1. Find the derivative of \(f(x) = \ln(x^2 + x + 1) \).

2. Suppose \(a \) is a positive number.
 (a) Find the derivative of \(x^a \).
 (b) Show that the derivative of \(a^x \) is \(a^x \ln(a) \). (Hint: Let \(y = a^x \).)
 (c) Discuss: Why is the derivative of \(a^x \) not \(xa^{x-1} \)?

3. We will find the derivative of \(\arctan(x) \).
 (a) Let \(\theta = \arctan(x) \). Solve for \(x \) in terms of \(\theta \).
 (b) Draw an acute triangle representing the relationship you found in part (a).
 (c) Find \(\frac{d\theta}{dx} \).
 (d) Find the derivative of \(\arctan(x) \). (Hint: Combine parts (b) and (c).)

4. Find \(\frac{dy}{dx} \) for each of the following curves.
 (a) \(y = 2^{3^x} \)
 (b) \(y = xe^x \)
 (c) \(x^3 + y^4 = 7 \)
 (d) \(y = \sin(3x + 4y) \)