1. (3 points) Evaluate the following limit.

\[
\lim_{x \to 2} \frac{e^{x-2} - x^2 + 3x - 3}{(x-2)^2}
\]

\[
= \lim_{x \to 2} \frac{e^{x-2} - x^2 + 3 \to 0}{(x-2)^2} \to 0, \text{ so L'Hôpital's Rule applies}
\]

\[
= \lim_{x \to 2} \frac{e^{x-2} - 2x + 3}{2(x-2)} \to 0, \text{ so L'Hôpital's Rule applies}
\]

\[
= \lim_{x \to 2} \frac{e^{x-2} - 2}{2}
\]

\[
= -\frac{1}{2}
\]
2. (3 points) Evaluate the following limit.

\[
\lim_{x \to \infty} \left(7 + 3e^{2x} \right)^{3/x}
\]

Since \((7 + 3e^{2x})^{3/x} = e^{\ln \left((7 + 3e^{2x})^{3/x} \right)}\), if \(\lim_{x \to \infty} \ln \left((7 + 3e^{2x})^{3/x} \right)\) exists, then

\[
\lim_{x \to \infty} \left(7 + 3e^{2x} \right)^{3/x} = e^{\lim_{x \to \infty} \ln \left((7 + 3e^{2x})^{3/x} \right)}
\]

because \(e^x\) is continuous at all real numbers.

Then

\[
\lim_{x \to \infty} \ln \left((7 + 3e^{2x})^{3/x} \right) = \lim_{x \to \infty} \frac{3 \ln (7 + 3e^{2x})}{x} \to \infty, \text{ so L'Hôpital's Rule applies}
\]

\[
= \lim_{x \to \infty} \frac{3}{7 + 3e^{2x}} \cdot \frac{6e^{2x}}{x} \to \infty
\]

\[
= \lim_{x \to \infty} \frac{18e^{2x}}{7 + 3e^{2x}}
\]

\[
= \lim_{x \to \infty} \frac{18}{7e^{2x} + 3} \text{ (alternatively, you could have used L'Hôpital's Rule again)}
\]

\[
= \frac{18}{3} = 6.
\]

Hence

\[
\lim_{x \to \infty} \left(7 + 3e^{2x} \right)^{3/x} = e^6.
\]
3. (4 points) For each \(x > 0 \), a triangle is formed with vertices \((0, 0)\), \((x, 0)\) and \((x, f(x))\) where \(f(x) \) is the function given below. What is the value of \(x \) which results in the triangle of largest area?

\[
f(x) = \frac{10}{x^2 + 3x + 9}
\]

For \(x > 0 \), the area formed by the triangle with vertices \((0, 0)\), \((x, 0)\) and \((x, f(x))\) is given by

\[
A(x) = \frac{xf(x)}{2} = \frac{5x}{x^2 + 3x + 9}.
\]

This is the function we want to maximize. Then

\[
A'(x) = \frac{5(x^2 + 3x + 9) - 5x(2x + 3)}{(x^2 + 3x + 9)^2} = \frac{45 - 5x^2}{(x^2 + 3x + 9)^2}.
\]

Note that \(x^2 + 3x + 9 \geq 9 > 0 \) for \(x > 0 \), so \(A'(x) \) is never undefined. Since \(A'(x) = 0 \) if and only if \(45 - 5x^2 = 0 \), we obtain two critical numbers \(x = 3 \) and \(x = -3 \). But \(x = -3 \) is not in the domain of \(A \), so \(x = 3 \) is the only critical number.

It remains to check that \(x = 3 \) maximizes the area. Since \(A' \) is positive on \((0, 3)\) and negative on \((3, \infty)\), \(A \) must have a global maximum at \(x = 3 \).