1. Let

\[f(x) = \begin{cases}
 x^2 & \text{if } x \leq 2 \\
 mx + b & \text{if } x > 2
\end{cases} \]

Find values of \(m \) and \(b \) making \(f \) differentiable everywhere.

2. Find the equation of the line tangent to the curve \(y = \sqrt{x} - x \) at the point \((1, 0)\).

3. What is the relationship between a function \(f(x) \) being differentiable at a real number \(a \) and being continuous at \(a \)? In particular, is there a function \(f(x) \) and a real number \(a \) such that \(f(x) \) is continuous at \(a \) and not differentiable at \(a \)? What about a function \(f(x) \) and a real number \(a \) such that \(f(x) \) is differentiable at \(a \) and not continuous at \(a \)? If any answer is yes, provide such an example.

4. For what value of \(x \) does the graph of \(f(x) = e^x - 2x \) have a horizontal tangent?

5. Find the derivatives of the following functions. Use prime notation when a variable is indicated on the left-hand side; use Leibniz notation where no variable is indicated on the left-hand side.

(a) \(z = y^7 + 4y^3 + 109y \)
(b) \(f(x) = 3x^2 + 4x + 7 \)
(c) \(p(t) = (t^2 + 2)e^t \)
(d) \(g(r) = \frac{r^2 + 2}{r - 4} \)