Definition 1.1. $f(x)$ has a vertical asymptote at $x = a$ if

Definition 1.2. $x = a$ is a horizontal asymptote of $f(x)$ if

Theorem 1.3 (Squeeze Theorem).

Example 1.4. Find all vertical asymptotes of the function $f(x) = \frac{x^2 - 9}{2x^2 - 10x + 12}$.

Example 1.5. Find all horizontal asymptotes of the function $f(x) = \frac{\cos^2 x}{x^2}$.

Example 1.6. Compute $\lim_{x \to \pi^-} \ln(\sin x)$.

Math 221 AD2: Test 1 Review—Continuity

September 21, 2018

Definition 2.1. \(f(x) \) is continuous at \(a \) if

Theorem 2.2 (Intermediate Value Theorem).

Example 2.3. Find values of \(a \) and \(b \) that make \(f \) continuous everywhere, where

\[
f(x) = \begin{cases}
\frac{x^2 - 4}{x - 2} & \text{if } x < 2 \\
ax^2 - bx + 3 & \text{if } 2 \leq x < 3 \\
2x - a + b & \text{if } x \geq 3
\end{cases}
\]

Example 2.4. Show that there is a root of the equation \(\cos(\sqrt{x}) = e^x - 2 \) in the interval \((0, 1)\).
Definition 3.1. \(f(x) \) is differentiable at \(a \) if

Theorem 3.2. If \(f(x) \) is \(a \), then \(f(x) \) is \(a \). The converse is not true: Consider, for example, the function .

Theorem 3.3 (Product Rule).

Example 3.4. Using the definition, find the derivative of \(f(x) = 3x - 4x^2 + 2 \).

Example 3.5. Find the derivative of \(f(x) = x^2 \cos x \).
Theorem 4.1 (Quotient Rule).

Theorem 4.2 (Chain Rule).

Example 4.3. Find the derivative of $f(x) = rac{xe^x}{2x + 7}$.

Example 4.4. Find the derivatives of $f(x) = \sqrt{\cos(x^2) + \ln x}$ and $g(x) = \arctan(2^x + 1)$.
Example 5.1. Find the equation of the tangent line to the ellipse $x^2 + 2xy + 4y^2 = 12$ at the point $(2, 1)$.

Example 5.2. Compute $\frac{dy}{dx}$ where $y = (\sin x)^{\ln x}$.