MATH 221 Test 2 Fall 2017

Name ____________________________ NetID ____________________________

UIN ____________________________

Circle your TA discussion section.

• CD1, WF 9:00-10:50, Nigel Pynn-Coates
• CD2, WF 1:00-2:50, Chris Linden
• CD3, WF 9:00-10:50, Stefan Klajbor-Goderich
• CDA, WF 8:00-8:50, Hsin-Po Wang
• CDB, WF 9:00-9:50, Hsin-Po Wang
• CDC, WF 10:00-10:50, Albert Tamazyan
• CDE, WF 12:00-12:50, Dara Zirlin
• CDF, WF 1:00-1:50, Albert Tamazyan
• CDH, WF 3:00-3:50, Xiaolong ‘Hans’ Han
• CDI, WF 8:00-8:50, Haojian Li
• CDJ, WF 9:00-9:50, Jianting ‘Jesse’ Huang

• CDK, WF 10:00-10:50, Haojian Li
• CDL, WF 11:00-11:50, Xiaolong ‘Hans’ Han
• CDM, WF 1:00-1:50, Dana Neidinger
• CDN, WF 11:00-11:50, Ningchuan Zhang
• CDO, WF 8:00-8:50, Lan Wang
• CD2, WF 1:00-1:50, Ningchuan Zhang
• CDQ, WF 10:00-10:50, Xinghua Gao
• CDR, WF 11:00-11:50, Xinghua Gao
• CDS, WF 12:00-12:50, Jianting ‘Jesse’ Huang
• CDT, WF 1:00-1:50, Ningchuan Zhang
• CDU, WF 2:00-2:50, Dana Neidinger

• Sit in your assigned seat (circled below).
• Do not open this test booklet until I say START.
• Turn off all electronic devices and put away all items except a pen/pencil and an eraser.
• Remove hats and sunglasses.
• There is no partial credit on multiple-choice questions. For all other questions, you must show sufficient work to justify your answer.
• While the test is in progress, we will not answer questions concerning the test material.
• Do not leave early unless you are at the end of a row.
• Quit working and close this test booklet when I say STOP.
• Quickly turn in your test to me or a TA and show your Student ID.
1. (10 points) Determine the x-coordinate of the highest point on the graph of the following function.

$$f(x) = 1260 \arctan (3x) - 5 \ln (9x^2 + 1)$$

2. (10 points) A function $f(x)$ is differentiable everywhere and has the following second derivative.

$$f''(x) = \frac{(2x^2 - 288)(x + 3)^9(x^2 + 25)}{20e^{16-x}}$$

Find the intervals of concavity for $f(x)$ and state each x-value at which the graph of $f(x)$ has an inflection point.
3. (10 points) Let (0, 0) be the lower left corner and let (x, y) be the upper right corner of a rectangle as shown in the diagram. The upper right corner moves along the curve \(f(x) = 25e^{-3x} \) so that its x-coordinate is moving to the right at 4 cm/s. How quickly is the area of the rectangle changing at the moment that the upper right corner of the rectangle has an x-coordinate of 10 cm?
4. (10 points) Determine the formula for a function $f(x)$ which satisfies the following three conditions.

- $f''(x) = 800e^{4x} + 40\sin(x) - 25\cos(x)$
- $f'(0) = 80$
- $f(0) = 20$

5. (10 points) Express $10\ln(2) - 3\ln(10)$ as a single logarithm. Now use a linear approximation to estimate its value. Simplify and write your answer in decimal form.
6. (10 points) Fill in the missing information for the following theorems and tests.

Mean Value Theorem Let f be a function that satisfies the following two hypotheses.

1. f is __________________________ on the closed interval $[a, b]$.

2. f is __________________________ on the open interval (a, b).

Then there is a number c in (a, b) such that __________________________.

The First Derivative Test Suppose that c is a critical number of a continuous function f.

- If f' changes from positive to negative at c, then f has a local __________________ at c.

- If f' changes from negative to positive at c, then f has a local __________________ at c.

The Second Derivative Test Suppose f'' is continuous near c.

- If $f'(c) = 0$ and $f''(c) > 0$, then f has a local __________________ at c.

- If $f'(c) = 0$ and $f''(c) < 0$, then f has a local __________________ at c.

Fundamental Theorem of Calculus, Part 2

If f is __________________________ on $[a, b]$, then $\int_a^b f(x) \, dx = __________________________$

where F is any __________________________ of f.
7. (10 points) Let \(g(x) = \int_{8}^{5x} \frac{1}{70} \left(\frac{t}{5} \right)^{10} \left(\frac{t}{5} \right)^{6} + 1 \, dt \). Evaluate \(\lim_{x \to \infty} \frac{x^3}{g(x)} \) given that \(\lim_{x \to \infty} g(x) = \infty \).

8. (10 points) Find the area of the region above the \(x \)-axis and below the curve \(y = \frac{4}{x^2} \) on the interval \([2, 5]\).
9. (10 points) Suppose that \(f \) is integrable on the interval \([3, 25]\). Given that \(\int_{3}^{25} f(x) \, dx = 60 \), \(\int_{3}^{9} f(x) \, dx = 25 \) and \(\int_{6}^{25} f(x) \, dx = 40 \), evaluate the following definite integrals.

(a) \(\int_{6}^{9} f(x) \, dx \)

(b) \(\int_{3}^{9} (5f(x) + 20) \, dx \)

(c) \(\int_{9}^{3} f(x) \, dx \)

(d) \(\int_{3}^{6} f(x) \, dx \)

(e) \(\int_{6}^{9} f(x) \, dx \)

10. (10 points) Evaluate the following definite integral and simplify your answer.

\[
\int_{15}^{40} \left(14 \sin (2x) - (7 \sin x + 2 \cos x)^2 + 45 \sin^2 x \right) \, dx
\]
Students – do not write on this page!

1. (10 points) ______________________
2. (10 points) ______________________
3. (10 points) ______________________
4. (10 points) ______________________
5. (10 points) ______________________
6. (10 points) ______________________
7. (10 points) ______________________
8. (10 points) ______________________
9. (10 points) ______________________
10. (10 points) _____________________

TOTAL (100 points) ________________