1. Find the volume of the solid whose base is the region enclosed by the curves \(y = x^2 \) and \(y = x \) and whose cross-sections perpendicular to the base and to the y-axis are squares.

2. Find the volume of the solid whose base is the region enclosed by the curves \(y = x^2 \) and \(y = x \) and whose cross-sections perpendicular to the base and to the x-axis are semicircles.

3. Set up but do not evaluate two integrals, one with respect to \(x \) and one with respect to \(y \), to find the volume of the solid obtained by rotating the region(s) enclosed by the given curves about the given line.

 (a) \(y = x + 2, \ y = 5, \ x = 1 \) about the y-axis

 (b) \(x = y^2 - 2y, \ y = x + 2 \) about the line \(x = -2 \)

 (c) \(y = \tan x \) on \((-\pi/2, \pi/2)\), \(y = 1, \ y = -1, \ x = 0 \) about the line \(y = 2 \)

4. Find the average value of the given function on the given interval.

 (a) \(f(x) = 3 \cos x \) on \([-\pi/2, \pi/2]\)

 (b) \(g(t) = t^2/(t^3 + 3)^2 \) on \([-1, 1]\)

5. Find the volume of the solid formed by revolving the area between the curves \(x^2 - 2x \) and \(-2x^2 + 4x\) around the line \(y = 2\).

6. Find the volume of the solid whose base is the region enclosed by the lines \(y = x - 1, \ y = -x - 1, \ y = -x + 1, \) and \(y = x + 1 \), and whose cross-sections perpendicular to the base and to the x-axis are equilateral triangles.

7. Find the volumes of the two solids obtained by rotating the area bounded by the curves \(y = x^2 \) and \(y = x^3 \) about the x-axis and about the y-axis.