 3 as well as norm 2.)

Problems 7-10 consider bounds on the field discriminant.
7. Let L be a number field of degree n over \mathbb{Q}, with field discriminant d. Show that $|d| \geq a_n = (\pi/4)^n n^{2n}/(n!)^2$.
8. Show that $a_2 = \pi^2/4$ and $a_{n+1}/a_n \geq 3\pi/4$. From this, derive the lower bound $|d| \geq (\pi/3)(3\pi/4)^{n-1}$ for $n \geq 2$.
9. Show that $n/\log |d|$ is bounded above by a constant that is independent of the particular number field.
10. Show that if $L \neq \mathbb{Q}$, then $|d| > 1$, hence in any nontrivial extension of \mathbb{Q}, at least one prime must ramify.